
Chapter 2
Equation of State Development and Use

Both historical and current functional forms for equations of state are described in
the first edition of this book and other publications [1], and are not included here.
Since the writing of the first edition, fundamental equations have become the
standard source for accurate thermodynamic property information, and limited
details are given in this section. The equations of state presented here all now use
the same functional form, having replaced all historical forms.

2.1 Fundamental Equations of State

The term “fundamental equation” is generally reserved for those equations that
contain calorimetric and datum state information so that absolute values of specified
properties may be calculated directly by mathematical differentiation of a thermo-
dynamic potential. The fundamental equations reported in this work are explicit in
the Helmholtz energy a, which is the common form used for thermodynamic
property formulations.

The use of fundamental equations of state in thermodynamic property correla-
tions has several advantages over other forms:

1. The intrinsic advantage of a fundamental equation is that all properties may be
calculated by differentiation. The typical pressure explicit equation of state must
be integrated, for example, for the calculation of enthalpy and entropy.

2. The terms in the equation used for linear-fitting of property data may be changed
by altering elements of an array defining the various coefficients and exponents.
Section 2.2.2 gives details of the least-squares fitting process.

3. The temperature exponents can be fitted with the use of non-linear methods;
further information on non-linear fitting is given in Sect. 2.2.3.

4. The form allows the correlator considerable flexibility in the design of an
equation for a specific fluid.

© Springer International Publishing AG 2017
J.W. Leachman et al., Thermodynamic Properties of Cryogenic Fluids,
International Cryogenics Monograph Series, DOI 10.1007/978-3-319-57835-4_2

11



5. Computer programs for fitting and for the calculation of thermodynamic prop-
erty tables may be standardized so that few programming changes are required
to calculate properties of several different fluids.

Schmidt and Wagner [2] developed a 32-term equation of state in 1985.
Although this form was developed for oxygen, it has been used by other investi-
gators for correlating properties of other fluids. The equation is explicit in
dimensionless Helmholtz energy,

a q; Tð Þ ¼ a0 q; Tð Þþ ar q; Tð Þ ð2:1Þ

where a0ðq; TÞ is the ideal gas contribution to the Helmholtz energy and the term
ar q; Tð Þ represents the contribution due to the compressibility of the fluid. The
pressure derived from this expression is

P ¼ q2
@a
@q

� �
T

ð2:2Þ

The Helmholtz energy for the ideal gas is given by

a0 ¼ h0 � RT � Ts0 ð2:3Þ

Combining expressions for h0 and s0, the Helmholtz energy of the ideal gas is
given by

a0 ¼ h00 þ
ZT

T0

c0pdT � RT � T s00 þ
ZT

T0

c0p
T
dT � R ln

qT
q0T0

� �2
64

3
75 ð2:4Þ

An equation for the ideal-gas heat capacity as a function of temperature must be
used with this equation to develop the complete expression for a specific fluid:

c0p
R
¼ a0 þ

Xm
i¼3

aiT
ki þ

Xn
i¼100

ai
ki=Tð Þ2exp ki=Tð Þ
exp ki=Tð Þ � 1½ �2 ð2:5Þ

Practical equations of state generally use reduced variables to simplify computer
calculations. Generally, properties are reduced by accepted critical state values or
other combinations of properties and constants to make the equations nondimen-
sional. The nondimensional variables used in this work are

a ¼ a
RT

; d ¼ q
qc

; and s ¼ Tc
T

ð2:6Þ
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With these variables, Eq. (2.1) is written as

a d; sð Þ ¼ a0 d; sð Þþ ar d; sð Þ ð2:7Þ

The ideal-gas contribution to the dimensionless Helmholtz energy can be derived
from Eq. (2.4) as

