
Chapter 2
Jacobi’s Two-Squares and Four-Squares
Theorems

2.1 Introduction

In 1640, Fermat stated that a prime p is the sum of two squares if and only if p≡+1
(mod 4), and this was eventually proved by Euler in 1747. In 1801, Gauss showed
that the number n is the sum of two squares if and only if the squarefree part of n
has no divisor congruent to −1 (mod 4). In 1829, Jacobi proved a result giving the
number of representations of n as the sum of two squares, of which Gauss’s result
is, as we will see, a corollary.

Jacobi’s two-squares theorem: The number of representations of n ≥ 1 as the sum
of two squares is given by

r{�+�}(n) = 4(d1,4(n)−d3,4(n)) , (2.1.1)

where dr,m(n) denotes the number of divisors d of n with d ≡ r (mod m).
We will give two proofs of Jacobi’s two-squares theorem, one directly from JTP,

the other from (1.7.1). The second may be new.
In 1621 Bachet conjectured that every number is the sum of four squares, and

the proof was completed by Lagrange in 1770. In 1829, Jacobi gave a formula for
the number of representations of the number n as the sum of four squares, of which
Lagrange’s theorem is an immediate corollary.

Jacobi’s four-squares theorem: The number of representations of n≥ 1 as the sum
of four squares is given by

r{�+�+�+�}(n) = 8 ∑
d|n

d≡1, 2 or 3 (mod 4)

d. (2.1.2)

We will give a proof of Jacobi’s four-squares theorem from (1.7.1).
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20 2 Jacobi’s Two-Squares and Four-Squares Theorems

2.2 Our First Proof of Jacobi’s Two-Squares Theorem

We start by noting that (1.7.4) can be written

(a−a−1)(a−2q;q)∞(a2q;q)∞(q;q)∞ =
∞

∑
−∞

(−1)ka2k+1q(k
2+k)/2. (2.2.1)

Now consider k even, k= 2l and k odd, k= 2l+1 in the right side of (2.2.1) and
we find

(a−a−1)(a−2q;q)∞(a2q;q)∞(q;q)∞ =
∞

∑
−∞

a4l+1q2l2+l −
∞

∑
−∞

a4l−1q2l2−l

= a(−a−4q;q4)∞(−a4q3;q4)∞(q4;q4)∞ −a−1(−a−4q3;q4)∞(−a4q;q4)∞(q4;q4)∞.
(2.2.2)

If we differentiate (2.2.2) with respect to a using the product rule in the form

(
∏
k

uk

)′
=

(
∏
k

uk

)
∑
k

u′
k

uk

then multiply by a, we find (this is fairly tricky!)

(a+a−1)(a−2q;q)∞(a2q;q)∞(q;q)∞

+ 2(a−a−1)(a−2q;q)∞(a2q;q)∞(q2;q2)∞ ∑
k≥1

(
a−2qk

1−a−2qk
− a2qk

1−a2qk

)

= a(a−4q;q4)∞(−a4q3;q4)∞(q4;q4)∞

×
(

1−4 ∑
k≥1

(
a−4q4k−3

1+a−4q4k−3 − a4q4k−1

1+a4q4k−1

))

+ a−1(a−4q3;q4)∞(a4q;q4)∞(q4;q4)∞

×
(

1+4 ∑
k≥1

(
a−4q4k−1

1+a−4q4k−1 − a4q4k−3

1+a4q4k−3

))
. (2.2.3)

If in (2.2.3) we set a= 1 and divide by 2, we obtain

(q;q)3
∞ = (−q;q4)∞(−q3;q4)∞(q4;q4)∞

(
1−4 ∑

k≥1

(
q4k−3

1+q4k−3 − q4k−1

1+q4k−1

))
.

(2.2.4)
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If we invoke (1.4.9), (2.2.4) becomes

(q;q)3
∞ = ψ(q)

(
1−4 ∑

k≥1

(
q4k−3

1+q4k−3 − q4k−1

1+q4k−1

))
. (2.2.5)

If we divide (2.2.5) by ψ(q) and make use of (1.5.11), we obtain

φ(−q)2 = 1−4 ∑
k≥1

(
q4k−3

1+q4k−3 − q4k−1

1+q4k−1

)
. (2.2.6)

If in (2.2.6) we replace q by −q,

φ(q)2 = 1+4 ∑
k≥1

(
q4k−3

1−q4k−3 − q4k−1

1−q4k−1

)
. (2.2.7)

If we use the fact that
x

1− x
= ∑

l≥1

xl for |x| < 1, we can write

(
∞

∑
−∞

qk
2

)2

= 1+4 ∑
k,l≥1

(
q(4k−3)l −q(4k−1)l

)

= 1+4

(
∑

d≡+1 (mod 4), l≥1

qdl − ∑
d≡−1 (mod 4), l≥1

qdl
)
. (2.2.8)

If n ≥ 1, and we compare coefficients of qn on both sides of (2.2.8), we obtain
Jacobi’s two-squares theorem (2.1.1).

