Step-by-Step Proof of Vinogradov’s Theorem

In the first section, we begin with some lemmas and theorems which will
be useful in presenting a step-by-step proof of Vinogradov’s theorem, which
states that there exists a natural number N, such that every odd positive integer
n, with n > N, can be represented as the sum of three prime numbers. The
experienced reader may wish to skip this section.

In the second section, we present the Hardy-Littlewood Circle Method and
describe the basic ideas which will be used in the presentation of the proof
of Vinogradov’s theorem.

The third, and most important section of this chapter, is devoted to Vaughan’s
proof of Vinogradov’s theorem. A number of authors have presented Vaughan’s
proof in books and expositions. We also present here this proof, but in a step-
by-step manner. More specifically, in the beginning of this section we describe
in detail how the Circle Method can be applied to attack the Ternary Gold-
bach Conjecture (TGC). Firstly, we define the appropriate Major and Minor
arcs, and afterwards, we investigate their contribution in the integral which
describes the number of representations of an integer as the sum of three
prime numbers.

The following references have been particularly useful in writing this chapter:
[9, 14, 29, 33, 40, 43, 61, 64, 66, 67]. The paper of Vaughan [65] has been
of exceptional interest in this monograph.

1 Introductory Lemmas and Theorems

In this section, we state some lemmas and theorems which will be useful
during the step-by-step analysis of the proof of Vinogradov’s theorem. These
lemmas and theorems are essentially independent from each other. The fol-
lowing two lemmas can be easily verified, and thus, we omit the details.
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Lemma 1.1 The following holds

>e(s

=1

d,ifd|n
)__ 0,ifdfn,

where e(x) = ™, x € R.

Lemma 1.2 Leta, b € Z. Then,

! L ifa=b
/0 e(ax)e(—bx)dx = [0’ fath.

Definition 1.3 Let f be an arithmetic function. The series

+00
D(f,s) = zf(fsl),

n

n=1
where s € C, is called a Dirichlet series with coefficients f'(n).

We shall handle Dirichlet series for s being a real number.
Consider now a Dirichlet series, which is absolutely convergent for s > ;.
If for these values of s it holds

then f(n) = 0, for every integer n with n > 1.
If for these values of s it holds

D(f,s) = D(yg, 5),
then by the above argument it holds
f(n) = g(n), for every integer n withn > 1.

Theorem 1.4 (1) Let D(f, s) and D(f>, s) be convergent for s € C. Then
the sum of D(f1, s) and D(f>, s) is obtained by

+00
DG, 5) +Dify 9 = Y RO

n=1
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(2) Let D(f1, s) and D(f», s) be absolutely convergent for s € C. Then the
product of D(f1, s) and D(f, s) is obtained by

g(n)

D(fi, ) - D(f>, s) = Z

where

g = D filn)f(m).

nyna=n

Theorem 1.5 Let f be a multiplicative function. Then, it holds

o-n(E),

P nOp

where the product extends over all prime numbers p.

The basic idea of the proof of the theorem is the following:

It is true that
[ f f(Pz)
H ( 1 p2s )

N(Z%)-m(e

P nO‘D

:(f(l) RAG f(p%)+'__)(f(l) f(pz)+f(p§)+m)m

+
1 P Py 1 ps Py

—Zf(p]... ak)s), M)

where! the sum extends over all possible combinations of multiples of powers
of prime numbers. But, since the function f (n) is multiplicative, it is evident

that a a, a a,
Zf(pll) i ‘f(Pkk) _ Zf(l’1l "‘Pkk)
(P?l ...ka)s (p’lll .. .ka)s

_ Zf(n)

"Here p; denotes the ith prime number (p; = 2, p» = 3,...).
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Definition 1.6 The zeta function is defined by

+00 1
((s) = Zl —
for all real values of s with s > 1.

This function was defined for the first time in 1737 by Leonhard Euler
(1707—1783). More than a century after Euler, in 1859, Georg Friedrich
Bernhard Riemann (1826—1866) rediscovered the zeta function for complex
values of s, while he was trying to prove the prime number Theorem.

Theorem 1.7 (EULER’S IDENTITY)

1
¢ =15 — S€R withs > 1,

p

where the product extends over all prime numbers p.

The proof of Euler’s Identity follows directly from Theorem 1.5.
Definition 1.8 Let n € N. The Mobius function p(n) is defined as follows

1, iftn=1
um) =13 (=DF, ifn= pip2 - - px Wherepy, pa, ..., p are k distinct primes
0, in every other case
Theorem 1.9

1, ifn=1
Doudy=1_" "
0, ifn>1,
where the sum extends over all positive divisors of the positive integer n.

Proof 1f n = 1 then the theorem obviously holds true, since by the definition
of the Mobius function we know that p(1) = 1.
If n > 1 we can write

_ay a ay
n=pypy P
where p1, pa, ..., pi are distinct prime numbers.

Therefore

Doud)=p()+ D ppd+ D ppip)+ -+ ppipa-po), (1)

dln 1<i<k i#j
I=i,j<k
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where generally the sum

Z WP piy +* - Piy)

iy Fi 7 Fl)

extends over all possible products of A distinct prime numbers. Hence, by (1)
and the binomial identity, we obtain

Zu(d) =1+ (k)(—l) + (k)(—1)2 +- 4 (k)(—l)k
- 1 2 k

=1-Dk=o.
Therefore,

> ud) =0, if n>1.

d|n

Theorem 1.10 (THE MOBIUS INVERSION FORMULA) Let n € N. If

g =D f(d
din
then "
o =" (5) 9@
d|n

The converse also holds.
Proof For every arithmetic function m(n), it holds
n
d) = (—) .
Domd)y =2 m (>
din din
Therefore, it is evident that
n n
>on(5) @ =3 g (5)- ()
din din

But

> g (5) =2 (w@ - 2o

dn dln A g
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Hence, we get

> ndg (5) = 2 p@fo .

dn Ad|n

Similarly,

DD @ | =D w@ro.

Aln dly M|n

Thus,

> (5) =2 (F0- 2@ |- )

din Aln d|x

However, by Theorem 1.9 we get

> u(d) =1 if and only if% —1,
djn

and in every other case, the sum is equal to zero. Thus, for n = A\ we obtain
DD u@ | =rm. 3)
Aln i

Therefore, by (1), (2) and (3) it follows that if

g = f(d

d|n

o =3 (5) 9@

d|n

then

then

gn) =D f(d).

d|n
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‘We have

@ =>r(3)

din din

=>>u (An—d) g\

din %5

= > u(55) o™

d\n

=> gD (%)

Aln d|§

The sum

> (3a)=!

dl%

if and only if n = A, and in every other case, it is equal to zero. Hence, for
n = A\ we obtain

> f@d) = gm).

din
This completes the proof of the theorem. O

Theorem 1.11 Fors > 1,

R f 11(n)
(o) <= n
Proof By Euler’s identity, we have

1 1
@ =10-) @y

Additionally, by Theorem 1.5, it is evident that

+00
“(”)=||(1—i). 2.2)
nS p pS

n=1

By the above formulas (2.1) and (2.2), the theorem follows. O
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Definition 1.12 Let n € N. The Von Mangoldt function A (n) is defined as
follows

A) logp, if n = p*for some prime number p and some k € N
n) =
0, otherwise.