a0 ¼ h00s
RTc

� s00
R
� 1þ ln

ds0
d0s

� s
R

Zs

s0

c0p
s2

dsþ 1
R

Zs

s0

c0p
s
ds ð2:8Þ

A computationally convenient parameterized form of Eq. (2.8) is

a0 ¼ ln dþða0 � 1Þ ln sþ a1 þ a2s�
Xm
i¼3

ai Tc=s½ �ki= ki ki þ 1ð Þ½ �

þ
Xn

i¼mþ 1

ai ln 1� exp �kis=Tcð Þ½ �:
ð2:9Þ

The fluorine formulation is the one exception to this equation and replaces Tc=s
with 1=s. The form of ar d; sð Þ is based on theoretical and practical considerations
required to represent experimental data for a fluid. The general form used in current
practice is

ar s; dð Þ ¼
Xl

i¼1

Nid
disti þ

Xm
i¼lþ 1

Nid
disti exp �fid

pið Þ

þ
Xn

i¼mþ 1

Nid
disti exp �/i d� Dið Þ2�bi s� cið Þ2

h i ð2:10Þ

The parameters in these terms are determined through fitting experimental data.
The terms in the third summation are usually described asGaussian bell-shaped terms.
The term fi is only used in theEOSoffluorine and has a value of one for all otherfluids.

2.2 Development of Thermodynamic Property
Formulations

2.2.1 Thermodynamic Property Data Correlation

As established in Chap. 1, equations of state rely extensively on experimental
measurements, theoretical estimates, and molecular simulation. The data selection
process is a matter of experience and requires several tools for comparison of data
sets, including:
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1. Graphical displays of data (data maps) to assist in identifying regions of over-
lapping data from alternative sources.

2. Graphical plots that show deviations between experimental data and previously
accepted correlations or to preliminary correlations.

3. Property algorithms for producing tables and charts that can be used to examine
the behavior of properties that were not included in the correlation.

Contributions of individual data points are weighted before they are used in
least-squares fitting. Weighting is based on estimated accuracy. Some form of the
theorem of propagation of variance should be used to correct for different levels of
random errors in data. Often additional weighting factors are applied to achieve a
desired emphasis of one form or body of data over another.

2.2.2 Least-Squares Regression

Methods for performing simultaneous regression on multiple-property data are
given by Hust and McCarty [3]. In the regression process, thermodynamic property
relations are written to form fit variables to represent experimental data. The
dimensionless fit variables listed in Table 2.1 are examples of such variables used
in developing equations of state. In forming fit variables, it is necessary to “lin-
earize” some data forms with the use of a preliminary equation of state. For
example, velocity of sound data are often prepared for least-squares regression
through the use of a density and a ratio of heat capacities calculated from a pre-
liminary equation of state.

The objective of linear least-squares regression is to select the coefficients Nk that
minimize the sum of squares of differences between each experimental fit variable

Table 2.1 Functions for fitting equations of state to various data forms

Data form Experimental fit variable Calculated fit variable

P-q-T Fp ¼ P
Pc
� d

sZc F0
P ¼ d2

sZc

PM
q¼1

@ari
@d

� �
s

Cv-q-T FCv ¼ Cv
R þ s2 @2a0

@s2 F0
Cv

¼ �s2
PM
q¼1

@2ar
@s2

� �
d

W-q-T FW ¼ w2s
cRTc

� �
� 1 F0

W ¼ PM
q¼1

2d @ar
@d

� �
s
þ d2 @2ar

@d2

� �
s

h i

Liquid-vapor
phase boundary

Fr ¼ ZSL � ZSVð Þ
þ ln dSL=dSVð Þ

F0
r ¼ arSv � arSL

B-T FB = B qc
F0
B ¼ PM

q¼1

Pm
k¼1

sjk
� 	

ik¼1

where: r = Saturation state; SV = Saturated vapor; SL = Saturated liquid; c = Ratio of heat
capacities (Cp/Cv); M = Number of data points; and ik, jk, and m come from Eq. (2.10)

14 2 Equation of State Development and Use



F and the equivalent value calculated from the equation of state F′. The coefficients
Nk are computed to minimize the sum of squares of the deviations S,

S ¼
X

Yp FP � F0
P

� �2 þ X
YCv FCv � F0

Cv

� �2
þ

X
Yw FW � F0

W

� �2
þ

X
Yr Fr � F0

r

� �2 þ X
YB FB � F0

B

� �2 ð2:11Þ

where Yp, YCv, YW, Yr, and YB are weights applied to each data point. The subscripts
P, Cv, W, r, and B refer to weights for P-q-T data, Cv-q-T data, W-P-T data,
Maxwell criterion data, and virial data, respectively. Often equations of state are
fitted to the data with a fixed functional form with specified values for density and
temperature exponents. However, more accurate equations of state are possible if
these exponents are determined in a selection process. Schmidt and Wagner [2], de
Reuck and Armstrong [4], and Bjornn [5] have developed stepwise regression
algorithms for this purpose.

