
Step-by-Step Proof of Vinogradov’s Theorem

In the first section, we begin with some lemmas and theorems which will
be useful in presenting a step-by-step proof of Vinogradov’s theorem, which
states that there exists a natural numberN , such that every odd positive integer
n, with n ≥ N , can be represented as the sum of three prime numbers. The
experienced reader may wish to skip this section.
In the second section, we present the Hardy-Littlewood Circle Method and
describe the basic ideas which will be used in the presentation of the proof
of Vinogradov’s theorem.
The third, and most important section of this chapter, is devoted to Vaughan’s
proof ofVinogradov’s theorem.Anumber of authors havepresentedVaughan’s
proof in books and expositions. We also present here this proof, but in a step-
by-stepmanner.More specifically, in the beginning of this sectionwe describe
in detail how the Circle Method can be applied to attack the Ternary Gold-
bach Conjecture (TGC). Firstly, we define the appropriate Major and Minor
arcs, and afterwards, we investigate their contribution in the integral which
describes the number of representations of an integer as the sum of three
prime numbers.
The following references have been particularly useful in writing this chapter:
[9, 14, 29, 33, 40, 43, 61, 64, 66, 67]. The paper of Vaughan [65] has been
of exceptional interest in this monograph.

1 Introductory Lemmas and Theorems

In this section, we state some lemmas and theorems which will be useful
during the step-by-step analysis of the proof of Vinogradov’s theorem. These
lemmas and theorems are essentially independent from each other. The fol-
lowing two lemmas can be easily verified, and thus, we omit the details.
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8 Step-by-Step Proof of Vinogradov’s Theorem

Lemma 1.1 The following holds

d∑

l=1

e

(
ln

d

)
=
⎧
⎨

⎩

d, if d | n

0, if d � n ,

where e(x) = e2πix, x ∈ R.

Lemma 1.2 Let a, b ∈ Z. Then,

∫ 1

0
e(ax)e(−bx)dx =

{
1, if a = b

0, if a �= b .

Definition 1.3 Let f be an arithmetic function. The series

D(f , s) =
+∞∑

n=1

f (n)

ns
,

where s ∈ C, is called a Dirichlet series with coefficients f (n).

We shall handle Dirichlet series for s being a real number.
Consider now a Dirichlet series, which is absolutely convergent for s > s0.
If for these values of s it holds

+∞∑

n=1

f (n)

ns
= 0,

then f (n) = 0, for every integer n with n ≥ 1.
If for these values of s it holds

D(f , s) = D(g, s),

then by the above argument it holds

f (n) = g(n), for every integer n with n ≥ 1.

Theorem 1.4 (1) Let D(f1, s) and D(f2, s) be convergent for s ∈ C. Then
the sum of D(f1, s) and D(f2, s) is obtained by

D(f1, s) + D(f2, s) =
+∞∑

n=1

f1(n) + f2(n)

ns
.
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(2) Let D(f1, s) and D(f2, s) be absolutely convergent for s ∈ C. Then the
product of D(f1, s) and D(f2, s) is obtained by

D(f1, s) · D(f2, s) =
+∞∑

n=1

g(n)

ns
,

where
g(n) =

∑

n1n2=n

f1(n1)f2(n2).

Theorem 1.5 Let f be a multiplicative function. Then, it holds

D(f , s) =
∏

p

(+∞∑

n=0

f (pn)

pns

)
,

where the product extends over all prime numbers p.

The basic idea of the proof of the theorem is the following:
It is true that

∏

p

(+∞∑

n=0

f (pn)

pns

)
=
∏

p

(
f (1)

1
+ f (p)

ps
+ f (p2)

p2s
+ · · ·

)

=
(

f (1)

1
+ f (p1)

ps
1

+ f (p2
1)

p2s
1

+ · · ·
)(

f (1)

1
+ f (p2)

ps
2

+ f (p2
2)

p2s
2

+ · · ·
)

· · ·

=
∑ f (pa1

1 ) · · · f (pak
k )

(pa1
1 · · · pak

k )s
, (1)

where1 the sum extends over all possible combinations of multiples of powers
of prime numbers. But, since the function f (n) is multiplicative, it is evident
that ∑ f (pa1

1 ) · · · f (pak
k )

(pa1
1 · · · pak

k )s
=
∑ f (pa1

1 · · · pak
k )

(pa1
1 · · · pak

k )s

=
+∞∑

n=1

f (n)

ns
= D(f , s).

��
1Here pi denotes the ith prime number (p1 = 2, p2 = 3, . . .).
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Definition 1.6 The zeta function is defined by

ζ(s) =
+∞∑

n=1

1

ns
,

for all real values of s with s > 1.

This function was defined for the first time in 1737 by Leonhard Euler
(1707−1783). More than a century after Euler, in 1859, Georg Friedrich
Bernhard Riemann (1826−1866) rediscovered the zeta function for complex
values of s, while he was trying to prove the prime number Theorem.

Theorem 1.7 (Euler’s Identity)

ζ(s) =
∏

p

1

1 − p−s
, s ∈ R, with s > 1,

where the product extends over all prime numbers p.

The proof of Euler’s Identity follows directly from Theorem1.5.

Definition 1.8 Let n ∈ N. The Möbius function μ(n) is defined as follows

μ(n) =

⎧
⎪⎨

⎪⎩

1, if n = 1

(−1)k, if n = p1p2 · · · pk where p1, p2, . . . , pk are k distinct primes

0, in every other case

Theorem 1.9
∑

d|n
μ(d) =

{
1, if n = 1

0, if n > 1 ,

where the sum extends over all positive divisors of the positive integer n.

Proof If n = 1 then the theorem obviously holds true, since by the definition
of the Möbius function we know that μ(1) = 1.
If n > 1 we can write

n = pa1
1 pa2

2 · · · pak
k ,

where p1, p2, . . . , pk are distinct prime numbers.
Therefore
∑

d|n
μ(d) = μ(1) +

∑

1≤i≤k

μ(pi) +
∑

i �=j
1≤i,j≤k

μ(pipj) + · · · + μ(p1p2 · · · pk), (1)



1 Introductory Lemmas and Theorems 11

where generally the sum

∑

i1 �=i2 �=···�=iλ

μ(pi1pi2 · · · piλ)

extends over all possible products of λ distinct prime numbers. Hence, by (1)
and the binomial identity, we obtain

∑

d|n
μ(d) = 1 +

(
k

1

)
(−1) +

(
k

2

)
(−1)2 + · · · +

(
k

k

)
(−1)k

= (1 − 1)k = 0.

Therefore, ∑

d|n
μ(d) = 0, if n > 1.

��
Theorem 1.10 (The Möbius Inversion Formula) Let n ∈ N. If

g(n) =
∑

d|n
f (d)

then
f (n) =

∑

d|n
μ
(n

d

)
g(d).

The converse also holds.

Proof For every arithmetic function m(n), it holds

∑

d|n
m(d) =

∑

d|n
m
(n

d

)
.

Therefore, it is evident that

∑

d|n
μ
(n

d

)
g(d) =

∑

d|n
μ(d)g

(n

d

)
. (1)

But
∑

d|n
μ(d)g

(n

d

)
=
∑

d|n

⎛

⎝μ(d) ·
∑

λ| n
d

f (λ)

⎞

⎠ .
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Hence, we get ∑

d|n
μ(d)g

(n

d

)
=
∑

λd|n
μ(d)f (λ) .

Similarly,

∑

λ|n

⎛

⎝f (λ) ·
∑

d| n
λ

μ(d)

⎞

⎠ =
∑

λd|n
μ(d)f (λ) .

Thus,
∑

d|n
μ(d)g

(n

d

)
=
∑

λ|n

⎛

⎝f (λ) ·
∑

d| n
λ

μ(d)

⎞

⎠ . (2)

However, by Theorem1.9 we get

∑

d| n
λ

μ(d) = 1 if and only if
n

λ
= 1 ,

and in every other case, the sum is equal to zero. Thus, for n = λ we obtain

∑

λ|n

⎛

⎝f (λ) ·
∑

d| n
λ

μ(d)

⎞

⎠ = f (n). (3)

Therefore, by (1), (2) and (3) it follows that if

g(n) =
∑

d|n
f (d)

then
f (n) =

∑

d|n
μ
(n

d

)
g(d) .

Conversely we shall prove that if

f (n) =
∑

d|n
μ
(n

d

)
g(d) ,

then
g(n) =

∑

d|n
f (d).
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We have
∑

d|n
f (d) =

∑

d|n
f
(n

d

)

=
∑

d|n

∑

λ| n
d

μ
( n

λd

)
g(λ)

=
∑

dλ|n
μ
( n

λd

)
g(λ)

=
∑

λ|n
g(λ)

∑

d| n
λ

μ
( n

λd

)

The sum ∑

d| n
λ

μ
( n

λd

)
= 1

if and only if n = λ, and in every other case, it is equal to zero. Hence, for
n = λ we obtain ∑

d|n
f (d) = g(n).

This completes the proof of the theorem. ��
Theorem 1.11 For s > 1,

1

ζ(s)
=

+∞∑

n=1

μ(n)

ns
.

Proof By Euler’s identity, we have

1

ζ(s)
=
∏

p

(
1 − 1

ps

)
(2.1)

Additionally, by Theorem1.5, it is evident that

+∞∑

n=1

μ(n)

ns
=
∏

p

(
1 − 1

ps

)
. (2.2)

By the above formulas (2.1) and (2.2), the theorem follows. ��
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Definition 1.12 Let n ∈ N. The Von Mangoldt function �(n) is defined as
follows

�(n) =
{
log p, if n = pk for some prime number p and some k ∈ N

0, otherwise.

Theorem 1.13 Let n ∈ N. Then, it holds
∑

d|n
�(d) = log n (L1)

and
�(n) = −

∑

d|n
μ(d) log d. (L2)

Proof It is evident that the theorem holds true in the case when n = 1. Hence,
let us assume that n > 1. If

n = pa1
1 pa2

2 . . . pam
m

is the cannonical representation of n by its prime factors, we get

log n =
m∑

i=1

ai log pi

=
m∑

i=1

ai∑

q=1

log pi

=
m∑

i=1

ai∑

q=1

�(pq
i )

=
∑

d|n
�(d).