Theorem 1.13 Let n € N. Then, it holds

ZA(d) =logn (L1)
d|n
and
An) == u(d)logd. (L2)
d|n

Proof 1t is evident that the theorem holds true in the case when n = 1. Hence,
let us assume that n > 1. If

ap az

n=pi'py...py"

is the cannonical representation of n by its prime factors, we get

logn = Zai log p;

i=1

m aj

= ZZIOgPi

i=1 g=1

=33 AGh

i=1 g=1

= > A@).

dln

This completes the proof of (L1).
By the Mobius inversion formula and (L1) we obtain

AW = pld)log -

d|n

=logn »_u(d) — D p(d)logd.

d|n dln



1 Introductory Lemmas and Theorems 15

Therefore, by Theorem 1.9 and the above formula, (L.2) follows. |
Theorem 1.14 For s > 1, it holds

Ay 1 dC(s)

nt C(s) ds

M2

n=1

Proof From the definition of the Riemann zeta function and a well-known
theorem of termwise differentiation of an infinite series, it follows that

dg(s) _ f logn

ds M

Additionally, by Theorem 1.11, we know that

R Z M(”). 2)

n=1

By Theorem 1.4, if we multiply (1), (2), we obtain

1 dds) _ = g(n)
Z 3)
C(s) ds “
where
g = D plm)logn,.
niny=n
But, by Theorem 1.13, it follows that
g(n) = A(n).
Therefore, by (3) and the above relation, the theorem follows. ]

Definition 1.15 The exponential sum

am = ().

l=q=n

(g,m)=1

is called the Ramanujan sum ¢, (m).

Note By the use of the Chinese Remainder Theorem (cf. [55]) it can be proved
that the Ramanujan sum ¢, (m) is a multiplicative function of n.
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Lemma 1.16 For the Ramanujan sum c,(m), we have
n
Cn = —-)d.
my= > p ( d)
d|(n,m)
Proof By Theorem 1.9, we know that for the Mdbius function it holds
1, if n=1
d)y=13"
2_ 1) [0, ifn>1
dln
Therefore, we can write

c,(m) = Z e(%)

1<g<n

(g,m)=1

However, by Lemma 1.1, we obtain

cp(m) = Z,u(g)d

d|n
dlm

But, d | nand d | m is equivalent to d | (n, m). Hence, it follows that

c,(m) = Z 7 (g)d

d|(n,m)

Lemma 1.17 Let x be a real number. Then,

B>

Z e(xn)

n=B1+1

1
< min{—,Bz—&} ,
[x]
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where By, B, are integers with By < B, and [y] = mingez |y — k|, where
yelR

Proof Let us suppose that x is not an integer. In this case, we have

By |eZ7ri(Bl+1)x| + |627Ti(32+1)x|
Z e(m)| = | e2mix/2) e27ri(—x/2)|
n=B1+1

2

|eTrix _ e*ﬂix| ’

But . "
0 _ ol
isinf =
2

and therefore, we obtain

B>

P —

|2 sin (7x)|
n=B1+1

In addition, it is true that
mx =k £[x]),

where k is the nearest integer to x. Thus, it follows that

1 1
12sin (7x)| _ 2sin (7 [x])

However, it is a well-known fact that

sinf 2 T T
— > —,for ——<60<—,0#£0.
7 > - or > <0< > #
Hence, for 0 = 7 [x] > 0, we get
2
sin [x] > mlx =2[x] .
From all the above, it is evident that
B
D elm)| < —. (1)
< [x]
n=B1+1
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Of course, it is clear that

B> B>
> eGm)| < D len)| =B, — B . )
n=B1+1 n=B1+1

Hence, from (1) and (2), we obtain

B> 1

Z e(xn)| < min{—,Bz —Bl} .
< [x]
n=B1+1

Theorem 1.18 Let 7(n) denote the divisor function, defined by

r(n):Zl.

din
d>1

Then, for any real number x, with x > 2, it holds

Z 7'2(n) <L x log3 X.

n<x

Proof We have

SPm=> (D 1] (>t

n<x n=x di|n da|n
=2 2. L
dy,dy<x

n<x
n=0 (mod lem{d;,d>})

We write e = (d;, d»), di = tie, dy = te.
We have lcm{d,, d»} = t1te and thus

RO EDNDS LTJ

n<x e<x 1,1=x

3
(z)

<« xlog’ x.
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This completes the proof of the theorem. O

Theorem 1.19 (LEGENDRE’S THEOREM)
The largest power of p which divides the integer n! is*

> 2]

Proof The number of factors of n! which are divisible by p, is |n/p]. More
specifically, these factors are the integers:

n
1p,2-p,....|—|-P-
p

However, some factors of n! are divisible by at least the second power of p,
namely they contain p? at least one time. These factors are the integers:

n
1'p2, 2.p2’...’L7J_p2’
p

which are exactly

in number.
If we continue similarly for higher powers of p , it follows that the integer n!
contains the prime number p exactly

times and therefore that is exactly the largest power of p which divides n !.
The above sum is finite since for k > r, where p” > n, it holds

O

Definition 1.20 We define 7(x) to be the number of primes which do not
exceed a given real number x.

2By |x| we denote the integer part of x and by [x] the least integer, greater than or equal to x.
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Theorem 1.21 (CHEBYSHEV’S INEQUALITY)

For every positive integer n, where n > 2, the following inequality holds

1

. <7m(n) <6-
6 logn logn

" < (2”) <4n,
n
2n
n

Proof We claim that

The inequality

2}1

IA

follows by mathematical induction.

For n = 2 one has
4

which holds true. Suppose that (1) is valid for #, i.e.

2" < (2n) .
n
It suffices to prove (1) for n + 1.
It is clear that

(2n+2) _ (n+2)!
n+1 ) (n+D@n+1)!

_ Cm! 2n+1)2n+2)

T nln! (n+1)2
= o Q2n+1D@2n+2)
- (n+1)?2

It is enough to prove that

ey
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Qn+1)2n+2)

nr12 >2,forn>2.
n

However,
Cn+1)2n+2)

)2 >2<2n>0,

which clearly holds true.
Thus,

2n+2 n+1
(n—i—l)22

and therefore, we have proved that

< (Zn)
n
for every positive integer n, where n > 2.
The proof of the right-hand side of inequality (1) follows from the fact that

B 6)- () ()

From (1), we get that

2n)!
log2" < log < log 4"
nln!
and therefore
nlog2 <log(2n)! —2logn! < nlog4. 2)

However, from Legendre’s Theorem (see Theorem 1.19), it follows that

nl = Hpi(n,p) , (3)

p=<n

where

+00
jopy =" L%J .

k=1



22 Step-by-Step Proof of Vinogradov’s Theorem

From (3), we obtain

logn! = log Hpj("’p)

p=n

— Z logpi(”’P)

p=n

=D j(n,p)logp.

p=n

By applying this result, we get

log(2n)! — 2logn! = Zj(n,p) logp —2 Zj(n,p) logp

(S [E) mr-EE )

However,

S5 2o (52 )

p=<n “k=1 p=<2n “k=l1

since for p > n it is true that

Therefore,

+o00 +00
log(2m)! — 2logn! = > (ZV-’ZJ ) H{J) log p
k=1

p=<2n “k=1

However, it holds

HEHESEE
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2n n
Lﬂ‘zhﬂzo ort-

The terms of the infinite summation

> (13-

assume the value zero for k such that p* > 2n, that means for

23
Thus, clearly

log2n
> .
logp
Thus,

Hence,

log(2n)! — 2logn! < Z( > 1) logp

p=<2n k=1

= m(2n)log2n.