2.2.3 Non-linear Least-Squares Regression

Nonlinear fitting is currently the most effective method used to develop equations of
state [6]. The techniques used continue to expand as new information is learned
about fluid properties at extremely low temperatures and/or high pressures, and as
the limits for the temperature exponents and Gaussian bell-shaped terms are refined.
The method requires an initial starting point, which is often taken from recently
developed equations for another molecularly similar fluid that demonstrates
favorable behavior.

Nonlinear fitting does not require the need to linearize experimental data as
described in the previous section. Experimental data can be used directly, instead
of, for example, requiring a preliminary equation of state to transform pressure and
temperature measured experimentally to density and temperature as required by the
equation of state. The most important advantage in nonlinear fitting is the ability to
use “greater than” or “less than” operators in constraints that control the extrapo-
lation behavior of properties to regions outside that of the range of validity (usually
determined as the range of experimental data). Linear fitting can only use equality
conditions, and areas without data but with incorrect behavior are often extrapolated
graphically to obtain the proper shape. Nonlinear fitting controls the behavior by
coercing calculated values to be greater or less than those for lower or higher
temperatures (or densities).

Nonlinear algorithms reduce the overall sum of squares of the deviations by
adjusting the parameters of the equation of state with a residual sum of squares
expression given as

2.2 Development of Thermodynamic Property Formulations 15



S ¼
X

WqF2
q þ

X
WpF2

p þ
X

WcvF
2
cv þ � � � ð2:12Þ

where W is the weight assigned to each data point and F is the function used to
minimize the deviations. The deviations from all data types are summed and
weighted such that each property contributes according to its uncertainty.

Because nonlinear methods can fit the temperature exponents and
Gaussian-bell-shaped parameters simultaneously with the coefficients of the equa-
tions of state, the number of terms that are required to both fit the experimental data
and to obtain correct extrapolation is generally half that required in linear fitting.
This results in faster calculations and less inter-correlation between the terms.

Constraints form a very essential part of nonlinear fitting equations of state.
These have the ability to smooth or change the slope and curvature of any constant
property line on the surface of state, as long as such changes do not conflict with
behavior caused by fitting accurate experimental data or by other valid constraints.
When experimental data are available for derived thermodynamic properties, such
as speed of sound and isobaric or isochoric heat capacities, there may be conflicts
that must be avoided in the characteristics of parts of the surface, particularly the
low temperature liquid or low density states approaching atmospheric pressure.
Each of these properties is a function of derivatives of the Helmholtz energy with
respect to temperature and/or density, and thus each property requires that the
others have the correct characteristic behavior.

On the other hand, fitting the slope and curvature of the speed of sound and other
properties below the triple point is possible, and generally required, and the person
fitting the equation must be aware of how such properties should behave.
Unrealistic shapes far from the region of validity still impact calculated values
within the valid region because second order derivatives are part of heat capacity or
speed of sound equations. To eliminate small bumps in the surface, non-linear
fitting also allows the ability to control the third and fourth derivatives of the
equation so that very smooth behavior can be obtained at all conditions outside and
inside the range of validity.

2.2.4 Criteria for Equations of State

The quality of a thermodynamic property formulation is determined by its ability to
model the physical behavior of the fluid as represented by the available data and its
conformance to theory. Published correlations should include estimates of the
accuracy of calculated properties as well as a careful definition of the range of
validity. A modern thermodynamic property formulation is generally capable of
representing all data values within the estimated experimental uncertainty of the
measurements (see Table 1.2). The criteria listed below are generally used by
correlators in developing equations of state for pure fluids:
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1. Pv approaches RT in the limit as q approaches zero (i.e., the ideal-gas limit is
approached).