This completes the proof of (L1).
By the Möbius inversion formula and (L1) we obtain

�(n) =
∑

d|n
μ(d) log

n

d

= log n
∑

d|n
μ(d) −

∑

d|n
μ(d) log d.
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Therefore, by Theorem1.9 and the above formula, (L2) follows. ��
Theorem 1.14 For s > 1, it holds

+∞∑

n=1

�(n)

ns
= − 1

ζ(s)

dζ(s)

ds
.

Proof From the definition of the Riemann zeta function and a well-known
theorem of termwise differentiation of an infinite series, it follows that

dζ(s)

ds
= −

+∞∑

n=1

log n

ns
. (1)

Additionally, by Theorem1.11, we know that

1

ζ(s)
=

+∞∑

n=1

μ(n)

ns
. (2)

By Theorem1.4, if we multiply (1), (2), we obtain

1

ζ(s)

dζ(s)

ds
= −

+∞∑

n=1

g(n)

ns
(3)

where
g(n) =

∑

n1n2=n

μ(n1) log n2.

But, by Theorem1.13, it follows that

g(n) = �(n).

Therefore, by (3) and the above relation, the theorem follows. ��
Definition 1.15 The exponential sum

cn(m) =
∑

1≤q≤n
(q,n)=1

e
(qm

n

)
,

is called the Ramanujan sum cn(m).

NoteBy the use of the Chinese Remainder Theorem (cf. [55]) it can be proved
that the Ramanujan sum cn(m) is a multiplicative function of n.
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Lemma 1.16 For the Ramanujan sum cn(m), we have

cn(m) =
∑

d|(n,m)

μ
(n

d

)
d .

Proof By Theorem1.9, we know that for the Möbius function it holds

∑

d|n
μ(d) =

{
1, if n = 1

0, if n > 1

Therefore, we can write

cn(m) =
∑

1≤q≤n
(q,n)=1

e
(qm

n

)

=
n∑

q=1

⎛

⎝e
(qm

n

) ∑

d|(q,n)

μ(d)

⎞

⎠

=
∑

d|n

n/d∑

k=1

e

(
km

n/d

)
μ(d)

=
∑

d|n

d∑

k=1

e

(
km

d

)
μ
(n

d

)
.

However, by Lemma1.1, we obtain

cn(m) =
∑

d|n
d|m

μ
(n

d

)
d .

But, d | n and d | m is equivalent to d | (n, m). Hence, it follows that

cn(m) =
∑

d|(n,m)

μ
(n

d

)
d .

��
Lemma 1.17 Let x be a real number. Then,

∣∣∣∣∣

B2∑

n=B1+1

e(xn)

∣∣∣∣∣ ≤ min

{
1

[x]
, B2 − B1

}
,
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where B1, B2 are integers with B1 < B2 and
[
y
] = mink∈Z |y − k|, where

y ∈ R.

Proof Let us suppose that x is not an integer. In this case, we have

∣∣∣∣∣

B2∑

n=B1+1

e(xn)

∣∣∣∣∣ ≤
∣∣e2πi(B1+1)x

∣∣+ ∣∣e2πi(B2+1)x
∣∣

∣∣e2πi(x/2) − e2πi(−x/2)
∣∣

= 2∣∣eπix − e−πix
∣∣ .

But

i sin θ = eiθ − e−iθ

2

and therefore, we obtain

∣∣∣∣∣

B2∑

n=B1+1

e(xn)

∣∣∣∣∣ ≤
1

|2 sin (πx)| .

In addition, it is true that
πx = π(k ± [x]) ,

where k is the nearest integer to x. Thus, it follows that

1

|2 sin (πx)| = 1

2 sin (π [x])
.

However, it is a well-known fact that

sin θ

θ
>

2

π
, for − π

2
< θ <

π

2
, θ �= 0 .

Hence, for θ = π [x] > 0, we get

sin π [x] >
2π [x]

π
= 2 [x] .

From all the above, it is evident that

∣∣∣∣∣

B2∑

n=B1+1

e(xn)

∣∣∣∣∣ ≤
1

[x]
. (1)
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Of course, it is clear that

∣∣∣∣∣

B2∑

n=B1+1

e(xn)

∣∣∣∣∣ ≤
B2∑

n=B1+1

|e(xn)| = B2 − B1 . (2)

Hence, from (1) and (2), we obtain

∣∣∣∣∣

B2∑

n=B1+1

e(xn)

∣∣∣∣∣ ≤ min

{
1

[x]
, B2 − B1

}
.

��
Theorem 1.18 Let τ (n) denote the divisor function, defined by

τ (n) =
∑

d|n
d≥1

1 .

Then, for any real number x, with x ≥ 2, it holds

∑

n≤x

τ 2(n) 	 x log3 x .

Proof We have

∑

n≤x

τ 2(n) =
∑

n≤x

⎛

⎝
∑

d1|n
1

⎞

⎠

⎛

⎝
∑

d2|n
1

⎞

⎠

=
∑

d1,d2≤x

∑

n≤x
n≡0 (mod lcm{d1,d2})

1 .

We write e = (d1, d2), d1 = t1e, d2 = t2e.
We have lcm{d1, d2} = t1t2e and thus

∑

n≤x

τ 2(n) ≤
∑

e≤x

∑

t1, t2≤x

⌊
x

t1t2e

⌋

≤ x

(
∑

e≤x

1

e

)3

	 x log3 x.
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This completes the proof of the theorem. ��
Theorem 1.19 (Legendre’s Theorem)
The largest power of p which divides the integer n! is2

+∞∑

k=1

⌊
n

pk

⌋

Proof The number of factors of n! which are divisible by p, is �n/p�. More
specifically, these factors are the integers:

1 · p, 2 · p, . . . ,

⌊
n

p

⌋
· p .

However, some factors of n! are divisible by at least the second power of p,
namely they contain p2 at least one time. These factors are the integers:

1 · p2, 2 · p2, . . . ,

⌊
n

p2

⌋
· p2 ,

which are exactly ⌊
n

p2

⌋

in number.
If we continue similarly for higher powers of p , it follows that the integer n!
contains the prime number p exactly

⌊
n

p

⌋
+
⌊

n

p2

⌋
+ · · · +

⌊
n

pk

⌋
+ · · ·

times and therefore that is exactly the largest power of p which divides n !.
The above sum is finite since for k > r, where pr ≥ n, it holds

⌊
n

pk

⌋
= 0.

��
Definition 1.20 We define π(x) to be the number of primes which do not
exceed a given real number x.

2By �x� we denote the integer part of x and by 
x� the least integer, greater than or equal to x.
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Theorem 1.21 (Chebyshev’s inequality)
For every positive integer n, where n ≥ 2, the following inequality holds

1

6
· n

log n
< π(n) < 6 · n

log n

Proof We claim that

2n ≤
(
2n
n

)
< 4n . (1)

The inequality

2n ≤
(
2n
n

)

follows by mathematical induction.
For n = 2 one has

4 ≤
(
4
2

)
= 6 ,

which holds true. Suppose that (1) is valid for n, i.e.

2n ≤
(
2n
n

)
.

It suffices to prove (1) for n + 1.
It is clear that

(
2n + 2
n + 1

)
= (2n + 2)!

(n + 1)!(n + 1)!
= (2n)!

n ! n !
(2n + 1)(2n + 2)

(n + 1)2

≥ 2n (2n + 1)(2n + 2)

(n + 1)2
.

It is enough to prove that
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(2n + 1)(2n + 2)

(n + 1)2
≥ 2 , for n ≥ 2 .

However,
(2n + 1)(2n + 2)

(n + 1)2
≥ 2 ⇔ 2n ≥ 0 ,

which clearly holds true.
Thus,

(
2n + 2
n + 1

)
≥ 2n+1

and therefore, we have proved that

2n ≤
(
2n
n

)

for every positive integer n, where n ≥ 2.
The proof of the right-hand side of inequality (1) follows from the fact that

(
2n
n

)
<

(
2n
0

)
+
(
2n
1

)
+ · · · +

(
2n
2n

)
= 22n = 4n .

From (1), we get that

log 2n ≤ log
(2n)!
n!n! < log 4n

and therefore
n log 2 ≤ log(2n)! − 2 log n! < n log 4 . (2)

However, from Legendre’s Theorem (see Theorem1.19), it follows that

n! =
∏

p≤n

pj(n,p) , (3)

where

j(n, p) =
+∞∑

k=1

⌊
n

pk

⌋
.
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From (3), we obtain

log n! = log
∏

p≤n

pj(n,p)

=
∑

p≤n

log pj(n,p)

=
∑

p≤n

j(n, p) log p .

By applying this result, we get

log(2n)! − 2 log n! =
∑

p≤2n

j(n, p) log p − 2
∑

p≤n

j(n, p) log p

=
∑

p≤2n

(+∞∑

k=1

⌊
2n

pk

⌋)
log p − 2

∑

p≤n

(+∞∑

k=1

⌊
n

pk

⌋)
log p .

However,
∑

p≤n

(+∞∑

k=1

⌊
n

pk

⌋)
log p =

∑

p≤2n

(+∞∑

k=1

⌊
n

pk

⌋)
log p

since for p > n it is true that

⌊
n

pk

⌋
= 0 .

Therefore,

log(2n)! − 2 log n! =
∑

p≤2n

(+∞∑

k=1

⌊
2n

pk

⌋
− 2

+∞∑

k=1

⌊
n

pk

⌋)
log p

=
∑

p≤2n

[+∞∑

k=1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)]
log p .

However, it holds
⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
<

2n

pk
− 2

(
n

pk
− 1

)
= 2 .
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Thus, clearly ⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
= 0 or 1 .

The terms of the infinite summation

+∞∑

k=1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)

assume the value zero for k such that pk > 2n, that means for

k >
log 2n

log p
.

Thus,

+∞∑

k=1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
=

⌊
log 2n
log p

⌋
∑

k=1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)

≤

⌊
log 2n
log p

⌋
∑

k=1

1 .

Hence,

log(2n)! − 2 log n! ≤
∑

p≤2n

(
⌊

log 2n
log p

⌋
∑

k=1

1

)
log p

≤
∑

p≤2n

log 2n

log p
log p

=
∑

p≤2n

log 2n

= π(2n) log 2n .

