Chapter 2
Mathematical Preliminaries

2.1 Biomechanical Action Principle
and Variational Methods

There is a single mathematical, physical and biomechanical concept that underpins
most of the formal derivations presented in this book. We call it biomechanical
action principle. It is rooted in variational calculus and closely related to optimal
control. It appears, in different ‘flavors’, in several chapters of this book, as: (i)
myofascioskeletal action principle, (ii) microstretch action principle, and (iii) lym-
phodynamics action principle. In this section, we will try to give a ‘soft’, semiformal,
biomechanical introduction to this important concept of modern science.

Any kind of human movement, considered either at the level of the whole myofas-
cioskeletal system (or one of its parts, called the ‘kinetic chain’), or at the level of
a single muscle, or at the level of a certain part of human fascia (e.g., lumbosacral
fascia), or at the level of lymph movement/flow within a certain part of the body —
can be represented by a set of n local degrees-of-freedom (DOF) with the associated
set of n local trajectories ¢’ (¢), including local translations and rotations given as
functions of time, fori =1, ..., n.

More specifically, any one of these local ¢’ (¢)-movements can be defined as
a transition T from some initial configuration X, [with initial coordinates
g = q'(tp)] — to the corresponding final configuration X, [with final coordinates
q{ = ¢'(#)]. So, each local movement, occurring at the level of the body, muscle,
fascia or lymph, represents a transition 7 : ¥y — X, from the initial configuration
¥ (coordinated by gp)), to the final configuration X; (coordinated by ¢1).

This transition 7' : ¥y — X naturally occurs along a certain path (that is, a set of
local trajectories), which can be either a direct path g = ¢'(¢), or slightly deformed,
indirect path g = g’ (¢). The difference between the direct and indirect paths:

5q' (1) =q' () —q' (1)

© Springer International Publishing AG 2017 11
T. Ivancevic et al., The Evolved Athlete: A Guide for Elite Sport Enhancement,
Cognitive Systems Monographs 32, DOI 10.1007/978-3-319-57928-3_2

12 2 Mathematical Preliminaries

is called the variation of the path (that is, variation of all the DOF, both translational
and rotational), where the symbol 0 represents the small variation of the path (that is
a commutative linear infinitesimal operator that is interchangeable with both deriv-
atives and integrals; see, e.g. [5] and the references therein). The time derivative of

dq' (1)
54"0)— [6q 0] = [q) —q'(]

represents the small variation of the velocities, while the second time derivative:

i d . d’ i i
04" (1) = — [6¢')] = -7 [3' () —q' ()]

represents the small variation of the accelerations.
Now, any (autonomous) dynamical quantity F' = F [qi ONE (t)] defined on the
direct path has the corresponding deformation defined on any indirect path:

F=F[g'®n.4' 0] =Flq'®)+dq'(0). ') +64'(1)].
which allows the following Taylor expansion:

_ F F
F=F+ or — 5q" + 8_ 5q" + 3_ 8" + R, (R = remainder terms),
oq' g’ g’

from which the quantity 0 F given by:

is called the first variation of the dynamical quantity F, while the quantity §>F
given by:
oF ., OF _., OF

22F = 2 5q 4 O sgi 1 OF
ag 1 Tog %1 T g

i

0q

is called its second variation, etc.

For majority of biomechanical purposes, the dynamical quantity of interest
would be the (autonomous) Lagrangian energy function L = L [¢'(t), ¢’ (1)], usu-
ally defined as kinetic minus potential energy, and only its first variation J L is usually
used as':

I'The second variation of the Lagrangian:

JL JL JL
816 +816q+6"

)

8L = Y

is used only in more sophisticated optimal control algorithms.

2.1 Biomechanical Action Principle and Variational Methods 13

Given these basic ingredients of variational calculus, we can now formulate the
so-called Hamilton’s action functional as a temporal integral of the Lagrangian:

A(lq'] . 10.11) =/ L{q'(1).4'(1)] dr. (2.1)

)

and the governing action principle called Hamilton’s principle of the stationary action
(see, e.g. [6] and the references therein):

A— min or JA=0, 2.2)

which formally states that the transition 7' : ¥y — X, from the initial configuration
¥ to the final configuration ¥, always occurs with the minimum action, that is,
with the minimum energy expenditure. We can also interpret it as a general optimal
control problem: the movement transition 7 : ¥y — X effectively minimizes the
cost function A given by (2.1).

Provided 6’ # 0 are arbitrary small variations with fixed endpoints: §¢’ () =
5q'(t;) =0 and using standard techniques of the calculus of variations, from
Hamilton’s action principle (2.2) we have:

5A=5/ L(q‘,é]‘)dt:/ 5Lq q dt / —5q dt =0,
fo Iy fo

where 2 6—, is the functional derivative [6] defined as:

s _oL a0
8qi ~ dq' dt dgi’

In other words, the stationary action principle can be formulated as the vanishing
functional derivative,

dA
Sqi

In this way, we have:

14 2 Mathematical Preliminaries

from which standard Lagrangian equations of motion follow as:

d oL oL

—— =, fori=1,...,n).
dr g~ o (for i n)