2. At low densities the equation of state degenerates to a truncated form of the
virial equation.

3. At the critical point

(a) @P=@vð ÞT ¼ 0
(b) @2P=@v2ð ÞT ¼ 0
(c) @P=@Tð Þq¼qc

¼ dP=dT of the vapor pressure curve

4. At the coexistence boundary, the Maxwell criteria (equal Gibbs energies in the
liquid and vapor phases at the saturation temperature and pressure) is applied to
the equation of state, i.e., coexistence property values predicted by the equation
of state should be consistent with those from the ancillary equations for the
vapor pressure and the liquid and vapor saturated densities.

5. Numerical requirements (constraints) may be imposed in fitting the equation of
state for state points known to high accuracy.

2.2.5 Critical Region Behavior

Correct behavior of the equation of state in the critical region is of concern to some
users of property formulations. Because of the nonanalytic behavior of certain fluid
properties such as Cv in the critical region, special correlations (e.g., the scaled
equations of state presented by Tang et al. [7], Sengers [8]) that use models that
account for the fluid behavior at the critical point have been developed for critical
region properties. Some provisions can be added to wide range equations of state to
approximate critical-region behavior. Wide range models may be improved by
including calculated properties near the critical point in the data set used for fitting.
Special empirical terms may also be included in equations of state to improve the
representation of calculated fluid properties near the critical point. The following
statements summarize the considerations used in correlating thermodynamic data in
the critical region:

1. The critical point is a singular point (e.g., Cv ! ∞, Cp ! ∞, W ! 0).
However, an analytic equation of state cannot fully represent the critical point
behavior. Non-analytic terms are required in an equation of state that correctly
models the critical region behavior.

2. Most equations of state are analytic and properties may be calculated with
differential or integral equations. A non-analytic equation requires numerical
solutions for derived property calculations.
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3. Critical point phenomena are reflected in the derived properties. The critical
region anomalous behavior observed in Cp, Cv, and W generally distort the
property surfaces as defined by an analytic equation of state.

2.3 Use of Fundamental Equations
of State for Cryogenic Fluids

The equation of state described in this chapter is a general form used for the
calculation of properties of a large number of fluids. Although the original refer-
ences reporting the equations of state for cryogenic fluids use a wide variety of
formats, the equations have been transformed to the fundamental form given in
Sect. 2.1. Details of the implementation of this equation as a generalized form for
cryogenic fluids follow.

Table 2.2 gives the thermodynamic property relations for the fundamental
equation summarized in the previous section. The functions in this table are readily
used in computer programs for the calculation of thermodynamic properties as
given by Lemmon et al. [9, 10]. Equations of state for each of the cryogenic fluids
discussed in subsequent chapters have been transformed, if necessary, to this format
for consistency.

2.4 Ancillary Functions

In the development of a thermodynamic property formulation for a pure fluid or
fluid mixture, it is desirable to determine separate ancillary functions for the
liquid-vapor coexistence properties and for the ideal-gas heat capacity. There are
many functional forms and methods for determining these ancillary functions.
Equations for the vapor pressure, saturated liquid density, and saturated vapor
density are used to define the saturation (coexistence) states during the development
of the equation of state and as initial estimates in the iterative calculation of satu-
ration properties used in computer programs for the completed property formula-
tion. Equations for the freezing liquid line (also known as the melting line) and
sublimation line are not provided here. If calculations exceed the ranges of tabu-
lated properties, the user is encouraged to consult REFPROP or the original
publication.