From this relation and inequality (2), it follows that

n log 2 ≤ π(2n) log 2n
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⇔ π(2n) ≥ n log 2

log 2n
>

n/2

log 2n
= 2n

4 log 2n

⇔ π(2n) >
1

4
· 2n

log 2n
>

1

6
· 2n

log 2n
. (4)

Therefore, the inequality
1

6
· n

log n
< π(n)

is satisfied if n is an even integer. It remains to examine the case where n is
an odd integer.
It is true that

π(2n + 1) ≥ π(2n) >
1

4
· 2n

log 2n

= 1

4
· 2n

2n + 1
· 2n + 1

log 2n

>
1

4
· 2n

2n + 1
· 2n + 1

log(2n + 1)
.

It is evident that
2n

2n + 1
≥ 2

3

for every positive integer n.
Therefore

π(2n + 1) >
1

4
· 2
3

· 2n + 1

log(2n + 1)

= 1

6
· 2n + 1

log(2n + 1)

Hence, the inequality
1

6
· n

log n
< π(n)

is also satisfied in the case where n is an odd integer.
Thus

1

6
· n

log n
< π(n),

for every positive integer n, with n ≥ 2.
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We will now prove the inequality

π(n) < 6 · n

log n

for every positive integer n with n ≥ 2.
We have already proved that

log(2n)! − 2 log n! =
∑

p≤2n

[+∞∑

k=1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)]
log p ,

where none of the terms ⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋

is negative.
Therefore, it is clear that

⌊
2n

p

⌋
− 2

⌊
n

p

⌋
≤

+∞∑

k=1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
.

Thus

log(2n)! − 2 log n! ≥
∑

p≤2n

(⌊
2n

p

⌋
− 2

⌊
n

p

⌋)
log p

≥
∑

n<p≤2n

(⌊
2n

p

⌋
− 2

⌊
n

p

⌋)
log p .

However for the prime numbers p, such that n < p ≤ 2n one has

⌊
2n

p

⌋
− 2

⌊
n

p

⌋
= 1 ,

since ⌊
2n

p

⌋
= 1 and

⌊
n

p

⌋
= 0 .

Hence,
log(2n)! − 2 log n! ≥

∑

n<p≤2n

log p . (5)
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By the definition of Chebyshev’s function ϑ(x), one has

ϑ(x) =
∑

p≤x

log p .

Therefore, (5) can be written as follows:

log(2n)! − 2 log n! ≥ ϑ(2n) − ϑ(n) .

Thus by meansof (2), we obtain

ϑ(2n) − ϑ(n) < n log 4 . (6)

Suppose that the positive integer n can be expressed as an exact power of 2.
Then from (6), it follows

ϑ(2 · 2m) − ϑ(2m) < 2m log 22

and therefore
ϑ(2m+1) − ϑ(2m) < 2m+1 log 2 .

For m = 1, 2, . . . , λ − 1, λ the above inequality, respectively, yields

ϑ(22) − ϑ(2) < 22 log 2

ϑ(23) − ϑ(22) < 23 log 2
...

ϑ(2λ) − ϑ(2λ−1) < 2λ log 2

ϑ(2λ+1) − ϑ(2λ) < 2λ+1 log 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Adding up the above inequalities, we get

ϑ(2λ+1) − ϑ(2) < (22 + 23 + . . . + 2λ + 2λ+1) log 2 .

But ϑ(2) = log 2, therefore

ϑ(2λ+1) < (1 + 22 + 23 + . . . + 2λ + 2λ+1) log 2

= (2λ+2 − 1) log 2 .

Hence
ϑ(2λ+1) < 2λ+2 log 2 . (7)
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For every positive integer n we can choose a suitable integer m such that

2m ≤ n ≤ 2m+1 .

Then
ϑ(n) =

∑

p≤n

log p ≤
∑

p≤2m+1

log p = ϑ(2m+1)

and by means of (7), it follows that

ϑ(n) < 2m+2 log 2 = 22 · 2m log 2 ≤ 4n log 2 . (8)

Let N be the number of primes pi, such that

nr < pi ≤ n

where 0 < r < 1, for i = 1, 2, · · · , N . Then

log nr < log p1

log nr < log p2

...

log nr < log pN

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒ N log nr <
∑

nr<p≤n

log p .

and therefore
(π(n) − π(nr)) log nr <

∑

nr<p≤n

log p . (9)

It is obvious that
ϑ(n) ≥

∑

nr<p≤n

log p . (10)

Therefore by means of (8), (9) and (10), one has

(π(n) − π(nr)) log nr < 4n log 2

⇔ π(n) log nr < 4n log 2 + π(nr) log nr

⇔ π(n) <
4n log 2

log nr
+ π(nr)

<
4n log 2

r log n
+ nr .
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Thus, equivalently, we obtain

π(n) <
n

log n

(
4 log 2

r
+ nr−1 log n

)
. (11)

Consider the function defined by the formula

f (x) = log x

x1−r
, x ∈ R+ .

Then

f ′(x) =
1
x x1−r − (1 − r)x−r log x

(x1−r)2
.

It is clear that
f ′(x) = 0

if

x−r = (1 − r)x−r log x ⇔ log x = 1

1 − r
,

that means
x = e1/(1−r) .

For x = e1/(1−r) the function f (x) attains its maximal value.
Thus

f (x) ≤ 1

e(1 − r)
⇒ f (n) ≤ 1

e(1 − r)
,

and therefore

nr−1 log n ≤ 1

e(1 − r)
. (12)

From (11) and (12), it follows

π(n) <
n

log n

(
4 log 2

r
+ 1

e(1 − r)

)
.

Set r = 2
3 . Then

π(n) <
n

log n

(
6 log 2 + 3

e

)
.
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However, it holds

6 log 2 + 3

e
< 6 and thus π(n) < 6 · n

log n

Hence for every positive integer n, where n ≥ 2, the following inequality
holds

1

6
· n

log n
< π(n) < 6 · n

log n ��

Theorem 1.22 (Dirichlet’s Approximation Theorem) Let A be a real
number and n a natural number. Then, there exists an integer b, such that
0 < b ≤ n, and an integer c, for which the following holds

|Ab − c| <
1

n
.

Proof Let {Ai} = Ai−�Ai�, for i = 0,1, 2, . . . , n. It is clear that 0 ≤ {Ai} < 1.
We now construct the intervals

[
x

n
,

x + 1

n

)
,

where 0 ≤ x < n.
Since there are n + 1 real numbers {Ai}, such that 0 ≤ {Ai} < 1, by the Pi-
geonhole Principle it follows that at least one of the intervals [x/n, (x + 1)/n)

will contain two of these numbers.
Let us suppose that

{Ak} , {Al} ∈
[

x

n
,

x + 1

n

)
,

for some 0 ≤ x < n.
Therefore

|{Ak} − {Al}| <
1

n

or

|Ak − �Ak� − (Al − �Al�)| <
1

n

or

|A(k − l) − (�Ak� − �Al�)| <
1

n
.
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Thus, we distinguish the following cases:

• If k − l > 0, then we set b = k − l and c = �Ak� − �Al� .

• If k − l < 0, then we set b = l − k and c = �Al� − �Ak� .

Hence, we obtain

|Ab − c| <
1

n
. ��

Corollary 1.23 Let A be a real number and n a natural number. Then, there
exists an integer b, such that 0 < b ≤ n, and an integer c relatively prime to
b, for which it holds ∣∣∣A − c

b

∣∣∣ <
1

b2
.

Proof By Dirichlet’s Approximation Theorem, we have

|Ab − c| <
1

n
.

Thus, since b is a positive integer, we can write

|Ab − c|
b

<
1

nb
≤ 1

b2

or ∣∣∣A − c

b

∣∣∣ <
1

b2
.

��
The following theorem as well as other related theorems can be found in [9,
23].

Theorem 1.24 (Siegel- Walfisz Theorem)
Let D be a positive constant. Then there exists a positive constant C(D) such
that the following holds: Assume that r is a real number and a, q are integers
such that (a, q) = 1 with q ≤ logD r. Then

∑

n≤r
n≡a( mod q)

�(n) = r

φ(q)
+ O

(
r exp

(
−C(D)

√
log r

))
,

where �(n) denotes the Von Mangoldt function and φ(n) the Euler totient
function.
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2 The Circle Method

The Circle Method was introduced for the first time in a paper by Hardy and
Ramanujan [21] concerning partitions. Moreover, Hardy and Littlewood de-
veloped that method so that it could be used to connect exponential sums with
general problems of additive number theory.3 For recent developments and
generalizations of the Hardy-Littlewood method to additive number theory,
the interested reader is referred to the paper of Green [17].
A characteristic problem to which the Circle Method finds an application is
the following:

Problem 2.1 Let S be a subset of N and k ∈ N. Determine

{s1 + s2 + · · · + sk | s1, s2, . . . , sk ∈ S} ∩ N .

In other words, determine which natural numbers can be represented as the
sum of k elements of the set S and in how many ways.

Remark 2.2 If we set S = P, where P denotes the set of all prime numbers,
then

1. For k = 2, the statement of Problem2.1 becomes:
Determine the set

E = {p1 + p2 | p1, p2 ∈ P} ∩ N .

The Goldbach conjecture states that the set E is the set of all positive even
integers.

2. For k = 3, the statement of Problem2.1 becomes:
Determine the set

O = {p1 + p2 + p3 | p1, p2, p3 ∈ P} ∩ N .

In 1937, I.M.Vinogradov [66, 67] proved that every large enoughoddpositive
integer is included in the set O.
Generally, the starting point of the Circle Method is to consider a generating
function of the form:

FS(x) =
∑

s∈S

xs .

3Hardy and Littlewood in a paper published in 1923 have used the Circle Method to prove that on
assumption of a modified form of the Riemann Hypothesis there exists a natural number N , such
that every odd integer n ≥ N can be expressed as the sum of three prime numbers.
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Questions of convergence may be avoided if S is a finite set, which we shall
assume in the following. We write

FS(x)
k =

+∞∑

n=1

R(n, k, S)xn .

It can be proved that the coefficient R(n, k, S) is equal to the number of ways
that n can be represented as the sum of k elements of the set S.
Moreover, it follows from Cauchy’s formula that

R(n, k, S) = 1

2πi

∫

C

FS(z)k

zn+1
dz , (1)

where C is the unit circle oriented counterclockwise.
However, if we substitute x = e2πiu and

fS(u) = FS(x),

we obtain

R(n, k, S) =
∫ 1

0
fS(u)ke−2πinudu .