The above variational action derivations will be much clearer with a simple exam-
ple. Consider a three-dimensional (3D) motion qi (t),i =1,2,3, of asingle New-
tonian particle with mass m within the potential field V (¢"). This could be, e.g., a bio-
mechanical example of motion of the human body center of mass (CoM). Particle’s

action: |
AlleYwn) = [

fo

1 ‘
|:§m (¢') - V(q’)] dt, 2.3)

is a function of the initial and final times, #, and #; (written as A (¢, t;)), and also
a functional of the path q'(t) (written as A[q']) from 1y to ;. Consider a small
variation of the path:

q'(t) — q'(t) + 6q' (1),

which is reflected in the action (2.3) as:

1 [dg +6¢D)7 : ,
(Em [%} —V(q’+5q’))dt Q.4)

151
Alq' +6q'] =/

I

i 8 i i i d i
:A[q’]+/ [—mq —3,~V(q)]5q dt+m/ —t(éqq)dt,
to 1o
where 0; = (’“)i and V(q' + 69" = V(¢ + 64'0;V(q").
ql

The integral m fz:)] £ (8q'") dt is the so-called ‘surface’ term, which vanishes if
the variations have fixed endpoints: 8¢’ (1) = dg'(#;) = 0.
Therefore the variation of the action (2.4) becomes:

Alq' +6q4'] = Alq'] +/ g—; 5q' dt, with:

n
1o
0A ; ;
7 = —(mq' +9;V(g")).
q
In this way, the minimization of the particle action (2.3) is equivalent to:

0A i i PO i
5_C]i = —[mq +0;V(g)] =0 = mg' =0;V(qg"),

which are Lagrangian equations of motion for the Newtonian particle.

2.2 Basic Elastic Continuum 15

2.2 Basic Elastic Continuum

In this section we will give a brief review of classical 3D Euclidean linear theory
of elastic soft bodies (soft tissues, or continua; see, e.g. [2]) — to be used exten-
sively in the subsequent chapters. We will adopt standard Euclidean (or, Carte-
sian) tensor notation with Cartesian coordinates x = x; = (x, y, z) and all indices
@, j, k,I,m=1,...,3)being subscripts. We will be using Einstein summation con-
vention of summing over repeated indices, coma denoting partial derivatives (e.g.,
u; j = Oju; = Ou,/Ox, etc.) and, as before, the overdot representing the time deriv-
ative (e.g., u; = du; /dt).
The main infinitesimal tensor fields of standard linear elasticity are:

fx
(i) body force vector f = f; = | fy |, representing a 3-axial Newtonian force?
I
per unit 3D-volume,
Ux
(ii) displacement vector u = u; = | u, J
uZ
Oxltx
with its gradient tensor Vu = u; j = | Oyu, |,
O,

€xx €xy €xz

(iii) strain tensor e = e;x = | eyx €y, ey, |,* derived from the displacement gra-
€xx €zy €

dient tensor Vu = u; ;, together with its associated deformation tensor:

Yrx VYxy Vaz
Y=Yk = | Yyx Vyy Vyz |»
VYex Vzy Yz

O-XX 0-)() O-XZ

(iv) Cauchy’s stress tensor o = ojx = | 0y Oy Oy , that has physical dimen-
Ozx Ozy Oz

sion of force/area,

2Recall that Newton’s fundamental equation of force: f = p = ma = mv = m¥, states that the
application of the force vector f to a particle e of mass m, causes e to move with the momentum
p = mv, acceleration a = ¥ and velocity v = x in the direction x.

3Note that in a more general, nonlinear Riemannian elasticity, the displacement vector is defined
as the deformation covector (i.e., one-form): u = widxt.

“In Riemannian elasticity, there are actually two strain tensors: the Cauchy-Green strain tensor,
an infinitesimal tensor field generated during deformation, given by: escG = gix dx'dx*, and the
relative, or Green-Lagrange strain tensor, measuring the metric-change between the undeformed
and deformed states, given by: eﬁ(L = %(gik —dix) dxidx*.

SIn case of large (or, finite) deformations, the Cauchy stress tensor generalizes to the (first and
second) Piola-Kirchhoff stress tensors.

16 2 Mathematical Preliminaries

(v) elasticity tensor E = Ej;jy;, a fourth-order tensor that has physical dimension of
Lrst ang
(vi) mass-density scalar p.

The main principle of linear elasticity can be formulated as: the stress o applied
to an elastic material produces the proportional strain (or, deformation) e, where
the proportionality factor is given by the elasticity tensor C. Both the stress and
strain tensors are required to be symmetric (having 6 independent components out
of total 9). This is Cauchy’s second law of motion: o;; = oy;, which implies the
following symmetries of the elasticity tensor: E;jy = Exjij = Ejinw = Ejjix (Which
has 21 independent components out of total 81; see [3, 7] and the references therein).

The Euclidean elasticity is based on the following three relations (given both in
standard vector and in Cartesian tensor notation):

Stress =

Strain-displacement relations: e = % [Vu + (Vu)T], or in tensor components:
1 .

eik = 5 Uik + Up,i)3

Newtonian continuum equations of motion: V- o + f = pii, also called the
momentum law, in components given by: o x + f; = pii;; if the material con-
tinuum is in static equilibrium, this reduces to Cauchy’s first law of motion:
Oikk + fi = 0;

Constitutive stress—strain relations: o = C e,incomponents: o;y = Ejxm €, Which
is the generalized Hooke’s law for a homogeneous anisotropic body.