Now suppose the prime factorisation of n ≥ 1 is

n= 2α ∏
i
pαi
i ∏

j
q

β j
j , (2.2.9)

where the pi ≡ +1 (mod 4) and q j ≡ −1 (mod 4) are distinct primes, α ≥ 0 and
αi ≥ 1, β j ≥ 1. We observe that if P �= 0,

∑
d|n

d≡+1 (mod 4)

dP− ∑
d|n

d≡−1 (mod 4)

dP

= ∏
i
(1+ pPi + · · ·+ pPαi

i )∏
j
(1−qPj +−·· ·+(−1)β j q

Pβ j
j )

= ∏
i

1− p(αi+1)P
i

1− pPi
∏
j

1+(−1)β j q
(β j+1)P
j

1+qPj
(2.2.10)
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If we let P → 0 in (2.2.10), we find that

d1,4(n)−d3,4(n) = ∏
i
(αi+1)∏

j

1+(−1)β j

2
. (2.2.11)

It follows from (2.2.1) and (2.2.11) that for n ≥ 1,

r{�+�}(n) = 4∏
i
(αi+1)∏

j

1+(−1)β j

2
. (2.2.12)

Gauss’s result is now clear. The number n is the sum of two squares if and only
if all the β j are even, that is, if and only if the squarefree part of n is divisible
by no prime congruent to −1 (mod 4), or, equivalently, has no divisor (prime or
otherwise) congruent to −1 (mod 4).

Before moving on to give our second proof of Jacobi’s two-squares theorem,
it is worth pointing out that the number of expressions, which we will denote by
p{�+�}(n), of n ≥ 1 as the sum of two squares,

n= a2 +b2

with

a ≥ b ≥ 0

is given by

p{�+�}(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if any β j is odd
1
2 ∏

i
(αi+1) if all β j are even and any α j is odd

1
2 ∏

i
(αi+1)+

1
2

if all β j and all αi are even,

that is, n is a square or twice a square.
(2.2.13)

2.3 Our Second Proof of Jacobi’s Two-Squares Theorem

We start with (1.7.1),

(q;q)3
∞ = ∑

k≥0

(−1)k(2k+1)q(k
2+k)/2.
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Remarkably, (1.7.1) can be written

(q;q)3
∞ =

∞

∑
−∞

(4k+1)q2k2+k. (2.3.1)

Exercise: Verify (2.3.1).

This leads automatically to what follows.

(q;q)3
∞ =

[
d
da

(
∞

∑
−∞

a4k+1q2k2+k

)]
a=1

=
[
d
da

(
a(−a−4q;q4)∞(−a4q3;q4)∞(q4;q4)∞

)]
a=1

=

[
(−a−4q;q4)∞(−a4q3;q4)∞(q4;q4)∞

×
(

1−4 ∑
k≥1

(
a−4q4k−3

1+a−4q4k−3 − a4q4k−1

1+a4q4k−1

))]
a=1

= (−q;q4)∞(−q3;q4)∞(q4;q4)∞

(
1−4 ∑

k≥1

(
q4k−3

1+q4k−3 − q4k−1

1+q4k−1

))
.

(2.3.2)

We note that (2.3.2) is identical with (2.2.4), so we can complete the proof of
Jacobi’s two-squares theorem as in §2.2.

2.4 A Proof of Jacobi’s Four-Squares Theorem

We start with (1.7.1),

(q;q)3
∞ = ∑

k≥0

(−1)k(2k+1)q(k
2+k)/2.

We can write this

(q;q)3
∞ =

1
2

∞

∑
−∞

(−1)k(2k+1)q(k
2+k)/2. (2.4.1)
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Exercise: Verify (2.4.1).