In addition, for every natural number n ≤ N , it holds

R(n, k, S) = RN(n, k, S) =
∫ 1

0
fN(x)ke−2πinxdx ,

where RN(n, k, S) is equal to the number of ways that n can be represented
as the sum of k elements of the set S, where each element is at most N .
The key feature of the Circle Method is to split C into two disjoint pieces,
generally referred to as the Major and Minor arcs M and m, respectively.
Therefore, we obtain

R(n, k, S) = RN(n, k, S) =
∫

M
fN(x)ke−2πinxdx +

∫

m
fN(x)ke−2πinxdx

or equivalently

R(n, k, S) = RN(n, k, S) =
∫

M
fN(x)ke(−nx)dx +

∫

m
fN(x)ke(−nx)dx .
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The basic idea behind the choice of theMajor andMinor arcs is the following:
The Major arcs are constructed in such a way, so that the function in the
integral ∫

M

can be evaluated asymptotically and that the contribution of the Minor arcs
is of lower order.

3 Proof of Vinogradov’s Theorem

Thepurpose of this section is to presentR.C.Vaughan’s proof ofVinogradov’s
theorem.

Theorem 3.1 (Vinogradov’s Theorem)
There exists a natural number N, such that every odd positive integer n, with
n ≥ N, can be represented as the sum of three prime numbers.

Before we define the appropriate function f and construct the relevant Major
and Minor arcs, in order to apply the Circle Method, we observe that

R(n, 3, P) =
∑

n=p1+p2+p3

1

>
∑

n=p1+p2+p3

log p1 · log p2 · log p3

log3 (p1 + p2 + p3)

=
∑

n=p1+p2+p3

log p1 · log p2 · log p3

log3 n

or equivalently

R(n, 3, P) >
1

log3 n

∑

n=p1+p2+p3

log p1 · log p2 · log p3 , (a)

where P denotes the set of all prime numbers and consequently p1, p2, p3 are
prime numbers.
Therefore, instead of working with the sum

∑

n=p1+p2+p3

1
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we shall work with the sum
∑

n=p1+p2+p3

log p1 · log p2 · log p3

More specifically, Vinogradov succeeded in proving that

∑

n=p1+p2+p3

log p1 · log p2 · log p3 � n2 .

Thus, by (a), we obtain

R(n, 3, P) � n2

log3 n
,

from which it is obvious that there exists a natural number N , such that every
n ≥ N , can be represented as the sum of three prime numbers.
Let us now proceed to the details of the proof of Vinogradov’s Theorem by
the use of the Circle Method.
Let

f (x) =
∑

p≤N

log p · e(xp)

and
fr(x) =

∑

p≤r

log p · e(xp) ,

where p is a prime number and x, r are real numbers.
In addition, let

RN(m, k) =
∑

m=p1+p2+···+pk
pi≤N

log p1 · log p2 · · · log pk ,

where p1, p2, . . ., pk are prime numbers.
Then, it follows that

RN(m, k) =
∫ 1

0
f k(x)e(−mx)dx

and in our case, for k = 3, one has

RN(m, 3) =
∑

m=p1+p2+p3
pi≤N

log p1 · log p2 · log p3 .
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We shall now construct the Major and Minor arcs. As we briefly mentioned
in the section concerning the Circle Method, we have to split the unit circle
C into two disjoint pieces (equivalently we can split the interval [0, 1] into
two disjoint pieces).
Since in this problem we are going to make use of the Siegel-Walfisz
Theorem1.24, it is evident that we must first consider a positive constant
D and set

L = logD N .

More specifically, we consider D, such that D > 10.
We define the Major arcs as follows:

M =
⋃

1≤q≤L
(a,q)=1

M(a,q) ,

where

M(a,q) =
{

x ∈
[

L

N
, 1 + L

N

]
:
∣∣∣∣x − a

q

∣∣∣∣ ≤
L

N

}

and a ∈ {1, 2, . . . , q}.
At this point, we shall prove a useful lemma.

Lemma 3.2 Let a, q be positive integers such that 1 ≤ a ≤ q, 1 ≤ q ≤ L
and (a, q) = 1. Then, for all sufficiently large N, the Major arcs M can be
expressed as a disjoint union of M(a,q).

Proof Let us suppose that there exists x ∈ M(a1,q1) ∩ M(a2,q2), with

∣∣∣∣
a1

q1
− a2

q2

∣∣∣∣ > 0 .

Then, it is evident that
|a1q2 − a2q1| > 0

or
|a1q2 − a2q1| ≥ 1 .

However,
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2L

N
≥
∣∣∣∣x − a2

q2

∣∣∣∣+
∣∣∣∣
a1

q1
− x

∣∣∣∣ ≥
∣∣∣∣
a1

q1
− a2

q2

∣∣∣∣

=
∣∣∣∣
a1q2 − a2q1

q1q2

∣∣∣∣ ≥
1

q1q2

≥ 1

L2
.

Therefore, we have
2L3 ≥ N .

But, by the definition of L we obtain

2 log3D N ≥ N ,

which is not true for large values of N . Hence, we have arrived to a contra-
diction. This completes the proof of the lemma. ��
We define now the Minor arcs m as follows:

m =
[

L

N
, 1 + L

N

]
\ M .

3.1 The Contribution of the Major Arcs

In this section, we shall investigate the contribution of the Major arcs by
proving two basic theorems. The first one provides an approximation of f (x)
for x ∈ M(a,q) and the second one provides an approximation of the integral

∫

M
f 3(x)e(−xN)dx .

Theorem 3.3 Let x ∈ M(a,q). Then there exists a positive constant C, such
that

f (x) − μ(q)

φ(q)

N∑

n=1

e

((
x − a

q

)
n

)
	 N exp

(
−C
√
logN

)
.

Proof Let r be a real number, such that r ∈ [1, N]. Then, it holds

fr

(
a

q

)
=
∑

p≤r

log p · e

(
a

q
p

)
.
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But, it is clear that
p ≡ t (mod q) ,

for some integer t with 1 ≤ t ≤ q.
Therefore, we can write

fr

(
a

q

)
=

q∑

t=1

∑

p≡t( mod q)
p≤r

log p · e

(
a

q
p

)

=
q∑

t=1

∑

p≡t( mod q)
p≤r

log p · e

(
a

q
t

)

=
q∑

t=1

⎛

⎜⎜⎝e

(
a

q
t

) ∑

p≡t( mod q)
p≤r

log p

⎞

⎟⎟⎠

=
q∑

t=1
(t,q)=1

e

(
a

q
t

) ∑

p≡t( mod q)
p≤r

log p +
q∑

t=1
(t,q)>1

e

(
a

q
t

) ∑

p≡t( mod q)
p≤r

log p .

Hence,
∣∣∣∣∣∣∣
fr

(
a

q

)
− r

φ(q)

q∑

t=1
(t,q)=1

e

(
at

q

)
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

q∑

t=1
(t,q)=1

e

(
at

q

)
⎛

⎜⎜⎝
∑

p≤r
p≡t( mod q)

log p − r

φ(q)

⎞

⎟⎟⎠+
q∑

t=1
(t,q)>1

e

(
at

q

) ∑

p≤r
p≡t( mod q)

log p

∣∣∣∣∣∣∣∣

≤
q∑

t=1
(t,q)=1

∣∣∣∣e
(

at

q

)∣∣∣∣

∣∣∣∣∣∣∣∣

∑

p≤r
p≡t( mod q)

log p − r

φ(q)

∣∣∣∣∣∣∣∣
+

q∑

t=1
(t,q)>1

∣∣∣∣e
(

at

q

)∣∣∣∣

⎛

⎜⎜⎝
∑

p≤r
p≡t( mod q)

log p

⎞

⎟⎟⎠ .
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Therefore, we get

∣∣∣∣∣∣∣
fr

(
a

q

)
− r

φ(q)

q∑

t=1
(t,q)=1

e

(
at

q

)
∣∣∣∣∣∣∣

≤
q∑

t=1
(t,q)=1

∣∣∣∣∣∣∣∣

∑

p≤r
p≡t( mod q)

log p − r

φ(q)

∣∣∣∣∣∣∣∣
+

q∑

t=1
(t,q)>1

⎛

⎜⎜⎝
∑

p≤r
p≡t( mod q)

log p

⎞

⎟⎟⎠ . (1)

By Theorem1.24, we have

∑

p≤r
p≡t( mod q)

log p − r

φ(q)
= O

(
r exp

(
−CD

√
log r

))
.

Thus, ∣∣∣∣∣∣∣∣

∑

p≤r
p≡t( mod q)

log p − r

φ(q)

∣∣∣∣∣∣∣∣
	 r exp

(
−CD

√
log r

)
. (2)

Since, 1 ≤ r ≤ N , we get

r exp
(
−CD

√
log r

)
= re−CD

√
log r = elog r−CD

√
log r

= e
√
log r(

√
log r−CD) ≤ e

√
logN(

√
logN−CD)

= elogN−CD
√
logN = N exp

(
−CD

√
logN

)
.

Therefore, by (2), we obtain

∣∣∣∣∣∣∣∣

∑

p≤r
p≡t( mod q)

log p − r

φ(q)

∣∣∣∣∣∣∣∣
	 N exp

(
−CD

√
logN

)
. (3)
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However, by the definition of the Euler φ function, we know that

φ(q) =
q∑

t=1
(t,q)=1

1 ,

and thus, by (3), it is clear that

q∑

t=1
(t,q)=1

∣∣∣∣∣∣∣∣

∑

p≤r
p≡t( mod q)

log p − r

φ(q)

∣∣∣∣∣∣∣∣
	

q∑

t=1
(t,q)=1

N exp
(
−CD

√
logN

)

= N exp
(
−CD

√
logN

)
·

q∑

t=1
(t,q)=1

1 ,

or

q∑

t=1
(t,q)=1

∣∣∣∣∣∣∣∣

∑

p≤r
p≡t( mod q)

log p − r

φ(q)

∣∣∣∣∣∣∣∣
	 N exp

(
−CD

√
logN

)
· φ(q) . (4)

We also have

q∑

t=1
(t,q)>1

⎛

⎜⎜⎝
∑

p≤r
p≡t( mod q)

log p

⎞

⎟⎟⎠	
∑

p|q
log p . (5)

Hence, by (1), (4) and (5), it follows that

∣∣∣∣∣∣∣
fr

(
a

q

)
− r

φ(q)

q∑

t=1
(t,q)=1

e

(
at

q

)
∣∣∣∣∣∣∣
	 φ(q)N exp

(
−CD

√
logN

)
+
∑

p|q
log p .