The above elasticity relations simplify (significantly) in the special case of
isotropic media,® where the stiffness tensor can be written in terms of the bulk incom-
pressibility modulus B and the shear rigidity modulus (or, Lamé’s second parameter)

1, as:
2
Ejjii = B 6ij x1 + p (0ixdj1 + 65105 — 3 i Orr)-

Now, the constitutive stress—strain relations can be written in terms of Lamé’s first
parameter \, as:

oij = Ajjexx + 2ueij,

where Tr(e) = ¢y is the trace of the strain tensor, while the strain can be written in

terms of Poisson’s ratio v and Young’s elasticity modulus E = tensile elasticity =
tensile stress

— . ,as
tensile strain

1 v 1
2,710 7 E5ij0kk = E[(l + v)oij — voijouk]-

€ij =

SPhysical properties of isotropic media are independent of directions in the 3D Euclidean space.

2.3 Basic Dynamical Simulations 17

Fig. 2.1 Simulation of the Lorenz attractor: time series (left), phase space (middle) and FFT
spectrum (right)

2.3 Basic Dynamical Simulations

In this section we present the basic symbolic derivations and numerical simulations
to be used in subsequent chapters.

2.3.1 Basic Attractor Dynamics Simulation

Here we present a Mathematica® simulator for dynamics of the four well-known
three-parameter attractor systems, which exhibit chaotic behavior for certain values
of their parameters. The implemented systems are (see, e.g. [4])":

Lorenz attractor (seeFig.2.1), atemporal dynamical system representing a truncated
version of the vector Navier-Stokes equation, defined by the following ODEs:
Xx=a(y—x), y=x(b—z)—y, I=xy—cz

where (a, b, ¢) are the constant parameters with specific chaotic ranges:
a €[16,20], b € [45,56], c €[1, 6];

Rossler attractor (see Fig. 2.2), defined by the following ODEs:
X=—-y—z, y=x+ay, z=b+z(x —c),

where a € [0.15,0.3], b € [0.15,0.4], ¢ € [1, 10];

7We actually present a generic simulator with three more nameless attractor systems, to demonstrate
how easy it is to extend this simulator for other applications.

18 2 Mathematical Preliminaries

Fig. 2.2 Simulation of the Rossler attractor: time series (left), phase space (middle) and FFT
spectrum (right)

APPPPPAAAAAAAAAAAANS o
P

.-'Jf

b

I T L LR e Lttt
Il I

‘N.""

A ALAA A A A A LA A4 A LA ALk A
OB AR EER TR ER TR

Fig. 2.3 Simulation of the Duffing oscillator with harmonic forcing: time series (left), phase space
(middle) and FFT spectrum (right)

Duffing oscillator with harmonic forcing (see Fig. 2.3), defined by the following
ODEs:

Y=y, y+ar—bx+ex’=z z=cos(5),
where a € [0,3],b € [0, 1], c € [1, 3];

Van der Pol oscillator with harmonic forcing (see Fig. 2.4), defined by the following
ODE:s:

¥=y, y—a(l —4bx*)y+c*x =z, z=cos(5t),

where: a € [1,9],b € [2,9],c € [1,9];

All systems are simulated in the time range: ¢ € [0, 50]. The simulator gives out-
puts in three different forms: (i) time series: (x(¢), y(¢), z(¢)), (i) X-Y—-Z phase
space, and (iii) FFT spectrum. It is based on Mathematica’s commands Manip-
ulate (designed for simulation experiments) and NDSolve (a powerful numerical
solver/integrator of differential equations, both ODEs and PDEs). Here is the full
code for the simulator:

2.3 Basic Dynamical Simulations 19

TUELECLEEEEE T

i AR

(ARARRRRRRRRARANNR

Fig. 2.4 Simulation of the Van der Pol oscillator with harmonic forcing: time series (left), phase
space (middle) and FFT spectrum (right)

Manipulate[Module[{ Lorenz,Rossler,ForcedDuffing,Forced VanDerPol,
Another1,Another2,Another3,so0l,x,y,z,t,pl1,pl2,pl3,data,fdata},

Lorenz={ {x'[tl==a (y[t]-x[t]),y’[tl==x[t] (b-z[t])-y[t]2’ [t]==x[t] y[t]-c z[t],
x[0]==y[0]==20,z[0]==100} };

Rossler={ {x’[t]==-y[t]-z[t],y’ [t]==x[t]+a] y[t],2’[t]==814+z[t] (x[t]-y1),
x[0]==0.2,y[0]==0.3,z[0]==0.5}};

ForcedDuffing={ {x’[t]==y[t].y’ [t]+a?2 x’[t]-02 x[t]+72 x[tPP==z[t],
2’ [t]==Cos[5t],x[0]==y[0]==2[0]==0} }

ForcedVanDerPol={ {x’[t]==y[t],y’[t]-a3 (1-4 33 x[t]?) y[t]+~y32 x[t]==z[t],
2’ [t]==Cos[5t],x[0]==y[0]==2[0]==0} };

Anotherl={{x’[t]==al x[t]+y[t] z[t],y [t]==b1 y[t]-x[t] z[t],
7’ [t]==cl z[t]+x[t] y[t],x[0]==-1,y[0]==1,2[0]==2} };

Another2={ {x’[t]l==-y[t]-z[t],y’ [t]==X[t]-0.5 a2 y[t],
7’ [t]==0.1+Abs[b2]+x[t] z[t]+10 c2 z[t],x[0]==y[0]==-1.2,z[0]==1.2} };