From this relation and inequality (2), it follows that

nlog2 < w(2n)log2n
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nlog?2 n/2 2n
log2n  log2n  4log2n
o 10 1 2n 1 2n @)

> —— > —. .

T4 logan 6 log2n

Therefore, the inequality

1
6 logn <7

is satisfied if # is an even integer. It remains to examine the case where n is
an odd integer.
It is true that

@t 1) = 7@n) > -
m(2n m(2n) > — -
- 4 log2n
1 2n 2n+1
4 2n+1 log2n
1 2n 2n+1
> —_ .
4 2n+1 log(2n+1)
It is evident that
2n 2
> _
2n+1 "3
for every positive integer .
Therefore
1 2 2n+1
™2n+1)>- - ———
4 3 log(2n+1)
1 2n+1

6 log2n+1)

Hence, the inequality

1

6 logn <7
is also satisfied in the case where 7 is an odd integer.
Thus

1 n ™

— - < 7m(n),

6 logn

for every positive integer n, with n > 2.
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We will now prove the inequality

n

m(n) <6-
logn

for every positive integer n with n > 2.
We have already proved that

log(2n)! — 2log n! = Z[i(r—ﬂ - ZL%J)] logp |,

p=<2n-k=1

#1215

where none of the terms

is negative.
Therefore, it is clear that

=2l
log(2n)! — 2logn! > Z(

5(2] 2w
()

n<p<2n

Thus

However for the prime numbers p, such that n < p < 2n one has

2]
2]

log(2m)! — 2logn! = > logp . (5)

n<p<2n

since

Hence,
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By the definition of Chebyshev’s function ¥(x), one has

9(x) = > logp .

p=x

Therefore, (5) can be written as follows:
log(2n)! — 2logn! > ¥(2n) — ¥ (n).
Thus by meansof (2), we obtain
JI(2n) — I(n) < nlog4. (6)

Suppose that the positive integer n can be expressed as an exact power of 2.
Then from (6), it follows

92 -2™) — (2™ < 2" log2?

and therefore
P —9(2") < 2" log2 .

Form =1, 2, ..., A —1, ) the above inequality, respectively, yields

V(2% —9@2) < 2*log2 )
9(2%) —92%) < 2’log2

92N -9 < 2*log2
9M —9@2Y < 2Mog2 |

Adding up the above inequalities, we get
I —9@2) < 22+ 22 4. 420 +2M D 1og2 .
But ¥(2) = log 2, therefore

I < 1 4+22+28 + ...+ 22 + 22 Y log2
=22 —1)log2.

Hence
9 < 2M2 log2 . (7
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For every positive integer n we can choose a suitable integer m such that
M < p <l
Then
I(m) =D logp< D logp=9@2"")
p=n p<omt]
and by means of (7), it follows that
¥(n) < 2"21log2 =2%.2"log2 < 4nlog?2 . ®)
Let N be the number of primes p;, such that
n<pi<n
where 0 < r < 1,fori=1, 2, ---, N.Then

logn” < logp;

logn" < logps
= Nlogn" < Z logp.

. n"<p<n
logn” < logpy
and therefore
(m(n) — w(n")logn" < D logp . 9)
n"<p<n
It is obvious that
d(n) = > logp. (10)

n"<p<n
Therefore by means of (8), (9) and (10), one has

(m(n) —w(n"))logn" < 4nlog?2
< mw(n)logn” < 4nlog?2 + w(n") logn”

4nlog?2 p
& mn) < +m(n')
logn”
4nlog?2 .
< n .

rlogn
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Thus, equivalently, we obtain

n (4log2

r

w(n) < +n""'log n) ) (1D)

Consider the function defined by the formula

1
Fo) = —22 xeRT.

x —r

Then -
, X =0 =r)x""logx
f (x) = (xl—r)z

It is clear that

f'x)=0
if |

x"=0=r)x"logx & logx = 1 ,
—r

that means

x =/t

For x = e!/!=") the function f (x) attains its maximal value.
Thus

fx) < =f(n) <

e(l1—r) e(l1—r)"’

and therefore 1

e(l1—r)"

n"logn <

12)

From (11) and (12), it follows

n (4log2 1
w(n) < + .
logn r e(l —r)

Set r = % Then

3
w(n) < L(610g2—|— —) .
logn e
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However, it holds

n

3
6log2 + — < 6 and thus 7(n) < 6 -
e logn

Hence for every positive integer n, where n > 2, the following inequality

holds
1

. 6 -
6 logn <7 < logn o

Theorem 1.22 (DIRICHLET’S APPROXIMATION THEOREM) Let A be a real
number and n a natural number. Then, there exists an integer b, such that
0 < b < n, and an integer c, for which the following holds

1
IAb —c| < — .
n

Proof Let{Ai} = Ai—|Ai],fori =0,1,2,...,n.Itisclearthat0 < {Ai} < 1.
We now construct the intervals

x x+1
nn ’
where 0 < x < n.

Since there are n + 1 real numbers {Ai}, such that 0 < {Ai} < 1, by the Pi-
geonhole Principle it follows that at least one of the intervals [x/n, (x + 1)/n)
will contain two of these numbers.

Let us suppose that
1
Ak, (A1) € [f, i ) ,
noon

forsome 0 < x < n.

Therefore !
Ak} —{Al}] < -
or
|Ak — [Ak] — (Al — |AL])| < %
or

1
Atk = 1) = ([Ak] — LALD] < -
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Thus, we distinguish the following cases:

oelfk—1[1>0,thenwesetb=k —1landc = |Ak] — |Al] .
elfk—[<0,thenwesetb=1[—kandc = |Al] — |Ak] .

Hence, we obtain
1
|Ab —¢c| < —. O
n

Corollary 1.23 Let A be a real number and n a natural number. Then, there
exists an integer b, such that 0 < b < n, and an integer c relatively prime to
b, for which it holds

c 1
A— —‘ < —.
b b?
Proof By Dirichlet’s Approximation Theorem, we have
1
|Ab —c| < —.
n

Thus, since b is a positive integer, we can write

or

O

The following theorem as well as other related theorems can be found in [9,
23].

Theorem 1.24 (SIEGEL- WALFISZ THEOREM)

Let D be a positive constant. Then there exists a positive constant C (D) such
that the following holds: Assume that r is a real number and a, q are integers
such that (a, q) = 1 with g < log” r. Then

; An) = % +0 (r exp (—C(D)J@)) :

n=a( mod q)

where A(n) denotes the Von Mangoldt function and ¢(n) the Euler totient
Sfunction.
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2 The Circle Method

The Circle Method was introduced for the first time in a paper by Hardy and
Ramanujan [21] concerning partitions. Moreover, Hardy and Littlewood de-
veloped that method so that it could be used to connect exponential sums with
general problems of additive number theory.? For recent developments and
generalizations of the Hardy-Littlewood method to additive number theory,
the interested reader is referred to the paper of Green [17].