Since q ≤ L = logD N , it is evident that

φ(q) =
q∑

t=1
(t,q)=1

1 ≤ L .
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Therefore,
∣∣∣∣∣∣∣
fr

(
a

q

)
− r

φ(q)

q∑

t=1
(t,q)=1

e

(
at

q

)
∣∣∣∣∣∣∣
	 LN exp

(
−CD

√
logN

)
+
∑

p|q
log p

≤ LN exp
(
−CD

√
logN

)
+ logN .

By the above relation, it is clear that

∣∣∣∣∣∣∣
fr

(
a

q

)
− r

φ(q)

q∑

t=1
(t,q)=1

e

(
at

q

)
∣∣∣∣∣∣∣
	 N exp

(
−C
√
logN

)
, (6)

for any positive constant C < CD.
However, by the definition of the Ramanujan sum, we have

cq(a) =
q∑

t=1
(t,q)=1

e

(
at

q

)

and thus (6) takes the form
∣∣∣∣fr
(

a

q

)
− rcq(a)

φ(q)

∣∣∣∣	 N exp
(
−C
√
logN

)
, (7)

But, by the hypothesis of the theorem and Lemma1.16, it follows that in this
case

cq(a) = μ(q) .

Therefore, (7) is equivalent to

∣∣∣∣fr
(

a

q

)
− r

μ(q)

φ(q)

∣∣∣∣	 N exp
(
−C
√
logN

)
, (8)

Now, let

Ed := (π(d) − π(d − 1)) e

(
ad

q

)
log d − μ(q)

φ(q)
,

where π(x) denotes the prime counting function4.

4It is evident that if d is a prime number, then π(d) − π(d − 1) = 1, and thus,
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We have ∣∣∣∣∣f (x) − μ(q)

φ(q)

N∑

d=1

e(wd)

∣∣∣∣∣ =
∣∣∣∣∣

N∑

d=1

Ede(wd)

∣∣∣∣∣ ,

where w = x − a/q.
But, it is clear that

e(wd) = e(wN) −
∫ N

d

d

dy
e(wy)dy .

Hence, we obtain

∣∣∣∣∣f (x) − μ(q)

φ(q)

N∑

d=1

e(wd)

∣∣∣∣∣ =
∣∣∣∣∣e(wN)

N∑

d=1

Ed −
N∑

d=1

(
Ed

∫ N

d

d

dy
e(wy)dy

)∣∣∣∣∣

≤
∣∣∣∣∣e(wN)

N∑

d=1

Ed

∣∣∣∣∣+
∣∣∣∣∣

N∑

d=1

(
Ed

∫ N

d

d

dy
e(wy)dy

)∣∣∣∣∣

=
∣∣∣∣∣

N∑

d=1

Ed

∣∣∣∣∣+
∣∣∣∣∣

∫ N

0

(
d

dy
e(wy)

y∑

d=1

Ed

)
dy

∣∣∣∣∣

≤
∣∣∣∣∣

N∑

d=1

Ed

∣∣∣∣∣+
∫ N

0
|2πiwe(wy)|

∣∣∣∣∣

y∑

d=1

Ed

∣∣∣∣∣ dy .

However,
r∑

d=1

Ed = fr

(
a

q

)
− r

μ(q)

φ(q)
.

Thus, by (8), we get that each one of

∣∣∣∣∣

N∑

d=1

Ed

∣∣∣∣∣ ,
∣∣∣∣∣

y∑

d=1

Ed

∣∣∣∣∣	 N exp
(
−C
√
logN

)

and therefore, since

|w| ≤ L

N
,

(Footnote 4 continued)

Ed = e(ad/q) log d − μ(q)/φ(q) .

On the other hand, if d is a composite number π(d) = π(d − 1), which yields Ed = −μ(q)/φ(q).
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we obtain
∣∣∣∣∣∣
f (x) − μ(q)

φ(q)

N∑

d=1

e(wd)

∣∣∣∣∣∣
	 N exp

(
−C
√
logN

)
+ (2π |w| N) N exp

(
−C
√
logN

)

≤ N exp
(
−C
√
logN

)
+
(
2π

L

N

)
N exp

(
−C
√
logN

)

= (1 + 2πL) N exp
(
−C
√
logN

)

	 N exp
(
−C′√logN

)
,

for any constant C′ < C.

This completes the proof of Theorem3.3. ��
Theorem 3.4 Let

G(N) :=
+∞∑

q=1

μ(q)cq(N)

φ(q)3
,

where cq(N) stands for the Ramanujan sum.
Then, ∫

M
f 3(x)e(−xN)dx − N2

2
G(N) 	 N2 log−D/2 N .

Proof Let w = x − a/q. Then,

∣∣∣∣∣∣
f 3(x) − μ(q)3

φ(q)3

(
N∑

d=1

e(wd)

)3
∣∣∣∣∣∣

=
∣∣∣∣∣∣
f (x) − μ(q)

φ(q)

N∑

d=1

e(wd)

∣∣∣∣∣∣
·

∣∣∣∣∣∣∣
f 2(x) − f (x)

μ(q)

φ(q)

N∑

d=1

e(wd) + μ(q)2

φ(q)2

⎛

⎝
N∑

d=1

e(wd)

⎞

⎠
2
∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣
f (x) − μ(q)

φ(q)

N∑

d=1

e(wd)

∣∣∣∣∣∣

⎛

⎜⎝
∣∣∣f 2(x)

∣∣∣+ |f (x)|
∣∣∣∣∣∣
μ(q)

φ(q)

N∑

d=1

e(wd)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

μ(q)2

φ(q)2

⎛

⎝
N∑

d=1

e(wd)

⎞

⎠
2
∣∣∣∣∣∣∣

⎞

⎟⎠ .

However, it is evident that

|f (x)| ≤ π(N) logN
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and by Chebyshev’s inequality (Theorem1.21), it follows that

|f (x)| 	 N .

In addition, it is clear that

∣∣∣∣∣
μ(q)

φ(q)

N∑

d=1

e(wd)

∣∣∣∣∣	 N .

Moreover, since all the possible values of μ(q) are −1, 0 and 1, it is obvious
that μ(q)3 = μ(q). Therefore, by all the above, we obtain

∣∣∣∣∣∣
f 3(x) − μ(q)

φ(q)3

(
N∑

d=1

e(wd)

)3
∣∣∣∣∣∣
	 3N2

∣∣∣∣∣f (x) − μ(q)

φ(q)

N∑

d=1

e(wd)

∣∣∣∣∣ . (1)

But, by the previous theorem, we know that for x ∈ M(a,q), it holds

f (x) − μ(q)

φ(q)

N∑

d=1

e(wd) 	 N exp
(
−C
√
logN

)
.

Thus, by (1) we get

∣∣∣∣∣∣
f 3(x) − μ(q)

φ(q)3

(
N∑

d=1

e(wd)

)3
∣∣∣∣∣∣
	 N3 exp

(
−C
√
logN

)
.

Since,
M =

⋃

1≤q≤L
(a,q)=1

M(a,q) ,

in order to obtain the integral over the Major arcsM, we must integrate over
M(a,q) and sum over all q, 1 ≤ q ≤ L and all a, 1 ≤ a ≤ q with (a, q) = 1.
However,

L∑

q=1

q∑

a=1
(a,q)=1

∫

M(a,q)

⎛

⎝f 3(x) − μ(q)

φ(q)3

(
N∑

d=1

e(wd)

)3
⎞

⎠ e(−xN) dx
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≤
L∑

q=1

q∑

a=1
(a,q)=1

∫

M(a,q)

∣∣∣∣∣∣
f 3(x) − μ(q)

φ(q)3

(
N∑

d=1

e(wd)

)3
∣∣∣∣∣∣

dx

	
L∑

q=1

q∑

a=1
(a,q)=1

∫

M(a,q)

N3 exp
(
−C
√
logN

)
dx

≤ L2 · 2 L

N
· N3 exp

(
−C
√
logN

)
, since |M(a,q)| = 2

L

N

= 2
L3+1/2

L1/2
· N2 exp

(
−C
√
logN

)
.

But, by the definition of L, we have

Lg = loggD N = exp (log (gD logN)) 	 exp
(

C′√logN
)

,

for any positive constant C′ and g ≥ 1.
Thus, for g = 3 + 1/2 and C′ = C, we obtain

S :=
L∑

q=1

q∑

a=1
(a,q)=1

∫

M(a,q)

⎛

⎝f 3(x) − μ(q)

φ(q)3

(
N∑

d=1

e(wd)

)3
⎞

⎠ e(−xN)dx

	 N2 exp
(
C

√
logN

)

L1/2
· exp

(
−C
√
logN

)

= N2

L1/2
.

Moreover, we have

S =
∫

M
f 3(x)e(−xN)dx −

L∑

q=1

q∑

a=1
(a,q)=1

∫

M(a,q)

μ(q)

φ(q)3

⎛

⎝
N∑

d=1

e(wd)

⎞

⎠
3

e(−xN)dx

=
∫

M
f 3(x)e(−xN)dx

−
L∑

q=1

q∑

a=1
(a,q)=1

∫

M(a,q)

μ(q)

φ(q)3

⎛

⎝
N∑

d=1

e(wd)

⎞

⎠
3

e

(
−
(

x − a

q

)
N

)
· e

(
− a

q
N

)
dx

=
∫

M
f 3(x)e(−xN)dx −

L∑

q=1

q∑

a=1
(a,q)=1

e

(
− aN

q

)∫

M(a,q)

μ(q)

φ(q)3

⎛

⎝
N∑

d=1

e(wd)

⎞

⎠
3

e(−wN)dw
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(note that w = x − a/q) and since we proved that

S 	 N2

L1/2
,

it is evident that

∫

M
f 3(x)e(−xN)dx −

L∑

q=1

q∑

a=1
(a,q)=1

e

(
−aN

q

)
μ(q)

φ(q)3

∫ L
N

− L
N

⎛

⎝
N∑

d=1

e(wd)

⎞

⎠
3

e(−wN)dw

	 N2

L1/2
.

(2)

Therefore, by (2) we see that we must also determine a bound for the integral

I =
∫ L

N

− L
N

(
N∑

d=1

e(wd)

)3

e(−wN)dw .