Another3={ {x’[t]==a3 y[t] z[t]?, y’[t]==Abs[b3] x[t] z[t],
2’ [t]==c3 x[t] y[t]?,x[0]==1,y[0]==2,2[0]==1.8} };

sol=QuietNDSolve[Lorenz, {x[t],y[t],z[t]},{t,0,50},MaxSteps— oo |; (*Eqgs.*)
data=Transpose[Table[Evaluate[x[t]*y[t]*z[t]/.s0l],{t,10,50,0.01}]];
fdata=L0g[Abs[Fourier[data]]z]; (* FFT spectrum defined here *)

pl1=Plot[Evaluate[{x[t],y[t],z[t]}/.s0l],{t,10,50},PlotRange— All,

20

2 Mathematical Preliminaries

PlotStyle— AbsoluteThickness[1.5],ImageSize— {500,350}];

pl2=ParametricPlot3D[Evaluate[{ x[t],y[t],z[t] }/.s0l],{t,0,50},
BoxRatios— {1,1,1}, PlotRange— All,ColorFunction— “Rainbow”,
PlotStyle— AbsoluteThickness[1.5],ImageSize— {500,400}];

pl3=ListLinePlot[fdata,PlotRange— All,PlotStyle—
AbsoluteThickness[1.1], ImageSize— {500,350}];

Which[Analysis=="Time series”,Show[pl1],Analysis=="Phase space”,
Show[pl2],Analysis=="“FFTspectrum”,Show[pl3]]],
Delimiter,Style[*“Lorenz”,10],

{{a,16,a},16,20,0.1,ImageSize— Small,Appearance— “Labeled”},
{{b,45.92,b},45,56,1,ImageSize— Small, Appearance— “Labeled”},
{{c.4,c},1.0,6,0.1,ImageSize— Small,Appearance— “Labeled”},
Delimiter,Style[“Rossler”,10],

{{«1,0.2,a},0.15,0.3,0.01,ImageSize— Small,Appearance— “Labeled”},
{{31,0.2,b},0.15,0.4,0.01,ImageSize— Small,Appearance— “Labeled”},
{{~1,3.0,c},1,10,0.1,ImageSize— Small,Appearance— ‘“Labeled”},
Delimiter,Style[“ForcedDuffing”,10],

{{a2,1.5,a},0,3,0.01,ImageSize— Small,Appearance— “Labeled”},
{{32,0.25,b},0,1,0.01,ImageSize— Small,Appearance— “Labeled”},
{{v2,2,c},1,3,0.01,ImageSize— Small,Appearance— “Labeled”},
Delimiter,Style[*“Forced VanDerPol”,10],

{{a3 ,3,a},1,9,0.1,ImageSize— Small,Appearance— “Labeled”},
{{£3,2,v},2,9,0.1,ImageSize— Small,Appearance— “Labeled”},
{{~3,3,c},1,9,0.1,ImageSize— Small,Appearance— “Labeled”},
Delimiter,Style[*“Another1”,10],

{{al,-0.4,a},-1,-0.25,0.001,ImageSize— Small,Appearance— ‘“Labeled”},
{{b1,0.3,b},-1,1,0.001,ImageSize— Small,Appearance— “Labeled”},
{{c1,-0.1,c},-1,0,0.001,ImageSize— Small,Appearance— “Labeled”},
Delimiter,Style[*“Another2”,10],

{{a2,-0.4,a},-1,-0.25,0.001,ImageSize— Small,Appearance— ‘“Labeled”},
{{b2,0.3,b},-1,1,0.001,ImageSize— Small,Appearance— “Labeled”},
{{c2,-0.8,c},-1,0,0.001,ImageSize— Small,Appearance— “Labeled”},
Delimiter,Style[“Another3”,10],

{{a3,-0.4,a},-1,-0.25,0.001,ImageSize— Small,Appearance— “Labeled”},
{{b3,-0.7,b},-1,1,0.001,ImageSize— Small,Appearance— “Labeled”},
{{c3,-0.8,c},-1,0,0.001,ImageSize— Small,Appearance— “Labeled”},
Delimiter, { { Analysis, “Time series”},

{“Time series”,"Phase space”, FFT spectrum”}},

TrackedSymbols— Manipulate]

2.3 Basic Dynamical Simulations 21

2.3.2 Action Principle and Basic Variational Derivations

In this subsection we give some introductory examples of using the action principle
and variational methods in Mathematica to derive Newtonian equations of motion
for some common dynamical systems used in biomechanics — from their kinetic and
potential energies.

Harmonic Oscillator

We start with a simple and ubiquitous harmonic oscillator. Given the input data:
mass m, displacement x (¢), velocity x’(z) and spring constant &, the following code
gives oscillator’s equation of motion with acceleration x”(¢) and initial conditions
(x(0) =0, x'(0) = 1):

<< VariationalMethods*
Kinetic energy defined:
KE = m x’[t]"2;
Potential energy defined:
PE = 1 kx[t]"2;
Lagrangian calculated:
Lagrn = KE — PE;
Euler-Lagrange equation computed:
DifEq = EulerEquations[Lagrn, x[t], t];
Output printout:
Print[“Lagrangian of the system =", Lagrn];
Print[“Equation of motion: ”, DifEq];
Lagrangian of the system = $mx’(1)* — kx (1)

Equation of motion: mx"(t) — kx(t) =0

Initial conditions:
IC={x[0]==0,x"[0] ==1};

Analytical solution:
sol = DSolve[ODE, IC, x[t], t]

sol = {{x(0) > % sin ()}

22 2 Mathematical Preliminaries

Pendulum

Next, we compute a simple pendulum. Given the input data: mass m, length L, angle
q(t) and angular velocity ¢’(¢) the following code gives pendulum’s equation of
motion with acceleration ¢”(z) and its analytical solution for the case of passing
through the equilibrium ¢ (0) = 0 with angular velocity ¢’(0) = 1:

< <VariationalMethods*
Kinetic energy defined:
KE = 1 m q'[t]'2;
Potential energy defined:
PE = m g L Cos[q[t]];
Lagrangian calculated:
Lagrm = KE — PE;
Euler-Lagrange equation computed:
DifEq = EulerEquations[Lagrn, q[t], t];
Output printout:
Print[“Lagrangian of the system =", Lagrn];
Print[“Equation of motion: ”, DifEq];

Lagrangian of the system = gLmCos[q[t]] + %mqu/(t)
Equation of motion: —Lm (g sin(q (1)) + Lq" (1)) =0

Initial conditions:
IC={q[0] ==0,q’[0] ==1};

Analytical solution:
sol = DSolve[ODE, IC, q[t], t]

sol = {{q(t) — 2JacobiAmplitude (% ‘%) }}

Series expansion (first 10 terms) of JacobiAmplitudes:
Series[2 JacobiAmplitude[t/2, (4 g)/L], t, 0, 10]

£ (g*+gLl) | t'(=g’—11g°L—gL?) T 1°(g*+1024° L+57¢> L +gL*)
12022 5040L3 362880L*

- _ g
sol =t o T

1D Particle

Now, we compute a simple particle on a line. Given the input data: mass m, displace-
ment x (), velocity x’(¢) and gravity g, the following code gives particle’s equation
of motion with acceleration x” (¢):

2.3 Basic Dynamical Simulations 23

< < VariationalMethods*
Kinetic energy defined:
KE = 3 m x’[t]"2;
Potential energy defined:
PE = m g Cos[x[t]];
Lagrangian calculated:
Lagrn = KE — PE;
Euler-Lagrange equation computed:
DifEq = EulerEquations[Lagrn, x[t], t];
Output printout:
Print[“Lagrangian of the system =, Lagrn];
Print[“Equation of motion: ”, DifEq];

Lagrangian of the system = %mx’(t)2 —mgcos(x(t))

Equation of motion: m(gsin(x(¢)) — x”(¢)) =0

3D Particle

Now, we compute a simple particle in 3D. Given the input data: masses m;, dis-
placements x; (¢), velocities x/(¢) and gravity g, the following code gives particle’s
3D equations of motion with accelerations x;'(¢):

< <VariationalMethods*
Kinetic energy defined:
KE = 1 37 m; x/[t]'2;
Potential energy defined:
PE = g 37 m; Cos[x[t]];
Lagrangian calculated:
Lagrm = KE — PE;
Euler-Lagrange equations computed:
DifEq = EulerEquations[Lagrn, x[t], t];
Output printout:
Print[“Lagrangian of the system =", Lagrn];
Print[“Equations of motion =, DifEq];

Lagrangian of the system =
L(m () ()% + ma((x2)'(1))?
+m3((x3)'(1))?) — g(my cos(xi (1))
+my cos(x2(1)) + m3 cos(x3(1)))

Equations of motion =
{m1(gsin(x; (1)) — (x1)" (1)) = 0,
ma(g sin(x2(1)) — (x2)"(1)) =0,
m3(gsin(x3(1)) — (x3)"(1)) = 0}

24 2 Mathematical Preliminaries

Harmonic Chain

Given the input data: masses m;, displacements x; (), velocities x; (t) and spring
constants k;, the following code gives equations of motion of a 7D harmonic chain:

< <VariationalMethods*
Kinetic energy defined:
KE =1 > m; x}[t]'2;
Potential energy defined:
PE = 137 ki (xi[t]-xim[t]) "2
Lagrangian calculated:
Lagrmn = KE — PE;
Euler-Lagrange equation computed:
DifEq = EulerEquations[Lagrn, x[t], t];
Output printout:
Print[“Lagrangian of the system =, Lagrn];
Print[“Equation of motion: ”, DifEq];

Lagrangian of the system =
3y (e (0)2 + ma((x2) () + m3((x3) (1) + ma((x4) (1)* + ms((x5) (1)*+
me((x6)'(1))? + m7((x7) (1)?) + 3 (—k1 (x1 (1) — x0(1)? — ko (x2(1) — x1 ())*—
k3 (x3(1) = x2(1))* — kg (xa (1) — x3(0)? — ks (x5(t) — x4(1))? — ke (x6(1) — x5(1))*—
k7 (x7(2) — x6())%)
Equations of motion =
{=m1(x1)" () + ki (xo(t) — x1(1)) + ko (x2(t) — x1(1)) =0,
—my(x2)" (1) + ko (x1(t) — x2(1)) + k3 (x3(t) — x2(2)) =0,
—m3(x3)"(t) + k3(x2(t) — x3(1)) + ka(xa(t) — x3(2)) =0,
—my(x4)"(t) + ka(x3(t) — x4(t)) + ks(xs5(t) — x4(t)) =0,
—ms(x5)"(t) + ks(x4(t) — x5(t)) + ke (x6(t) — x5(¢)) = 0,
—mg(x6)" (t) + ke(x5(t) — x6(t)) + k7 (x7(¢) — x6(2)) = 0,
kq(xe(t) — x7(1)) —m7(x7)"(t) = 0}