A characteristic problem to which the Circle Method finds an application is
the following:

Problem 2.1 Let S be a subset of N and k € N. Determine
{si+s4+---+si|51,8,...,5.€SINN.

In other words, determine which natural numbers can be represented as the
sum of k elements of the set S and in how many ways.

Remark 2.2 1f we set S = P, where P denotes the set of all prime numbers,
then

1. For k = 2, the statement of Problem 2.1 becomes:
Determine the set

E={pi+p2lpi,pp € P}NN.

The Goldbach conjecture states that the set E is the set of all positive even
integers.

2. For k = 3, the statement of Problem 2.1 becomes:
Determine the set

O ={pi+p2+p3lpi,p2.p3 € P}NN.

In 1937,1. M. Vinogradov [66, 67] proved that every large enough odd positive
integer is included in the set O.
Generally, the starting point of the Circle Method is to consider a generating
function of the form:

Fe(x) = Z x5

seS

3Hardy and Littlewood in a paper published in 1923 have used the Circle Method to prove that on
assumption of a modified form of the Riemann Hypothesis there exists a natural number N, such
that every odd integer n > N can be expressed as the sum of three prime numbers.
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Questions of convergence may be avoided if S is a finite set, which we shall
assume in the following. We write

+00
Fs()* =D R(n. k. $)x".

n=1

It can be proved that the coefficient R(n, k, S) is equal to the number of ways
that n can be represented as the sum of k elements of the set S.
Moreover, it follows from Cauchy’s formula that

k
MMJFHL/&@&, ()
C

27i Zn+1

where C is the unit circle oriented counterclockwise.
However, if we substitute x = ¢>™* and

fs(u) = Fs(x),

we obtain

1
R(n’ k, S) =/ fs(u)ke_zm’”‘du )
0

In addition, for every natural number n < N, it holds

1
R(I’l, ka S) = RN(n, k, S) = / fN(x)ke—Zﬂ'inxdx ’
0

where Ry (n, k, S) is equal to the number of ways that n can be represented
as the sum of k elements of the set S, where each element is at most V.

The key feature of the Circle Method is to split C into two disjoint pieces,
generally referred to as the Major and Minor arcs A and m, respectively.
Therefore, we obtain

R@h&z&@h&z/ﬁmwﬁmw+/mm%%%u
M m
or equivalently

R(n, k,S) = Ry(n, k, S) = /m fv0)ke(—nx)dx + / fv () e(—nx)dx .
m
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The basic idea behind the choice of the Major and Minor arcs is the following:
The Major arcs are constructed in such a way, so that the function in the

integral
J

can be evaluated asymptotically and that the contribution of the Minor arcs
is of lower order.

3 Proof of Vinogradov’s Theorem

The purpose of this section is to present R. C. Vaughan’s proof of Vinogradov’s
theorem.

Theorem 3.1 (VINOGRADOV’S THEOREM)
There exists a natural number N, such that every odd positive integer n, with
n > N, can be represented as the sum of three prime numbers.

Before we define the appropriate function f and construct the relevant Major
and Minor arcs, in order to apply the Circle Method, we observe that

R(n,3,P) = Z 1

n=p1+p2+p3
> logp - logp, - log ps

>
3

n=p14+p2+p3 IOg (pl +P2 +P%)

B Z logp; - logp> - log p3

- 3
n=p1+p2+p3 log n

or equivalently
1
R, 3,P) > — > logp; -logps - logps . (a)

ogn
g n=p1+p2+p3

where P denotes the set of all prime numbers and consequently py, p,, p3 are
prime numbers.
Therefore, instead of working with the sum

> 1

n=p1+p2+p3
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we shall work with the sum

> logp -logp; - logps
n=pi1+p2+p3

More specifically, Vinogradov succeeded in proving that

Z logp - logp - logps > n*.
n=p1+p2+p3

Thus, by (a), we obtain
2
n

log*n’

R(n,3,P) >

from which it is obvious that there exists a natural number N, such that every
n > N, can be represented as the sum of three prime numbers.
Let us now proceed to the details of the proof of Vinogradov’s Theorem by
the use of the Circle Method.
Let

f@) = logp- e(ap)

P=N

and

S0y = logp - e(xp) ,

p=r

where p is a prime number and x, r are real numbers.
In addition, let

Rvimky= D" logpi-logps---logps,
m=p|+p2+--+pk
Pi<N
where py, p2, . . ., px are prime numbers.

Then, it follows that

1
Ry(m, k) = / fk(x)e(—mx)dx
0
and in our case, for k = 3, one has

Ry(m,3)= > logpi-logp, - logps.

m=p1+p2+p3
Pi<N
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We shall now construct the Major and Minor arcs. As we briefly mentioned
in the section concerning the Circle Method, we have to split the unit circle
C into two disjoint pieces (equivalently we can split the interval [0, 1] into
two disjoint pieces).

Since in this problem we are going to make use of the Siegel-Walfisz
Theorem 1.24, it is evident that we must first consider a positive constant
D and set

L=1og"N.

More specifically, we consider D, such that D > 10.
We define the Major arcs as follows:

m == U m(a,q) s
I1=<g=<L
(a,9)=1
where
M . L - L a - L
a =X ) _— X ===
@a) NN g| =N

anda € {1, 2, ..., q}.
At this point, we shall prove a useful lemma.

Lemma 3.2 Let a, q be positive integers such that 1 <a <gq, 1 <qg <L
and (a, q) = 1. Then, for all sufficiently large N, the Major arcs M can be
expressed as a disjoint union of M, 4.

Proof Let us suppose that there exists x € M, 4,) N M, 4,), With

a a

qi q2

>0.

Then, it is evident that
laiqz — axq1| > 0

or
lairgy — axq1| = 1.

However,
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Caaee Y B T N B
N 75 q1 9 ¢
_ @ —aqr) ]
q192 Qi
1
> — .
Z 12
Therefore, we have
2L > N.
But, by the definition of L we obtain
210g3DN >N,

which is not true for large values of N. Hence, we have arrived to a contra-
diction. This completes the proof of the lemma. |

We define now the Minor arcs m as follows:

L L

3.1 The Contribution of the Major Arcs

In this section, we shall investigate the contribution of the Major arcs by
proving two basic theorems. The first one provides an approximation of f (x)
for x € M 4,4 and the second one provides an approximation of the integral

/ f3 (x)e(—xN)dx .
Mm

Theorem 3.3 Let x € M, ). Then there exists a positive constant C, such
that

wq) < a
fx) — @ ;e (( — 5) n) < Nexp (—C\/logN) .