However, we observe that

I ′ :=
∫ 1

2

− 1
2

(
N∑

d=1

e(wd)

)3

e(−wN)dw

=
∑

d1+d2+d3=N
di≥1

1

= (N − 1)(N − 2)

2
(3)

and therefore ∣∣∣∣I
′ − N2

2

∣∣∣∣ ≤ 2N .

Since we know the exact value of I ′, we shall try to correlate the integral I
with the integral I ′. Let

h(w) =
(

N∑

d=1

e(wd)

)3

e(−wN) .
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Therefore, we have

∣∣I ′ − I
∣∣ =

∣∣∣∣∣

∫ 1
2

− 1
2

h(w)dw −
(∫ − 1

2

− L
N

h(w)dw +
∫ 1

2

− 1
2

h(w)dw +
∫ L

N

1
2

h(w)dw

)∣∣∣∣∣

=
∣∣∣∣∣

∫ − 1
2

− L
N

h(w)dw +
∫ L

N

1
2

h(w)dw

∣∣∣∣∣ .

If we substitute w with −w, we get

∣∣I ′ − I
∣∣ =

∣∣∣∣∣−
∫ 1

2

L
N

h(−w)dw +
∫ L

N

1
2

h(w)dw

∣∣∣∣∣

=
∣∣∣∣∣−
∫ 1

2

L
N

h(−w)dw −
∫ 1

2

L
N

h(w)dw

∣∣∣∣∣

≤
∫ 1

2

L
N

∣∣∣∣∣

N∑

d=1

e(−wd)

∣∣∣∣∣

3

dw +
∫ 1

2

L
N

∣∣∣∣∣

N∑

d=1

e(wd)

∣∣∣∣∣

3

dw

≤ 2
∫ 1

2

L
N

∣∣∣∣∣

N∑

d=1

e(−wd)

∣∣∣∣∣

3

dw .

But, by Lemma1.17, it follows that

∣∣∣∣∣

N∑

d=1

e(−wd)

∣∣∣∣∣ ≤ min

{
1

[−w]
, N

}
= 1

[w]
.

Thus,

∣∣I ′ − I
∣∣ ≤ 2

∫ 1
2

L
N

1

[w]3
dw = 2

∫ 1
2

L
N

1

w3
dw = N2

L2
− 4 <

(
N

L

)2

.

It follows that
∣∣∣∣∣∣∣

q∑

a=1
(a,q)=1

μ(q)

φ(q)3
e

(
−aN

q

)
∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

μ(q)

φ(q)3

q∑

a=1
(a,q)=1

e

(
−aN

q

)
∣∣∣∣∣∣∣
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≤ |μ(q)|
φ(q)3

q∑

a=1
(a,q)=1

1

≤ 1

φ(q)3
φ(q) = 1

φ(q)2
.

But, it can be shown that if β is a positive real number, then

lim
n→∞

n1−β

φ(n)
= 0 .

Thus, it is evident that for β = 1/4 there exists sufficiently large N , such that

N1−1/4

φ(N)
< 1

or
N3/4 < φ(N) .

Therefore, it is clear that
1

φ(q)2
	 1

q3/2
.

Hence, we have with

G(N) :=
+∞∑

q=1

μ(q)cq(N)

φ(q)3
,

that
∣∣∣∣∣∣∣
G(N) −

L∑

q=1

q∑

a=1
(a,q)=1

μ(q)

φ(q)3
e

(
−aN

q

)
∣∣∣∣∣∣∣
	

+∞∑

q=L+1

1

q3/2

≤
∫ +∞

L+1

1

x3/2
dx

= 2

(L + 1)1/2
.
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Thus, ∣∣∣∣∣∣∣
G(N) −

L∑

q=1

q∑

a=1
(a,q)=1

μ(q)

φ(q)3
e

(
−aN

q

)
∣∣∣∣∣∣∣
	 1

L1/2
. (4)

By (2) and (3) we obtain

∫

M
f 3(x)e(−xN)dx −

⎛

⎜⎜⎝
L∑

q=1

q∑

a=1
(a,q)=1

e

(
−aN

q

)
μ(q)

φ(q)3

⎞

⎟⎟⎠ · N2

2
	 N2

L1/2
+ N2

L2
+ N

= (1 + L−3/2)
N2

L1/2

	 N2

L1/2
.

By the above relation and (3), we get

∫

M
f 3(x)e(−xN)dx − G(N)

N2

2
	 N2

L1/2
= N2 log−D/2 N .

This completes the proof of Theorem3.4. ��

3.2 The Contribution of the Minor Arcs

In this section, we shall investigate the contribution of the Minor arcs m. Our
ultimate goal is to prove that

∫

m
f 3(x)e(−xN)dx 	 N2

logc N
,

for any positive constant c with c ≤ D/2−5 and D as in Theorem1.24 where

f (x) =
∑

p≤N

log p · e(xp)

We need to prove some more theorems and lemmas.
The following lemma is presented without a proof, since it is a classical result
in approximation theory and analytic number theory.
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Lemma 3.5 For any real numbers x, r1, r2, with r1, r2 ≥ 1, and integers q,
a, such that ∣∣∣∣x − a

q

∣∣∣∣ ≤
1

q2
, (a, q) = 1

and q ≥ 1, it holds

∑

n<r1

min

{
1

[xn]
,

r1r2
n

}
	
(

r1r2
q

+ r1 + q

)
log (2r1q) . (1)

The following result is a special case of an identity due to R. C. Vaughan [64].

Lemma 3.6 Let r be a real number, such that 1 ≤ r ≤ √
N. 5

Then, ∑

r<k≤N

�(k)e(xk) =
∑

d≤r

∑

m≤ N
d

logm · μ(d)e(xdm)

−
∑

r<d≤N

∑

r<m≤ N
d

∑

q|d
q≤r

μ(q)�(m)e(xdm)

−
∑

d≤r2

∑

m≤ N
d

∑

q|d
q≤r
d≤rq

μ(q)�

(
d

q

)
e(xdm) , (L1)

where μ(n) and �(n) denote the Möbius and the von Mangoldt function,
respectively.

Proof Throughout the proof, we assume that Re{s} > 1. All the Dirichlet
series considered in the proof will be absolutely convergent, and their terms
can be rearranged arbitrarily. By the definition of the Riemann zeta function
ζ(s), it follows that

ζ ′(s) = −
∑

n≥1

log n

ns

(
ζ ′ denoting

dζ

ds

)
.

We have

−ζ ′

ζ
(s) =

∑

m≥1

�(m)

ms
.

5Throughout this subsection, r will always stand for a real number, such that 1 ≤ r ≤ √
N , unless

otherwise stated.
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We define

D1(s) :=
∑

n≤r

�(n)

ns
, D2(s) :=

∑

n≤r

μ(n)

ns
.

It follows that

0 = −ζ ′(s)D2(s) − ζ(s)D1(s)D2(s) − ζ(s)D2(s)

(
−ζ ′

ζ
(s) − D1(s)

)
.

=
∑

n≥1

1

ns

⎛

⎜⎝
∑

m≤r
d·m=n

(log d) μ(m)

⎞

⎟⎠−
∑

n≥1

1

ns

∑

d·m=n
m≤r2

∑

q|d
q≤r

μ(q)�(m)

−
∑

n≥1

1

ns

∑

m·d=n
r<m

⎛

⎜⎝
∑

t|d
t≤r

μ(t)

⎞

⎟⎠�(m) .

Therefore, equating the coefficients of the Dirichlet series above we obtain:

∑

d·m=n
m≤r

μ(m) log d −
∑

d·m=n
m≤r2

⎛

⎜⎜⎝
∑

q|d
q≤r

μ(q)�(m)

⎞

⎟⎟⎠−
∑

r<m

⎛

⎜⎜⎝
∑

d|m
d≤r

μ(d)

⎞

⎟⎟⎠�(m) = 0 (*)

From (*) by multiplying by e(xn) and adding

∑

r<n≤N

�(n)e(xn)

we obtain
∑

r<n≤N

�(n)e(xn) =
∑

1≤n≤N

e(xn)
∑

m≤r
d·m=n

(log d)μ(m)

−
∑

1≤n≤N

e(xn)
∑

m≤r2
d·m=n

⎛

⎜⎜⎝
∑

q|d
q≤r

μ(q)

⎞

⎟⎟⎠�(m)

−

⎛

⎜⎜⎝
∑

1≤n≤N

e(xn)
∑

d·m=n
r<m

⎛

⎜⎜⎝
∑

q|m
q≤r

μ(q)

⎞

⎟⎟⎠�(m) −
∑

r≤n≤N

�(n)e(xn)

⎞

⎟⎟⎠ .
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For d ≤ r, we have
∑

q|d
q≤r

μ(q) =
{

1, if d = 1

0, otherwise

and therefore the proof of Lemma3.6 is finished. ��
Lemma 3.7 Let

A : =
∑

d≤r

∑

m≤ N
d

logm · μ(d) · e(xdm)

Then

|A| 	 logN
∑

d≤r2

min

{
1

[xd]
,

N

d

}
,

where
[
y
] = mink∈Z |y − k|.

Proof We have

∑

1≤m≤N/d

(logm)e(xdm) =
∑

1≤m≤N/d

e(xdm)

∫ m

1

du

u
=
∫ N/d

1

⎛

⎝
∑

u<m≤N/d

e(xdm)

⎞

⎠ du

u
.

Therefore,

|A| ≤
∑

d≤r

∣∣∣∣∣∣

∑

m≤N/d

(logm)e(xdm)

∣∣∣∣∣∣

≤
∑

d≤r

min

⎧
⎨

⎩
∑

m≤N/d

logm ,

∣∣∣∣∣∣

∫ N/d

1

∑

u<m≤N/d

e(xdm)
du

u

∣∣∣∣∣∣

⎫
⎬

⎭

	
∑

d≤r

min

{
N

d
logN ,

logN

[xd]
}

Thus the proof of the lemma now follows. ��
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Lemma 3.8 Let

B : =
∑

d≤r2

∑

m≤ N
d

∑

q|d
q≤r
d≤rq

μ(q)�

(
d

q

)
e(xdm) .

Then

|B| 	 logN
∑

d≤r2

min

{
1

[xd]
,

N

d

}
.