Basic Kinetic chain

Given the input data: masses m;, displacements x;(¢), velocities x;(¢) and spring
constants k;, the following code gives equations of motion of a 9D kinetic chain with
the quartic (4th order) potential:

<< VariationalMethods‘; n=9;
Kinetic energy defined:

KE = 3 >0 mi"2 (x; [t] - x}_,[t])2;
Potential energy defined:

PE = > ki (xi[t] - x;—1[t])4;
Lagrangian calculated:

Lagrn = KE — PE;

2.3 Basic Dynamical Simulations 25

Euler-Lagrange equations computed:
DifEq = EulerEquations[Lagrn, x[t], t];
Output printout:
Print[“Lagrangian of the system =", Lagrn];
Print[“Equations of motion =, DifEq];

Lagrangian of the system =

T3 () (1) — (x0) (1) + m3((x2)' (1) — (x1) ()% + m3((x3)' (1) — (x2)' (1)) +
m3((x2)' (1) — (x3)'(1))? + m2((x5) (t) — (x2)' (1)) + mE((x6) (1) — (x5)'(1))* +
m2((x7)' () — (x6)'(1))* +m3((xg)' (1) — (x7)' (1)) + m3((x9) (t) — (x3)'(1))?) —

ki (x1 (1) — x0(0))* — ka(x2(t) — x1(0))* — k3 (x3(t) — x2(6))* — ka(xa(t) — x3(1))* —

ks (xs(t) — xa(t))* — ke (x6(t) — x5()* — k7 (x7(t) — x6(1))* — kg(xs(t) — x7(t))* —
ko (xo (1) — x3(1))*

Equations of motion =

(L @m}((x0)" (1) = (x1)" (1)) + 2m3((x2)" (1) — (x1)" (1)) + 8k1 (x0 (1) — x1 (1)) + 8ka (x2(¢) — x1(1))?) = 0,
T@m3 () (1) = (x2)" (1)) + 2m3((x3)" (1) — (x2)" (1)) + 8ka (x1 (1) — x2(1))3 + Bk3 (x3(r) — x2(1))*) =0,
$@mI((x2)" (1) = (x3)" (1)) + 2m3((x4)" (1) — (x3)" (1)) + 8k3(x2(r) — x3(1)) + 8ky (x4 (1) — x3(1))*) =0,
$@mA((x3)" (1) — (x4)" (1)) + 2m3((x5)" (£) — (x4)" (1)) + 8ka(x3(t) — x4(1))3 + 8ks (x5 (1) — x4(1))*) =0,
$@mZ((x4)" (1) = (x5)" (1)) + 2m%((x6)" (£) — (x5)" (1)) + 8ks (x4(t) — x5(1)) + 8ks (x5 (1) — x5(1))3) =0,
3 @mE((x5)" (1) — (x6)" (1)) + 2m3((x7)" (£) — (x6)" (1)) + 8ko (x5(t) — x6(1))* + 8k7(x7 (1) — x6(1))3) =0,
3 @m3((x6)" (1) — (x7)" (1)) + 2m%((x5)" (1) — (x7)" (1)) + 8k7 (x6(r) — x7(1))* + 8kg (x(r) — x7(1))*) =0,
3Cm3((x7)" (1) — (x8)" (1)) + 2m3 ((x9)" (1) — (x8)" (1)) + 8ks (x7(t) — x5(1))* + Bko(xo (1) — x5(1))*) = 0,
m3((xg)" (1) — (x0)" (1)) + 4ko (x5(t) — x9(1))> = 0}

Linear String (Wave) Equation

Given the transversal string displacement u[x,], the following code gives the stan-
dard 1D wave equation:

< <VariationalMethods*
Kinetic energy defined:
KE = 1 Dlu[x, t], t]"2;
Potential energy defined:
PE = 3 Dlu[x, t], x]2;
Lagrangian calculated:
Lagrn = KE — PE;
Euler-Lagrange equation computed:
DifEq = EulerEquations[Lagrn, u[x, t], X, t];
Output printout:
Print[“Lagrangian of the system =, Lagrn];
Print[“Equation of motion: ”, DifEq];

26 2 Mathematical Preliminaries

Lagrangian of the system =
%u(o’l)(x, 12— %u(l’o)(x, 1)? = %u,(x, 1 — %ux(x, 1)?

Equation of motion:
@00, 1) —u®?(x, 1) =0 = un(x, 1) =uy(x, 1)

Nonlinear String (Sine-Gordon) Equation

Given the transversal displacement u[x, #] of a nonlinear string, the following code
gives the 1D Sine-Gordon equation:

< <VariationalMethods*
Kinetic energy defined:
KE = 1 Dlu[x, t], t]"2;
Potential energy defined:
PE = % DJ[u[x, t], x]"2 + Cos[u[x, t]];
Lagrangian calculated:
Lagrm = KE — PE;
Euler-Lagrange equation computed:
DifEq = EulerEquations[Lagrn, u[x, t], X, t];
Output printout:
Print[“Lagrangian of the system =", Lagrn];
Print[“Equation of motion: ”, DifEq];

Lagrangian of the system =
5u®D e, 0> = S0 (x, 1)? = cos[u (x,)] =
Jur(x, 1)? = Juy(x, 1)* = cos [u (x, 1)]

Equation of motion:
uOx, 1) —u®?(x, 1) +sinfu (x,)] =0 <
U (X, 1) = Uy (x, 1) — sin [u (x,)]