Proof Let r be a real number, such that r € [1, N]. Then, it holds

o0)-grr2r)

p=r
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But, it is clear that
p=t(modq),

for some integer r with 1 <t < g.
Therefore, we can write

Q)55 e

t=1 p= t(modq)

DIl

t=1 p=t(mod q)
p=r

£[6)

=1
p=r

ie( ) Z logp+z

t:l p=t(mod q) =
)=1 p=r

()
)

> logp

p=t(mod q)

QIQ

(, q)>1

()56 2 ()

(@, q) 1

q
at r
=13 (Y = roer—
p (q) = P(q)
t.q)=1 p=t( mod q)

Z lgp—%

p<r
1 p=t( mod q)

t,q)>1

t,q)>1

> [+()

37

Z logp .

p=t(mod q)
p=r

()

+lzq:e() > logp

P=r
p=t(mod q)

> logp

p=r
p=t( mod q)
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Therefore, we get

a r i at
(5) T 6@ Zl ‘ (?)

(t.g)=1

q q
<> > logp—@ + > > dogp|.
=1

t=1 =r = p=r
(t.9)=1 |p=t(mod q) (t.9)>1 \ p=t(mod q)

By Theorem 1.24, we have

; logp — ¢(rq) =0 (r exp (—CD\/@)) .

p=t(mod q)

Thus,

Z logp — (ﬁ(Lq) L rexp (—CD,/log r) . 2)
p<r

p=t(mod q)
Since, 1 <r < N, we get
rexp (—CD\/@> — yoCoVIogT _ ogr—Cpy/logr
= VIoer(Viogr—Cp) - ,VIogN(VlogN—Cp)
= (loeN—CoVloeN N exp (—CD\/loﬁ) .

Therefore, by (2), we obtain
Z logp — - < Nexp (—CD\/logN) . 3)
= ?(q)

p=t( mod q)
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However, by the definition of the Euler ¢ function, we know that

q
= > 1.

=1
t,q)=1

and thus, by (3), it is clear that

q

q
Z Z lgp—ﬁ < Z N exp (—CD\/logN)

=1 <r =1
(, q) 1 |p=t( mod ¢) t,q)=1

q
=Nexp( Cp logN) Z 1,

t:l

or

q
> | X roer— | < New(-CovioeN) o @
p=r

(t, q) 1 [p=t( mod q)
We also have

q

ST DD logp| < Dlogp. )

=1 p=r plg
t.q)>1 \p= l( mod g)

Hence, by (1), (4) and (5), it follows that

q

i (g) — ¢(rq) Z e (%t) <L ¢(q)N exp (—CD,/logN) + Zlogp.
=1 plg

(r,9)=1

Sinceg < L = logD N, it is evident that

$(q) = Z 1<L.

(fq) 1
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Therefore,

()=

Zq: e (—) <« LN exp (—CD\/@) + Zlogp

t=1_ rlg

< LNexp (—CDw/logN) +logN .

(@)

By the above relation, it is clear that

a r il at
()5 2 (7)< fovien). o

(=1

for any positive constant C < Cp.
However, by the definition of the Ramanujan sum, we have

q
at
cqla) = Z e(—)
=1 q
(t,q)=1

and thus (6) takes the form

L/ (a) req(a)
"\a) @
But, by the hypothesis of the theorem and Lemma 1.16, it follows that in this
case

< Nexp ( C\/@) , %

cq(@) = p(q) -

Therefore, (7) is equivalent to

a 1(q)
- (5) - | <vom (-evimem). v

Now, let
u(q)

=((d) —7(d—1))e (ﬂ) logd — =2,
q »(q)

where 7(x) denotes the prime counting function®.

4t is evident that if d is a prime number, then 7(d) — w(d — 1) = 1, and thus,
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‘We have
N

> Ege(wd)

d=1

’

_ k(g)
d
o )Z etwd)

where w = x — a/q.
But, it is clear that

N g
e(wd) = e(wN) —/ - e(wy)dy .
d ay

Hence, we obtain

w(q)
- E d
P( ) @) 2 e(wd)

N

N Ny
= |e(wN) ZEd — Z (Ed/d d_y e(wy)dy)

d=1 d=1

N

N d
+ Z(Ed /d Ee(wy)dy)

d=1
N d y

— E; )\d
/0 (dye(wy); d) y

y
d=1

A

N
e(wN) Z E,
d=1

N

= ZEd

d=1

N
>
d=1

_l’_

A

Ed dy.

N
+ / 2riwe(wy)|
0

However,
(q)
ZEd fr ( ) - Iu 1
a) o
Thus, by (8), we get that each one of
N y

2 s (2 E

d=1 d=1

and therefore, since

’

<K Nexp (—C,/logN)

Z|

(Footnote 4 continued)

Eq = e(ad/q)logd — 11(q)/d(q) -
On the other hand, if d is a composite number 7(d) = w(d — 1), which yields E; = —u(q)/$(q).
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we obtain

}/( ) — % Z e(wd)| < N exp (—Cw/logN) + 27 |w| N) N exp (—C\/logN)

SNexp( C\/loﬁ) ( )Nexp( C\/@)
— (1 +27L) N exp (—c logN)

< Nexp (—C’\/loﬁ) ,

for any constant C’' < C.
This completes the proof of Theorem 3.3.

Theorem 3.4 Let

= 1(q)eg(N)
o0 = 31

where c,(N) stands for the Ramanujan sum.

Then,
2

N
F(x)e(—xN)dx — 7G(N) < N2log 12N .
m

Proof Let w = x — a/q. Then,

3
() - ;zq; (Z (w d))

_ lpoy — M@
=) ¢()Ze(wd>

2
u(q) 1(q)
. [ d d
}/ f(x)d>() Ele(w)+¢( )2<§ e(w ))

) |

fx )f% Ze(wd)

IA

()
o(q) 2 Z ew

(Lf%x)\ + 1)l

2
u(q) al d
o2 ze(w :
However, it is evident that

[f ()] < 7(N)logN
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and by Chebyshev’s inequality (Theorem 1.21), it follows that
[f ()] <N

In addition, it is clear that

N
% Ze(wd) &N.

d=1

Moreover, since all the possible values of 11(g) are —1, 0 and 1, it is obvious
that 11(g)® = ju(g). Therefore, by all the above, we obtain

3
3 19 (< 2 _ 1(q)
— d 3N d
W) = 23 (;e(w >) < P o )Z e(wd)

But, by the previous theorem, we know that for x € M, ), it holds

€]

Jx) — % Z (wd) < N exp (—C\/logN) .
d=1

Thus, by (1) we get

) — g((q)l (Z (wd)) < Nexp (—C\/loﬁ) .