Proof We have

|B| ≤
∑

d≤r2

∣∣∣∣∣∣∣∣∣∣

∑

q|d
q≤r
d≤rq

�

(
d

q

)

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣

∑

m≤ N
d

e(xdm)

∣∣∣∣∣∣

≤
∑

d≤r2

∑

q|d
�(q)

∣∣∣∣∣∣

∑

m≤ N
d

e(xdm)

∣∣∣∣∣∣
.

By Theorem1.13, we know that

∑

q|d
�(q) = log d .

In addition, by Lemma1.17 it follows that

∣∣∣∣∣∣

∑

m≤ N
d

e(xdm)

∣∣∣∣∣∣
≤ min

{
1

[xd]
,

N

d

}
.

Hence, we obtain

|B| ≤
∑

d≤r2

(
(log d) · min

{
1

[xd]
,

N

d

})
,

and therefore

|B| 	 logN
∑

d≤r2

min

{
1

[xd]
,

N

d

}
,

which proves the lemma. ��
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Lemma 3.9 Let

C : =
∑

r<d≤N

∑

r<m≤ N
d

∑

q|d
q≤r

μ(q)�(m)e(xdm) .

Then

|C| 	
t∑

i=1

⎛

⎜⎝
(
2ir log5 N

) ∑

r<d≤ N
2ir

⎛

⎜⎝2ir +
∑

1≤s≤ N
2ir

min

{
1

[xs]
,

N

s

}
⎞

⎟⎠

⎞

⎟⎠

1/2

,

where

t =
⌊
log(N/r2)

log 2

⌋
.

Proof If we observe the indices under the first two sums of the definition of
C, we see that

r < d ≤ N

and

r < m ≤ N

d
. (1)

But, for N/r < d ≤ N it holds N/d < r and thus (1) does not hold true. In
that case, the second sum of C does not contain any terms. Therefore, it is
evident that

C =
∑

r<d≤ N
r

∑

r<m≤ N
d

∑

q|d
q≤r

μ(q)�(m)e(xdm) .

Let
D(r) =

∑

r<m≤ N
d

∑

q|d
q≤r

μ(q)�(m)e(xdm) .

Then, we can write

C =
∑

r<d≤2r

D(r) +
∑

2r<d≤4r

D(r) + · · · +
∑

2t r<d≤2t+1r

D(r) , (2)

where t is an integer, such that
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2tr <
N

r
≤ 2t+1r .

From,

2tr <
N

r
≤ 2t+1r ,

we have

2t <
N

tr2
≤ 2t+1 .

Thus,

t <
log
(
N/r2

)

log 2
.

However, for 0 ≤ i ≤ t, we have by the definition of D(r) that

∣∣∣∣∣∣

∑

2ir<d≤2i+1r

D(r)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣

∑

2ir<d≤2i+1r

⎛

⎜⎜⎝
∑

r<m≤ N
d

⎛

⎜⎜⎝
∑

q|d
q≤r

μ(q)

⎞

⎟⎟⎠�(m)e(xdm)

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣

2

and by the Cauchy-Schwarz-Buniakowsky inequality we obtain

∣∣∣∣∣∣

∑

2ir<d≤2i+1r

D(r)

∣∣∣∣∣∣

2

≤

⎛

⎜⎜⎝
∑

2ir<d≤2i+1r

∣∣∣∣∣∣∣∣

∑

q|d
q≤r

μ(q)

∣∣∣∣∣∣∣∣

2⎞

⎟⎟⎠ ·
⎛

⎝
∑

2ir<d≤2i+1r

∣∣∣∣∣∣

∑

r<m≤ N
d

�(m)e(xdm)

∣∣∣∣∣∣

2⎞

⎠ (3)

Because of the fact that |μ(q)| ≤ 1, we have

∑

2ir<d≤2i+1r

∣∣∣∣∣∣∣∣

∑

q|d
q≤r

μ(q)

∣∣∣∣∣∣∣∣

2

≤
∑

2ir<d≤2i+1r

∣∣∣∣∣∣∣∣

∑

q|d
q≤r

1

∣∣∣∣∣∣∣∣

2

=
∑

2ir<d≤2i+1r

τ 2(d) .
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By Theorem1.18 and due to the fact that 2ir ≤ N , we obtain

∑

2ir<d≤2i+1r

∣∣∣∣∣∣∣∣

∑

q|d
q≤r

μ(q)

∣∣∣∣∣∣∣∣

2

	 (2ir) log3(2ir)

≤ (2ir) log3 N .

Hence, by the above relation and (3), we get

∣∣∣∣∣∣

∑

2ir<d≤2i+1r

D(r)

∣∣∣∣∣∣

2

	 (2ir) log3 N
∑

2ir<d≤2i+1r

∣∣∣∣∣∣

∑

r<m≤ N
d

�(m)e(xdm)

∣∣∣∣∣∣

2

(4)

In addition, for the remaining sums in (4), we can write

∑

2ir<d≤2i+1r

∣∣∣∣∣∣

∑

r<m≤ N
d

�(m)e(xdm)

∣∣∣∣∣∣

2

=
∑

2ir<d≤2i+1r

⎛

⎝
∑

r<m≤ N
d

�(m)e(xdm) ·
∑

r<s≤ N
d

�(s)e(−xds)

⎞

⎠

≤
∑

r<m≤ N
2ir

⎛

⎜⎝
∑

r<s≤ N
2ir

�(m)�(s)

∣∣∣∣∣∣

∑

2ir<d≤min{2i+1r, N
m , N

s }
e(xd(m − s))

∣∣∣∣∣∣

⎞

⎟⎠ .

However, �(m), �(s) ≤ logN , for every x < n, s ≤ N/2ir. Thus,

�(m)�(s) ≤ log2 N .

In addition, by Lemma1.17, we have

∣∣∣∣∣∣

∑

2ir<d≤2i+1r

e(x(m − s)d)

∣∣∣∣∣∣
≤ min

{
1

[x(m − s)]
, 2ir

}
.
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Therefore, we obtain

∑

2ir<d≤2i+1r

∣∣∣∣∣∣∣

∑

r<m≤ N
d

�(m)e(xdm)

∣∣∣∣∣∣∣

2

≤ log2 N
∑

r<m≤ N
2i r

∑

r<s≤ N
2i r

min

{
1

[x(m − s)]
, 2ir

}

	 log2 N
∑

r<m≤ N
2i r

∑

0<s≤ N
2i r

min

{
1

[xs]
, 2ir

}

= log2 N
∑

r<m≤ N
2i r

⎛

⎜⎝2ir +
∑

1<s≤ N
2i r

min

{
1

[xs]
, 2ir

}
⎞

⎟⎠ .

Hence,

∑

2ir<d≤2i+1r

∣∣∣∣∣∣∣

∑

r<m≤ N
d

�(m)e(xdm)

∣∣∣∣∣∣∣

2

≤ log2 N
∑

r<m≤ N
2i r

⎛

⎜⎝2ir +
∑

1<s≤ N
2i r

min

{
1

[xs]
,

N

s

}
⎞

⎟⎠ .

By the above relation and (4), we obtain

∣∣∣∣∣∣

∑

2ir<d≤2i+1r

D(r)

∣∣∣∣∣∣
	

⎛

⎜⎜⎝(2ir) log5 N
∑

r<m≤ N
2ir

⎛

⎜⎜⎝2
ir +

∑

1<s≤ N
2ir

min

{
1

[xs]
,

N

s

}
⎞

⎟⎟⎠

⎞

⎟⎟⎠

1/2

.

By the above relation and (2), it is evident that

|C| 	
t∑

i=1

⎛

⎜⎝
(
2ir log5 N

) ∑

r<d≤ N
2ir

⎛

⎜⎝2ir +
∑

1≤s≤ N
2ir

min

{
1

[xs]
,

N

s

}
⎞

⎟⎠

⎞

⎟⎠

1/2

.

This completes the proof of Lemma3.9. ��
Corollary 3.10 We have the following estimate

|C| 	 log4 N ·
(

N√
r

+ N√
q

+√Nq

)
.

Proof By the previous lemma and Lemma3.5, it follows that
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|C| 	
∑

1≤i≤t

⎛

⎜⎝N log5 N
∑

r<d≤ N
2i r

(
2ir +

(
N

q
+ N

2ir
+ q

)
logN

)
⎞

⎟⎠

1/2

=
∑

1≤i≤t

(
N log6 N

(
2ir + N

q
+ N

2ir
+ q

))1/2

	
∑

1≤i≤t

√
N log3 N

(
2ir + N

q
+ N

2ir
+ q

)1/2

≤
∑

1≤i≤t

√
N log3 N

(√
2ir +√N/q +

√
N/2ir + √

q
)

.

However, we have shown that

t =
⌊
log
(
N/r2

)

log 2

⌋
.

Thus,
t 	 logN ,

which implies that

|C| 	 √
N log4 N

(√
2ir +√N/q +

√
N/2ir + √

q
)

= log4 N

(√
2irN + N√

q
+ N√

2ir
+√Nq

)
.

But, since r ≤ 2ir ≤ N/r, we obtain

|C| 	 log4 N ·
(

N√
r

+ N√
q

+√Nq

)
,

which proves the corollary. ��
Lemma 3.11 Let r be a real number, such that

N√
r

= r2 ,

then ∑

r<k≤N

�(k)e(xk) 	 log4 N

(
N4/5 + N√

q
+√Nq

)
.
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Proof For N/
√

r = r2, by the previous corollary, we get

|C| 	 log4 N

(
r2 + N√

q
+√Nq

)
.

From Lemmas3.5, 3.7 and 3.8, we also get:

|A| , |B| 	 log4 N

(
r2 + N√

q
+√Nq

)
.

Therefore, we have

|A| , |B| , |C| 	 log4 N

(
r2 + N√

q
+√Nq

)

or

|A| , |B| , |C| 	 log4 N

(
N4/5 + N√

q
+√Nq

)
. (1)

But, by Lemma3.6, we know that

∑

r<k≤N

�(k)e(xk) = A − C − B . (2)

Thus, by (1) and (2) we obtain that

∑

r<k≤N

�(k)e(xk) 	 log4 N

(
N4/5 + N√

q
+√Nq

)
.

This completes the proof of the lemma. ��
Theorem 3.12 (a) If x ∈ m, then

f (x) 	 N log5−D/2 N ,

where D is a positive constant, such that D > 10.6

(b) If c is a positive constant, such that c ≤ D/2 − 5, then

∫

m
f 3(x)e(−xN)dx 	 N2

logc N
.