If we square (2.4.1), we find

(q;q)6
∞ =

1
4

∞

∑
k,l=−∞

(−1)k+l(2k+1)(2l+1)q(k
2+k+l2+l)/2. (2.4.2)

We now split the sum in two, according as k+ l is even or odd, and obtain

(q;q)6
∞ =

1
4

(
∑

k≡l (mod 2)
(2k+1)(2l+1)q(k

2+k+l2+l)/2

− ∑
k �≡l (mod 2)

(2k+1)(2l+1)q(k
2+k+l2+l)/1

)
. (2.4.3)

In the first sum, let r= 1
2 (k+ l), s= 1

2 (k− l), k= r+ s, l = r− s, and in the second
let r = 1

2 (k− l−1), s= 1
2 (k+ l+1), k = r+ s, l = s− r−1, and we find

(q;q)6
∞ =

1
4

(
∞

∑
r,s=−∞

(2r+2s+1)(2r−2s+1)q((r+s)2+(r+s)+(r−s)2+(r−s))/2

−
∞

∑
r,s=−∞

(2r+2s+1)(2s−2r−1)q((r+s)2+(r+s)+(s−r−1)2+(s−r−1))/2

)

=
1
4

(
∞

∑
r,s=−∞

((2r+1)2 − (2s)2)qr
2+r+s2 −

∞

∑
r,s=−∞

((2s)2 − (2r+1)2)qr
2+r+s2

)

=
1
2

∞

∑
r,s=−∞

((2r+1)2 − (2s)2)qr
2+r+s2

=
1
2

(
∞

∑
−∞

qs
2

∞

∑
r=−∞

(2r+1)2qr
2+r −

∞

∑
r=−∞

qr
2+r

∞

∑
−∞

(2s)2qs
2

)

= (−q;q2)2
∞(q

2;q2)∞

(
1+4q

d
dq

)(
(−q2;q2)2

∞(q
2;q2)∞

)
− (−q2;q2)2

∞(q
2;q2)∞ ·4

d
dq

(
(−q;q2)2

∞(q
2;q2)∞

)
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= (−q;q2)2
∞(−q2;q2)2

∞(q
2;q2)2

∞

(
1+4

(
2 ∑
k≥1

2kq2k

1+q2k − ∑
k≥1

2kq2k

1−q2k

)

−4

(
2 ∑
k≥1

(2k−1)q2k−1

1+q2k−1 − ∑
k≥1

2kq2k

1−q2k

))

= (−q;q)4
∞(q;q)2

∞

(
1−8 ∑

k≥1

(
(2k−1)q2k−1

1+q2k−1 − 2kq2k

1+q2k

))
. (2.4.4)

If we divide (2.4.4) by (−q;q)4
∞(q;q)2

∞ and use (1.5.8), we obtain

φ(−q)4 = 1−8 ∑
k≥1

(
(2k−1)q2k−1

1+q2k−1 − 2kq2k

1+q2k

)
. (2.4.5)

If in (2.4.5) we put −q for q, we find

φ(q)4 = 1+8 ∑
k≥1

(
(2k−1)q2k−1

1−q2k−1 +
2kq2k

1+q2k

)

= 1+8 ∑
k≥1

(
(2k−1)q2k−1

1−q2k−1 +
2kq2k

1−q2k

)
−8 ∑

k≥1

(
2kq2k

1−q2k − 2kq2k

1+q2k

)

= 1+8 ∑
k≥1

kqk

1−qk
−8 ∑

k≥1

4kq4k

1−q4k

= 1+8 ∑
k≥1

k≡1, 2 or 3 (mod 4)

kqk

1−qk

= 1+8 ∑
k,l≥1

k≡1, 2 or 3 (mod 4)

kqkl . (2.4.6)

If n ≥ 1 and we compare the coefficients of qn on both sides of (2.4.6), we obtain
Jacobi’s four-squares theorem (2.1.2).

Endnotes.

§2.2 This proof of Jacobi’s two-squares theorem appears in Hirschhorn (1985) [65].

§2.3 This proof of Jacobi’s two-squares theorem has not been published.

§2.4 An earlier version of this proof of Jacobi’s four-squares theorem appeared in
Hirschhorn (1987) [66]. A somewhat clumsy proof, starting from JTP, appeared
earlier, in Hirschhorn (1982) [64].
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§2.4 It is not possible to give a formula for p{�+�+�+�}(n), the number of
expressions of n, n = a2 + b2 + c2 + d2 with a ≥ b ≥ c ≥ d ≥ 0, comparable in
simplicity to that for p{�+�}(n) in §2.2, but see Chapter 30.
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