Since,

m: U M(a,q) s

l=g=L
(a,9)=1

in order to obtain the integral over the Major arcs 1, we must integrate over
My andsumoverallg, ] <g <Landalla,1 <a < g with (a,q) = 1.
However,

-~ 1) < ’
Z Z / - 5@ (Z e(wd)) e(—xN) dx
q=1 (afl=)1=1 (a,q) d=1
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55, o (L) o

<<i i /m N%xp(—C@)dx

L L
§L2-2N exp( C‘/logN), since [M, )| =2ﬁ
L3+1/2
=2 —-: exp( C\/logN)

L2

But, by the definition of L, we have
LY = 1og N = exp (log (4D log N)) < exp (cu/log N) ,

for any positive constant C" and g > 1.
Thus, for g = 3+ 1/2 and C’ = C, we obtain

3 Zq 1@ (< :
— 3(x) — d —xN)d.
/ () 50 (d; e(w )) e(—xN)dx

g=1 a=l m(a.q)
(a.q)=1

N2 exp (C«/logN) exp (—C\/@)

112

N2

Moreover, we have

3
3 w(q)
/mf ()e(— xN)dxfz Z /ﬂ%q) e <z (wd)) e(—xN)dx

g=1 a=1
(a,q)=1

= /i.fme(x)e(—xN)dx
L N 3
o (-(=5))<(5)
- d —(x==)N)-e(-=N)dx
2 2 /:m(a » 0@3 (E e )> ‘ q ‘g

g=1 a=1
(a,q)=1

3
L
:/mﬁ(x)e(—xN)dx >3 e( )/ﬁl :((;)3 (Z (wd)) e(—wN)dw
(a.q)

g=1 a=1
(a,q)=1
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45
(note that w = x — a/q) and since we proved that

N2
S<<m,

it is evident that

d=1

L q L N
/mj'3(x)e(—xN)dx—z > e( ”N) wa) v (

3
=) oer i Ze(wd)) e(—wN)dw

N2
<7
(2)

Therefore, by (2) we see that we must also determine a bound for the integral

L N 3
[= / " (Z e(wd)) e(—wN)dw .

L
N d=1

However, we observe that

1 /N 3
I ;=/] (Ze(wd)) e(—wN)dw
—2 \d=1

= Z 1
di+dy+d3=N
di>1
_(N-DWN -2

3

N
I'——| <2N.
2| =

Since we know the exact value of I, we shall try to correlate the integral /
with the integral I’. Let

N 3
h(w) = (Z e(wd)) e(—wN) .
d=1
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Therefore, we have

1 1 L
\'—1|= '/ h(w)dw — (/L h(w)dw+/ h(w)dw+/ h(w)dw)

2 2

'/L h(w)dw+ 1 h(w)dw .
L 1

If we substitute w with —w, we get

1 L

I —1] = ‘—/2 h(—w)dw + /N h(w)dw

L 1
Nl 2l

= ‘—/Lz h(—w)dw —/Lz h(w)dw
1IN 3 LN
< / Ze(—wd) dw + / Ze(wd)
% d=1 % d=1
1| N 3
< 2/L Ze(—wd)
N |d=l1

But, by Lemma 1.17, it follows that

N
Z e(—wd)

d=1

3
dw

dw .

gmin{

1 } 1
Nt = — .
[—w] [w]

Thus,

| o N2 N\’
r'—1/<2 —3dw—2 —dw=— —4< .
L [w] Lowl L? L

It follows that

q
1(q) (_ﬂ) _ | 1@ ( )
; o@’ \ g 6(q)’ Zl
(a,q)=1 (a,q)=1
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T 67

But, it can be shown that if 3 is a positive real number, then
fim "

im
n—00 ¢(n)

Thus, it is evident that for 3 = 1/4 there exists sufficiently large N, such that

=0.

NI-1/4
(N)
or
N < G(N)
Therefore, it is clear that
1 1

<
o g2
Hence, we have with

p(q)cq(N)
o= S

that

% E () S
(q)} il e
+00 1
<[
2
L+ D72
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Thus,

p(q) aN 1
GV) — z z D (—7) <ihs @
(aq) 1

By (2) and (3) we obtain

L g 2 2 2
3 _ B z z _aN\ e | N N N
./mf (e o o e( q ) o3| 2 <oty

(a,q9)=1

By the above relation and (3), we get

N>  N?
F2(x)e(—xN)dx — G(N)— & —— =N?log PN
o L1

This completes the proof of Theorem 3.4. |

3.2 The Contribution of the Minor Arcs

In this section, we shall investigate the contribution of the Minor arcs m. Our
ultimate goal is to prove that

2

/f (x)e(—xN)dx << oz N °

for any positive constant ¢ with ¢ < D/2 —5 and D as in Theorem 1.24 where

fx) =" logp-e(xp)

P=N

We need to prove some more theorems and lemmas.
The following lemma is presented without a proof, since it is a classical result
in approximation theory and analytic number theory.
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Lemma 3.5 For any real numbers x, ry, ry, with r, r, > 1, and integers q,
a, such that

a 1
X — — S _27 (a’Q):l
q
and g > 1, it holds
. I rn rir
me —, — K| —+r+qg)logryq) . (D
[xn]” n | q

The following result is a special case of an identity due to R. C. Vaughan [64].

Lemma 3.6 Let r be a real number, such that 1 <r < JN.?
Then,
> Akyexk) =D~ D" logm - pu(d)e(xdm)

r<k<N d<r m<%

- D D D @ Almexdm)

r<d<N <N qld
—d gsr

S IDIP WO (g) e(xdm) | (LD)

d=r? m< qld
q=r
d<rq

where p(n) and A(n) denote the Mobius and the von Mangoldt function,
respectively.

Proof Throughout the proof, we assume that Re{s} > 1. All the Dirichlet
series considered in the proof will be absolutely convergent, and their terms
can be rearranged arbitrarily. By the definition of the Riemann zeta function
((s), it follows that

C'(s) = — z 1(;# (C/ denoting %) i

n>1

We have

¢ A
_Z(s)_z ms

m>1

5Throughout this subsection, r will always stand for a real number, such that 1 < r < +/N, unless
otherwise stated.
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We define

n

A
Di(s) := % , Dy(s) = Z ,u(zz) .

n=<r n=<r

It follows that

0= —('(9)D2(s) — C()D1()D2(5) — C()D2(s) (—%(S) - Dl(s)) :

- Z% > (ogd) p(m) —Z% D 2 @A)

n>1 m=<r n>1 d-m=n q|d
d-m=n m<r q=<r
1
=2 2 | 2ono | A
n>1 m-d=n t|d
r<m t<r

Therefore, equating the coefficients of the Dirichlet series above we obtain:

> umylogd — > | D p@Am) | =D D @ | Amy=0 (%)

d-m=n d-m=n \ qld r<m\ d|m
m=r m<r q=r d<r

From (*) by multiplying by e(xn) and adding

Z A(n)e(xn)

r<n<N
we obtain
> Amem) = > e(m) > (logd)u(m)
r<n<N 1<n<N m=<r
d-m=n

= D etm) 30| D ule) [ A

1<n<N m<r? \ qld
d-m=n \4=I

- Z e(xn) Z Zu(q) A(m) — Z A(n)e(xn)

1<n<N d-m=n \ g|lm r<n<N
r<m \g<r
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For d < r, we have

1, ifd=1
E p(q) = .
> 0, otherwise
q=r

and therefore the proof of Lemma 3.6 is finished. m|

Lemma 3.7 Let

A:=>">"logm- u(d) - e(xdm)

d<r N
= m<7g

Then LN
A log N
A < log ;mln{[xd] }

where [y] = mingez |y — k|.