6We mentioned the constant D in Theorem1.24 (Siegel-Walfisz Theorem).
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Proof (a) We have
∣∣∣∣∣∣
f (x) −

∑

r<k≤N

�(k)e(xk)

∣∣∣∣∣∣
=
∣∣∣∣∣∣

∑

p≤r

log p · e(xp) +
∑

r<p≤N

log p · e(xp) −
∑

r<k≤N

�(k)e(xk)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑

p≤r

log p · e(xp)

∣∣∣∣∣∣
+
∣∣∣∣∣∣

∑

r<p≤N

log p · e(xp) −
∑

r<k≤N

�(k)e(xk)

∣∣∣∣∣∣

=
∑

p≤r

log p +

∣∣∣∣∣∣∣∣∣∣∣

∑

r<k≤N
k =pm

m≥2

log p · e(xp)

∣∣∣∣∣∣∣∣∣∣∣

.

Thus, ∣∣∣∣∣f (x) −
∑

r<k≤N

�(k)e(xk)

∣∣∣∣∣ ≤
∑

p≤r

log p +
∑

r<k≤N
k =pm

m≥2

log p . (1)

But, as far as the second summand is concerned, we observe that

r < pm ≤ N , or p ≤ m
√

N , m ≥ 2 .

For

m = logN

log 2

we get

pm ≥ 2m = 2logN/ log 2 = elog 2
logN
log 2 = elogN = N

or
pm ≥ N .

Therefore, from (1) and the above observation, it follows that
∣∣∣∣∣f (x) −

∑

r<k≤N

�(k)e(xk)

∣∣∣∣∣ ≤
∑

p≤r

log p +
∑

2≤m≤
⌊
logN
log 2

⌋

∑

pm≤N

log p . (2)
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However,

∑

2≤m≤
⌊
logN
log 2

⌋

∑

pm≤N

log p ≤
∑

p2≤N

log p + logN
∑

3≤m≤
⌊
logN
log 2

⌋

∑

pm≤N

1

≤
∑

p2≤N

log p + logN
∑

3≤m≤
⌊
logN
log 2

⌋

∑

p3≤N

1

=
∑

p2≤N

log p + logN

⎛

⎜⎜⎝
∑

3≤m≤
⌊
logN
log 2

⌋
1

⎞

⎟⎟⎠ ·
⎛

⎝
∑

p3≤N

1

⎞

⎠ .

But, since log 2 > 1/2, we obtain

∑

2≤m≤
⌊
logN
log 2

⌋

∑

pm≤N

log p ≤
∑

p2≤N

log p + logN

⎛

⎜⎜⎝
∑

3≤m≤
⌊
logN
log 2

⌋
1

⎞

⎟⎟⎠ ·
⎛

⎝
∑

p3≤N

1

⎞

⎠

≤ logN

⎛

⎝
∑

p2≤N

1 + 2 logN
∑

p3≤N

1

⎞

⎠ .

By the above relation and (2), we obtain

∣∣∣∣∣f (x) −
∑

r<k≤N

�(k)e(xk)

∣∣∣∣∣ ≤ logN

⎛

⎝
∑

p≤r

1 +
∑

p≤√
N

1 + 2 logN
∑

p≤ 3√N

1

⎞

⎠

(3)
However, by Chebyshev’s inequality, we know that for every positive integer
n, where n ≥ 2, it holds

1

6
· n

log n
< π(n) < 6 · n

log n
.

Therefore, it is evident that

∑

p≤r

1 	 r

log r
,
∑

p≤√
N

1 	
√

N

log
√

N
,
∑

p≤ 3√N

1 	
3
√

N

log 3
√

N
.

In addition, we have
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logN = 2 · 1
2
logN = 2 log

√
N 	 log

√
N

and similarly
logN 	 log 3

√
N .

Hence, by the above arguments and (3), we get

∣∣∣∣∣f (x) −
∑

r<k≤N

�(k)e(xk)

∣∣∣∣∣	 r + √
N logN + 2 3

√
N logN

	 √
N logN . (4)

But, by Lemma3.11, we know that

∑

r<k≤N

�(k)e(xk) 	 log4 N

(
N4/5 + N√

q
+√Nq

)
.

Thus, by (4), it follows that

f (x) 	 log5 N

(
N4/5 + N√

q
+√Nq

)

or

f (x) 	 N log5 N

(
N−1/5 + 1√

q
+
√

q

N

)
. (5)

By Dirichlet’s Approximation Theorem (see Theorem1.22 for a proof), we
know that for any real number x and natural number n, there exists an integer
q, such that 0 < q ≤ n, and an integer a relatively prime to b, for which it
holds ∣∣∣∣x − a

q

∣∣∣∣ <
1

nq
.

Since Dirichlet’s Approximation Theorem holds for every x ∈ R and n ∈ N,
let us assume that x ∈ m and n is a natural number, such that n ≥ N/L and
n − 1 < N/L, where L = logD N . Then, we have

∣∣∣∣x − a

q

∣∣∣∣ ≤
L

Nq
≤ L

N
.

Therefore, by the definition of the Major arcs, it follows that x ∈ M. But, it
is impossible for x to belong in both the Major and the Minor arcs.
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Thus, since
M =

⋃

1≤q≤L
(a,q)=1

M(a,q) ,

it is evident that it must hold q > L. Hence, it is clear that

L < q <
N

L
,

for x ∈ m.
Consequently, by (5), we obtain

f (x) 	 N log5 N

(
N−1/5 + 2√

L

)

= N log5 N
(
N−1/5 + 2 log−D/2 N

)

	 N log5−D/2 N .

(b) We proved above that

f (x) 	 N log5−D/2 N .

Therefore, we have

∫

m
f 3(x)e(−xN)dx ≤

∫ 1

0

∣∣f 2(x)
∣∣ |f (x)| dx 	 N log5−D/2 N

∫ 1

0

∣∣f 2(x)
∣∣ dx

(1)
However,

∫ 1

0

∣∣f 2(x)
∣∣ dx =

∫ 1

0
f (x)f (−x)dx

=
∫ 1

0

∑

p1≤N

log p1 · e(xp1)
∑

p2≤N

log p2 · e(−xp2)dx

=
∑

p1≤N

log p1

∑

p2≤N

log p2

∫ 1

0
e((p1 − p2)x)dx .

But, by Lemma1.2, we know that

∫ 1

0
e((p1 − p2)x)dx =

{
1, if p1 = p2

0, if p1 �= p2 .
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Thus, it is evident that

∫ 1

0

∣∣f 2(x)
∣∣ dx ≤

∑

p≤N

log2 p ≤
∑

p≤N

log2 N

= π(N) log2 N .

Hence, by (1) and Chebyshev’s inequality, we obtain

∫

m
f 3(x)e(−xN)dx 	 N log5−D/2 N · log2 N · N

logN

= N2 log6−D/2 N

= N2

logc N
.

This proves Theorem3.12. ��

3.3 Putting It All Together

In this section we use the results obtained in the previous sections in order to
prove Vinogradov’s theorem.

Theorem 3.13 (Vinogradov’s Theorem) There exists a natural number
N0, such that every odd positive integer N with N ≥ N0, can be represented
as the sum of three prime numbers.

Proof Recall that by the arguments presented in the section related to the
Circle Method, in order to prove Vinogradov’s theorem it suffices to prove
that

RN(m, 3) =
∑

m=p1+p2+p3
pi≤N

log p1 · log p2 · log p3 � N2 .

However, we have

RN(m, 3) =
∫

M
f 3(x)e(−mx)dx +

∫

m
f 3(x)e(−mx)dx .

In addition, by Theorems3.4 and 3.12, we know that

∫

M
f 3(x)e(−xN)dx − N2

2
G(N) 	 N2 log−D/2 N
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and ∫

m
f 3(x)e(−xN)dx 	 N2 log−c N ,

where c is a positive constant, such that c ≤ D/2 − 5 and

G(N) =
+∞∑

q=1

μ(q)cq(N)

φ(q)3
.

Therefore,

RN(m, 3) − N2

2
G(N) 	 N2

logw N
, (1)

where w is a positive constant, such that w ≤ D/2 − 5.
Generally, for any Dirichlet series with coefficients f (n), where f (n) is a
multiplicative arithmetic function, by Theorem1.5, it holds

+∞∑

n=1

f (n)

ns
=
∏

p

(+∞∑

n=0

f (pn)

p ns

)
,

where the product extends over all prime numbers p.
Therefore, for s = 0, we get

+∞∑

n=1

f (n) =
∏

p

(+∞∑

n=0

f (pn)

)
.

In our case, since the arithmetic function

μ(q)cq(n)

φ(q)3

is multiplicative, we can write

G(N) =
+∞∑

q=1

μ(q)cq(n)

φ(q)3
=
∏

p

(+∞∑

n=0

μ(pn)cpn(N)

φ(pn)3

)
.

However, for n > 1 we have μ(pn) = 0. Thus,

G(N) =
∏

p

(
μ(1)c1(N)

φ(1)3
+ μ(p)cp(N)

φ(p)3

)
=
∏

p

(
1 + (−1)cp(N)

(p − 1)3

)
(2)
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But, by Lemma1.16, we know that

cp(N) =
∑

d|(p,N)

μ
(p

d

)
d .

Hence, if p | N , then the only possible values of d are 1 and p. Thus,

cp(N) = p − 1 .

Similarly, if p � N , we get
cp(N) = −1 .

Therefore, by (2), it follows that

G(N) =
∏

p|N

(
1 − p − 1

(p − 1)3

)∏

p�N

(
1 + 1

(p − 1)3

)

=
∏

p|N

(
1 − 1

(p − 1)2

)∏

p�N

(
1 + 1

(p − 1)3

)
.

For odd integer N , we have

1 − 1

(p − 1)2
> 0

for all p | N .
Furthermore, the infinite series

∑

p

1

(p − 1)2
and

∑

p

1

(p − 1)3

are absolutely convergent, and thus, the infinite products

∏

p|N

(
1 − 1

(p − 1)2

)
and

∏

p�N

(
1 + 1

(p − 1)3

)

are bounded from below and from above by bounds that are independent from
N . Hence, Vinogradov’s theorem is now proved. ��
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