3D Laplace Equation

The Laplace PDE is a textbook model for various stationary fields: electrostatic,
magnetostatic, thermostatic, etc. Here we give a variational derivation for the 3D
Laplace equation from a given vector Lagrangian in Cartesian coordinates:

< < VariationalMethods*
Lagrangian defined:

Lagrn = % Grad[u[x, y, z], X, y, z].Grad[u[x, y, z], X, y, z];
Euler-Lagrange equation computed:

DifEq = EulerEquations[Lagrn, u[x, y, z], X, ¥, Z];
Output printout:

2.3 Basic Dynamical Simulations 27

Print[“Lagrangian of the system =", Lagrn];
Print[“Equation of motion: ”, DifEq];

Lagrangian of the system =
411 [M(O,O,l)(x’ v, 22 + u @10y, v, 22 + w100 (., v, z)2]2
< > %[ux(-x’ y,Z)2+lfty(X, vy, Z)2+uz(.x,y,z)2]2
Equation of motion:

—u®0D(x,y,2) —u®20(x, y,2) —u®00(x,y,2) = 0
— uxx(-xs ys Z) + M}‘y(-xs ys Z) + MZZ(xf y7 Z) = O

2.3.3 Basic Vector Calculus Implementation

In this subsection we give some introductory examples of using vector calculus in
Mathematica®, to be utilized in the subsequent chapters.

Gradient of a 3D scalar field
Cartesian coordinates:

Grad[u[x, y, z], X, ¥, z] gives:
{u00x, y, 2, u® O x, vy, 2), u®OV(x, y, 2)}
— [I/lx(.x, ya Z)a uy(xa y7 Z)’ MZ()C, yv Z)]

Cylindrical coordinates:

Grad[u[r, 6, z], 1, 0, z, “Cylindrical”] gives:
{uu,o,())(r, 0.2), u(°*‘~°’r(r,0,z)’ MCXRIY Z)}
— [ux(r, 0,2), %M@(F, 0,z),u.(r,0, z)]
Spherical coordinates:

Grad[ulr, 6, ¢], 1, 0, ¢, “Spherical”] gives:
(1,0,0) u®L0w0,¢) cse@u®OVr.6.9)
{u (.0, 9), e, :

r

— [ux(r, 0.0). Lug(r. 0. 0), gt us(r. 6. ¢)]

Divergence of a 3D vector field
Cartesian coordinates:

Div[u[x, y, z], v[x, y, z], W[X, ¥, z], X, y, z] gives:
W00 (x, y,2) + 0010 r 3, 2) + w00V, y, 2)
= [uxlx,y,2), vy(x, . 2), w(x, y,2)]

28 2 Mathematical Preliminaries

Cylindrical coordinates:

Div[u[r, 0, z], v[r, 6, z], w[r, 0, z], 1, 6, z, “Cylindrical”’] gives:
(0,1,0)
M(I,O,O) (r, 0,)+ u(r.ﬂ,z)Jrvr (r,0,2) + w(O’O’l)(r, 0, 2)

= [u,(r, 0, z) + LCbDEwCED 4y (1,9, z)]
Spherical coordinates:

Div[u[r, 0, ¢], VI, 0, ¢], wlr, 0, ¢, 1, 0, ¢, “Spherical”’] gives:
(1,0,0) u(r,0,0)+v %10 (.0, 4) csc(6) (sin(Q)u(r,0,¢)+cos(D)v(r,6,)+w "D (r,0,¢))
w00, 0, ¢) + - +

r
[u,(r, 0, b) + Lt(r,€,¢)tvr/(r,9,¢) + Sin((i)u(r,9.d>)+cr;ss(ifil)(lé()r,9,¢)+w¢(r,9,d>)]

Curl of a 3D Vector Field
Cartesian coordinates:

Curllu[x, y, z], V[X, y, z], W[X, ¥, z], X, y, z] gives:
w0 (x, v, 2) = vV, v, 2),

w0V (x, y,2) — w0, y, 2),

v, y, 2) —u@MOx, y, 2)
=

w0 (x, y, 2) =000V (x,y, 2),

M(O’OJ) (xa ya Z) - w(LO,O) (x’ y’ Z)’

vy,) —u @O,y 2)

Cylindrical coordinates:

Curl[u[r, 0, z], V[r, 0, z], W[r, 0, z], 1, 0, z, “Cylindrical”] gives:
w02 00y, g, 2)

.
u®0D i 0, 7y — w00 9, 7).,

p(1.0,0) (r,0,z) — M(O‘l’o)(r,é,rz)—v(r,é,z)

<~
Lwy(r, 0,2) — v,(r, 0, 2),
u(r,0,2) —w,(r,0,z),
v (r,0,2) — L ug(r, 0,2) — v(r, 6, 2)]

Spherical coordinates:

Curl[u[r, 6, ¢], v[r, 0, ¢], w[r, 0, ¢1, 1, 0, ¢, “Spherical”’] gives:
w0006 cse(0) (V00D (r,6,¢)—cos(O)w(r,0,9))

El

r r
cse(0) (u @O (r,0,¢)—sin(@)w(r,0,0))

¢ — w00, 9, 9),
(1,0,0) _ u®9¢.0.0)—v(r.0.9)
w00 9, ¢) :

—
% wy(r, 0, ¢) — #n(@) [v¢(r, 0,0) —w(r, 0, o) cos(@)] ,
m [u@(r, 0,0) —w(r, 0,) sin(@)] —w,(r,0, ¢),