Proof We have

m N/d
Z (logm)e(xdm) = e(xdm)/ du —/ ( Z e(xdm)) @
u

1<m<N/d 1<m<N/d u<m=<N/d

Therefore,

Al <> | D (ogme(xdm)

d<r |m<N/d
<Zm1n Z logm, / Z e(xdm)—
d<r m<N/d u<m<N/d
N log N
in{—logN ,
<K dqurnm [ 7 og ™ }

Thus the proof of the lemma now follows. m|
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Lemma 3.8 Let

=> > D @A ( )e(xdm)

d<r? m<1;’ qld
q<r
d<rq

Then

1 N
|B| <<logNd<me{m E} .

Proof We have

d<r? | qld m<%
q=
d<rq
=33 A3 et
d<r? qld m<%

By Theorem 1.13, we know that

ZA(q) =logd .

qld

In addition, by Lemma 1.17 it follows that

Ze(xdm) <min[L E}
< - xd]  d |~

Hence, we obtain
. 1 N

and therefore
|B| <<1()gN E min ! N
[xd “d |’

X
d<r?

which proves the lemma. m|
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Lemma 3.9 Let

- Z Z ZM(C])A(m)e(xdm).

r<d=<N y<m<N qld
d g<r

Then
1/2

|C| <<Z 2’rlogN Z 2ir + Z min|$,%v] ,

red<i- l<s<2
2tr 2tr

where
B log(N/r?)
N log 2 ’

Proof If we observe the indices under the first two sums of the definition of
C, we see that
r<d<N

< —. 1
r<<m 7 ( )

But, for N/r < d < N itholds N/d < r and thus (1) does not hold true. In
that case, the second sum of C does not contain any terms. Therefore, it is

evident that
= > > > @ Ametxdm) .

r<d<f r<m<]\1’ qld
q=r

Let
D)= D D u@)Amelxdm).

r<m§% qld
q=r

Then, we can write

> D+ > DO +-+ > DI, (@

r<d<2r 2r<d<4r 2y <d<2itly

where ¢ is an integer, such that
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2'r < N < 2ty

P
From,
N
2 < — <2y,
r
we have
21 < ﬁ < 21+1
rr —
Thus,

log (N/rz)
< —F.
log2

However, for 0 < i < t, we have by the definition of D(r) that

2

2
>, bl = > | 22 | 2on@ [ Awmetdm)

2ip<d<2i+ly ip<d<2itly \ pom<i qld
—d \g=r

and by the Cauchy-Schwarz-Buniakowsky inequality we obtain

2
2. b
2ip<d<2itly
2
2
< > Dluw@| |- D | D Atmedm) 3)

2ir<d<2i+lr | qld 2ir<d<2itly r<m§%

q=r

Because of the fact that |u(g)| < 1, we have

2 2

2. (2m@) = 2 2!
2ir<d<2i+lr | qld 2ir<d<2itly | qld
q=r q=r

- Z 2(d) .

2ip<d<2itly
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By Theorem 1.18 and due to the fact that 27 < N, we obtain
2

> Doulg)| < @rlog'@r)

2ir<d<2i+ly | qld
q=r

< 2'r)1og’ N .
Hence, by the above relation and (3), we get

2 2

> D) <@nlogN D | D Ame(xdm)| (4

2ir<d<2itly 2ir<d<2itly r<m§%

In addition, for the remaining sums in (4), we can write

2

Z Z A (m)e(xdm)

2ir<d<2itly r<m§%

= Z Z A(m)e(xdm) - Z A(s)e(—xds)

2ir<d<2itly r<m§% r<s§%
= > | D AmAw > e(xd(m — s))
r<m§% r<s§% 2"r<d§min{2i+1r,%,¥}

However, A(m), A(s) < logN, forevery x < n,s < N/2ir. Thus,
A(m)A(s) <log’N .
In addition, by Lemma 1.17, we have

Z e(x(m — s)d) Smin‘[x(m]—_s)],Zir] )

2ip<d<2itly
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Therefore, we obtain

2

D > Amye(xdm)| < log?N > Z mml[x(m—s)] vr]

2ir<d<2i+ly r<m§% r<m<—)<.& 2

< log? N Z ZN mml ]

N
<N s
r<m= =5 0<¥ =50
1 .
72lr
XS

I
2,
=
M
/\
N
~
+
N
]
=1

Hence,

Z z A(m)e(xdm)| < 10g2N Z 2'r + z mm{[x.s] N}

ir<d<2i+ly r<m§% rem<¥ l<s<
iy iy

By the above relation and (4), we obtain

1/2
> b« |@n log’> N > |27+ D min {i ﬁ]
. . [xs]” s
2’r<d§2’+1r r<m<-— N l<s<N—.
=iy —2r
By the above relation and (2), it is evident that
1/2
|C] <<Z 2’r10g N Z 2ir + Z min ! N
N [xs] K
r<d<2L I<s<
21 21
This completes the proof of Lemma3.9. O

Corollary 3.10 We have the following estimate

+—+f)

|C] <« log* N - (
7

Proof By the previous lemma and Lemma 3.5, it follows that
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172

N
|C|<<Z Nlog’ N Z (zlr—l-( +2—+q)10gN)

I<i<t r<d<Ai-
=5

N N 172
E (Nlog N(2’r+ +—+q))
q iy

1<i<t

I og? N N 1/2
Nlog’ N | 2 —
<<Z og ( r+q+21r+q)

1<i<t

< > VNlog'N (JE +JNJq+/Nj2ir + ﬁ;) .

I<i<t

However, we have shown that
log (N / r2)
N log?2 ’

t L logh ,

Thus,

which implies that

IC| < V/Nlog* N (@Jr INJq+NJ2ir + ﬁ)
= log N(~/21_+7+ +f)

But, since r < 2/r < N/r, we obtain

|IC] « 10g4N- (

f+_+f)

which proves the corollary. O

Lemma 3.11 Let r be a real number, such that

then

> Ak)e(xk) < log* N (N4/5 + Ny \/NTI) .
NG

r<k<N
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Proof For N/\/r = r?, by the previous corollary, we get
4 », N
ICl < log" N {r*+—+/Nq]) .
JVa
From Lemmas 3.5, 3.7 and 3.8, we also get:

N
|A|, |B] < log* N (;»2 +—+ w/Nq) :
NI

Therefore, we have

N
lAl, IB], IC] K log4N(r2+_+\/]\Tq)
Va

or
N
Al Bl IC| < log*N (N4/5 + Ja +\/Nq) : €]

But, by Lemma3.6, we know that
> A(ke(xk) =A—C—B. )
r<k<N
Thus, by (1) and (2) we obtain that
4 ys , N
> A(ke(xk) < log* N (N*° + — + /Nq | .
r<k<N \/q

This completes the proof of the lemma. O

Theorem 3.12 (a) If x € m, then
f(x) < Nlog> 2N |

where D is a positive constant, such that D > 10.°
(b) If ¢ is a positive constant, such that c < D/2 — 5, then

2

/%)(—N)d N
mf x)e(—x x<<loch'

5We mentioned the constant D in Theorem 1.24 (Siegel-Walfisz Theorem).
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Proof (a) We have

[ — > Akek)

r<k<N

p<r r<p<N r<k<N

=

> logp - e(p)

p<r

+

r<p<N r<k<N

=210gp+ Z logp - e(xp)| .

p=r r<k<N
k — 1
m>2

Thus,

=< Zlogp—l— Z logp .

p=r r<k<N
k =p™
m>2

l/(x) — Z A (k)e(xk)

r<k<N

But, as far as the second summand is concerned, we observe that

r<p"<N, orp<~ /N, m=>2.