The ancillary functions for vapor pressure, saturated liquid density, and saturated
vapor density are given as estimating functions for those properties. These functions
are also useful in computer programs for calculating properties iteratively with an
equation of state with input properties other than the independent variables of the
equation. The default form for most equations is presented here, with the exceptions
to these default formats described below and in the fluid specific chapters.
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The generic form of the vapor pressure ancillary function is

ln
pr
pc

� �
¼ s

Xq
i¼1

Nih
ki ð2:13Þ

Table 2.2 Functions for calculation of thermodynamic properties

Property Relation

Compressibility factor Z ¼ P
qRT ¼ 1þ d @ar

@d

� �
Pressure P

Pc
¼ d

sZc
1þ d @ar

@d

� �
 �
Fugacity coefficient / ¼ exp Z � 1� ‘n Zð Þþ ar½ �
Second virial coefficient B Tð Þ ¼ 1

qc
@ar
@d

� �
d¼0

Third virial coefficient C Tð Þ ¼ 1
q2c

@2ar

@d2

� �
d¼0

Internal energy U
RT ¼ s @ao

@s

� �þ @ar
@s

� �
 �
Enthalpy H

RT ¼ s @ao
@s

� �þ @ar
@s

� �
 �þ d @ar
@d

� �þ 1

Gibbs energy G
RT ¼ 1þ ao þ ar þ d @ar

@d

� �
Helmholtz energy a

RT ¼ a0 þ ar

Entropy S
R ¼ s @ao

@s

� �þ @ar
@s

� �
 �� ao � ar

Speed of sound W2

RT ¼ Cp

Cv
1þ 2d @ar

@d

� �þ d2 @2ar

@d2

� �h i
Isochoric heat capacity Cv

R ¼ �s2 @2ao
@s2

� �
þ @2ar

@s2

� �h i
Isobaric heat capacity Cp

R ¼ Cv
R þ 1þ d @ar

@dð Þ�ds @2ar
@d@s

� �
 �2
1þ 2d @ar

@dð Þþ d2 @2ar

@d2

� �h i
First pressure derivative with respect to
density

@P
@q

� �
T
¼ RT 1þ 2d @ar

@d

� � þ d2 @2ar

@d2

� �h i

Second pressure derivative with respect to
density

@2P
@q2

� �
T
¼ RT

q 2d @ar
@d

� � þ 4d2 @2ar

@d2

� �
þ d3 @3ar

@d3

� �h i

First pressure derivative with respect to
temperature

@P
@T

� �
q
¼ R 1þ d @ar

@d

� � � ds @2ar
@d@s

� �h i

Joule-Thomson coefficient lj ¼ @T
@P

� �
h¼ Tb�1

qCp

Isentropic expansion coefficient k ¼ � v
P

@P
@v

� �
s
¼ W2q

P

Isothermal expansion coefficient kT ¼ � v
P

@P
@v

� �
T¼ q

P
@P
@q

� �
T

Volume expansivity b ¼ 1
v

@v
@T

� �
P
¼ 1

q
@P
@T

� �
q

@P
@q

� �
T

Adiabatic compressibility bs ¼ 1
kP ¼ � 1

v
@v
@P

� �
s

Adiabatic bulk modulus Bs ¼ kP ¼ �v @P
@v

� �
s

Isothermal compressibility j ¼ 1
kTP

¼ � 1
v

@v
@P

� �
T

Isothermal bulk modulus KT ¼ kTP ¼ �v @P
@v

� �
T
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where h = (1–T/Tc), pr is the saturated vapor pressure, and the values for the
coefficients Ni and the exponents ki are given in each fluid chapter.

The generic form of the saturated liquid density ancillary function is

q0

qc
¼ 1þ

Xq
i¼1

Nih
ki ð2:14Þ

where q′ is the saturated liquid density. The ancillary equations for the saturated
liquid density for argon, methane, and nitrogen use a different form, as given by

ln
q0

qc

� �
¼

Xq
i¼1

Nih
ki ð2:15Þ

The generic form of the saturated vapor density ancillary function is

ln
q00

qc

� �
¼

Xq
i¼1

Nih
ki ð2:16Þ

where q″ is the saturated vapor density. The ancillary equations for the saturated
vapor density for argon and nitrogen use a different form, as given by

ln
q00

qc

� �
¼ s

Xq
i¼1

Nih
ki ð2:17Þ

The default form of the ideal-gas reduced Helmholtz ancillary function was
given previously in Eq. (2.9).
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