For
log N
m —=
log?2
we get
pm > m 2logN/log2 — eIOgZIﬁ’ég] — elogN =N
or

p">N.

Therefore, from (1) and the above observation, it follows that

P(x)— > Aek)| <D logp+ D > logp.

r<k<N p=<r ZSmS“zig/J pr<N

Zlogp~e(xp)+ Z logp - e(xp) — Z A (k)e(xk)

> dogp-etp) — Y. Alke(k)

59

ey

2)



60 Step-by-Step Proof of Vinogradov’s Theorem

However,
Z Z]ng< Zlogp—i—logN Z Z 1
2§mgtlﬁ)§ggJ p"=N p><N 3< m<L11%i1;/J pr<N
< Zlogp+logN z Zl
p2<N < logN PI<N

- 10;, 2

=Zlogp+logN( . Zl

p2<N P3N

But, since log2 > 1/2, we obtain

Z Zlogp< ZIng—i-logN Z 1] ZI

2<m<| 2y | 7"V PN 3<m| 12 | PN
<logN Zl+210gNZl
p*<N p3<N

By the above relation and (2), we obtain

L/(x)— > Ae(k)| <logN [ D 1+ D 1+2logN > 1

r<k=N p=r p<v/N p<IN
3)

However, by Chebyshev’s inequality, we know that for every positive integer
n, where n > 2, it holds

1
- <7m(n) <6- .
6 logn logn
Therefore, it is evident that
IN
1 < 1 «
Sl T V2
g p=<VN <N

In addition, we have
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1
logN =2 ElogN = 210g«/ﬁ < log\/ﬁ

and similarly
logN < log /N .

Hence, by the above arguments and (3), we get

}j(x) — Z A(k)e(xk)

r<k<N

& r—+~/NlogN +2vNlogN

&« V/NlogN . (4)

But, by Lemma3.11, we know that

> Ake(rk) < log* N (N4/5 + N \/I\Tq) .
Va

r<k<N

Thus, by (4), it follows that

fx) < log® N (N4/5 LN \/I\Tq)
N

or
fx) < NlogSN(N—1/5+%+\/%) . s

By Dirichlet’s Approximation Theorem (see Theorem 1.22 for a proof), we
know that for any real number x and natural number 7, there exists an integer
g, such that 0 < ¢ < n, and an integer a relatively prime to b, for which it

holds
1
< —.
nq

a
X — —

q

Since Dirichlet’s Approximation Theorem holds for every x € R and n € N,
let us assume that x € m and »n is a natural number, such that n > N/L and
n—1 < N/L, where L = log” N. Then, we have

L L

< — < —.
~“ Ng — N

a
x__
q

Therefore, by the definition of the Major arcs, it follows that x € . But, it
is impossible for x to belong in both the Major and the Minor arcs.



62 Step-by-Step Proof of Vinogradov’s Theorem

Thus, since

m= U M(a,q) s

I=g=<L
(a,q)=1

it is evident that it must hold ¢ > L. Hence, it is clear that
L N
<qg<—,
=1

for x e m.
Consequently, by (5), we obtain

f(x) < Nlog® N (N—l/5 + =

7)

= Nlog’N (N~ +21log "> N)
& Nlog>P2N .

(b) We proved above that
f(x) « Nlog>™P2N .

Therefore, we have

1 1
/ FP(e(—xN)dx < / 20| [f ()| dx < Nlog* P> N / [F2(x)| dx
m 0 0
(D

However,

1 1
/O 2 (x0)| dx = /0 FOf (—x)dx

1
:/ Z logp; - e(xp;) Z log p; - e(—xp2)dx

p1=N pr<N
I

= > logp1 ) logpz/ e((p1 — p2)x)dx .
p1=N p2=N 0

But, by Lemma 1.2, we know that

: 1, if py=ps
e —p)x)dx =14’
/0 ((p1 — p2)x) [0’ if py £ .
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Thus, it is evident that

1
/ Vz(x)| dx < Zlogzp < ZlogzN
0

P=N p<N
= 1(N)log’ N .

Hence, by (1) and Chebyshev’s inequality, we obtain

/ F(x)e(—xN)dx < Nlog”P/>N -log’ N -
m logN

= N? log6_D/2 N
N2
log° N

This proves Theorem 3.12. O

3.3 Putting It All Together

In this section we use the results obtained in the previous sections in order to
prove Vinogradov’s theorem.

Theorem 3.13 (VINOGRADOV’S THEOREM) There exists a natural number
Ny, such that every odd positive integer N with N > Ny, can be represented
as the sum of three prime numbers.

Proof Recall that by the arguments presented in the section related to the
Circle Method, in order to prove Vinogradov’s theorem it suffices to prove
that

Ry(m,3) = Z logp; - logp, - logps > N2.

m=p1+p2+p3
Pi<N

However, we have
Ry(m, 3) :/ f3(x)e(—mx)dx+/f3(x)e(—mx)dx.
Mm m

In addition, by Theorems 3.4 and 3.12, we know that

N2
/ f3(x)€(—xN)dx 5 G(N) <« N2 log_D/zN
Mm
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and
/ FA(x)e(—xN)dx < N*log™*N ,
m

where c is a positive constant, such that c < D/2 — 5 and

+00
Gy = 3 @)

3
= @
Therefore,
_ NZ 2
R ,3) —— GWIN _ 1
n(m, 3) 5 ()<<10ng (D

where w is a positive constant, such that w < D/2 — 5.
Generally, for any Dirichlet series with coefficients f(n), where f(n) is a
multiplicative arithmetic function, by Theorem 1.5, it holds

Zf(n) _ H(Zﬂpﬂ )

P nOp

where the product extends over all prime numbers p.
Therefore, for s = 0, we get

+00 +o0
> ) = H(Zf(p”)) .
n=1 P n=0

In our case, since the arithmetic function

p(g)cy(n)
o(q)?

is multiplicative, we can write
H(g)cq () pp")cpn (N)
G(N = .
0= (S 1)

However, for n > 1 we have u(p”") = 0. Thus,

(e | pp)e™) (~De®)
G(N)_E[( oy oy )_1:[(1+ o) @
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But, by Lemma 1.16, we know that

o= 3 1(2)s

d|(p.N)

Hence, if p | N, then the only possible values of d are 1 and p. Thus,
¢,(N)=p—1.

Similarly, if p { N, we get
Cp (N ) = -

Therefore, by (2), it follows that

G(N):H( —1)3)H( —D*)
pIN
_H( —1)2)H( —1)3)'
pIN PN
For odd integer N, we have
1 ! 0
-0

forallp | N.
Furthermore, the infinite series

1 1
251y ™ 2

are absolutely convergent, and thus, the infinite products

(- i) o= H(H =

PIN

are bounded from below and from above by bounds that are independent from
N. Hence, Vinogradov’s theorem is now proved. m|
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