2.3 Basic Dynamical Simulations 29

v (r 0, 9) — 1+ [ug(r, 0, ¢) — v(r, 0, $)]

Laplacian of a 3D scalar field
Cartesian coordinates:

Laplacian[u[x, y, z], X, y, z] gives:
uO02(x, y, 2) +u®20(x, y,2) + u®00(x, y, 2)
— ux)c(-xa ya Z) + uyy(xs ya Z) + uZZ(-xa ys Z)

Cylindrical coordinates:
Laplacian[u[r, 0, z], r, 0, z, “Cylindrical”] gives:

w020 40.5) L 1.0.0) (9
w02y, 6, 7) 4 ——0D 4 4200y, 6, 7)
— urr(rv 97 Z) + % [%MQG(V» 97 Z) + u,(r, 67 Z)] + ”zz(rv 99 Z)

Spherical coordinates:
Laplacian[ulr, 0, ¢], 1, 8, ¢, “Spherical”] gives:
u029¢0.0) 100 o)

D | 000 g,)+

: (1,0,0) cos@u 019 10,¢) | csc@®u©92 (10,6
ese(8) (sin(@u 00 ,0,6)+ . + .

= (. 0.8) + L [Lugp(r, 0. 6) + u, (. 0,)] +
m [u,(r, 0,) sin(0) + Lug(r, 0, ¢) cos(0) + rsile))u@¢(r’ 9, ¢)]

Gradient of a 3D Vector Field (in Cylindrical Coordinates)
Grad[ulr, 6, z], v[r, 0, z], w[r, 6, z], 1, 0, z, “Cylindrical’] gives:
(1,0,0) u®0¢.0.2—v(r0.2) (0,0,1)
u (r0,2) —=—"">u (r,0,2)
(1,0,0) u(r.0,2)+v%"0(r6.2) . (0,0,1)
v (r,0,7) ===————"== v (r,0,z2)
w00, 0,5 S 00D g,)
u, (r, 9, 2) ue(m‘/’,z)r—v(rﬂ,z) u, (r, 0, 2)
= | v(r,0,2) —”(r“g‘Z)t””(r‘e’Z) v (r, 0, 2)

wy(r,0,2)
r

w,(r,0,2) w,(r, 0, 2)

2.3.4 Basic Elastic Continuum Implementation

Using the free-available Mathematica packages for tensor calculus and continuum
mechanics (see [1]) and adopting Einstein’s summation convention over repeated
indices, we can derive the following tensor equations of an elastic continuum:

30

2 Mathematical Preliminaries

Kinematic relation between the displacement vector #; and strain tensor e;;:

(i +uzi);

=

€ij =

Equilibrium condition including the stress tensor o, the acceleration vector ii; (mul-
tiplied by the mass-density p) and the force vector f; are:

- fi

Oji,j = PU;

Hooke’s stress—strain law: with the elasticity tensor Ejj,:

oij = Eijimeim,

which in terms of Lame’s elastic moduli A and p simplifies to:

Tik = NemmOik + 2p1€ik.

To start with, the so-called compatibility conditions between the strain tensor e;;
and the deformation tensor +;; read:

ey
0z 0z
&e,
0z 0z
d%e,

Jydy

2 Pe

0x dy
d2e,
2()\ 0z
e,
28x 0z

+

+ =

e,
dy dy
e,
Ox Ox
029}.
dy 0y
82’75{}"
(?z 0z

_ Py
— Oxdy

0? Vyz
dy 0z
»* Yz
Ox 0z

P
dy 0z
— 02%}’
T Ox 0z
Py
0y0z

= eyzzteryy = Vv
S exz:texx
= Cryy T €y = Yayay

= Vxz,x,zo

027'2
+ ,3)(51 — zez,x,,\’ + Vxy.zz = Vazyz T Vyzxazs
62 XZ
+ ()x’y’ — 2ex,y,z + Vyz.x.x = Vxy.x.z + Vxz.x,y»
+ ax 2 y 2ey.x,2 + Yazyy = Yoyviz T Vyzxy-

From the action principle perspective, the essential quantity is the strain energy
density, defined as the half-stress—strain product:

a

1
2

1 1
3€ij0ij = 5 (€101 + 2e12012 + 2€13013 + €202 + 2€23023 + €33033)
('nyaxy + VexOox + Vyz Oy + €20 + €40y + ezaz) .

The elasticity tensor E = E ;j,, has the following 21 independent components:
(Erit, Evzs Evns, Enz, En, Enss, Enie, E2i3, Ei2, E123, Ei233,
E1313, E1322, E1323, E1333, E2022, E2223, E2233, E2323, E2333, E3333).

These elastic components can be evaluated using Young’s modulus E

and Poisson’s ratio v =
and p. In this way, we can define:

_A
04

_ pGA2p)
- AMp

expressed here in terms of Lame’s elastic moduli A

2.3 Basic Dynamical Simulations 31

Enn =22 Enn=0, Ej;=0,

2024v—1"
E E
Eiyn =—575=, Eun =0, Enm;=—57—-—
207 4v—1 20 4v—1
E(v—1
Exm = 50 Exp3 =0, Ep =0,
22 +v—1
E E
Eyyz = —572—, Eun=0, Enn=—5,--,
2v2+v—1 207 4v—1
E(v—1
Es333 = 2,z(+,,_)1, E13333 =0, En333 =0,
Ev Ev
Evss = -5, Enn =0, Exny=—5717-7,
E
Eyppn =0, Expp=s5-5, Eins=0, Exn3=0 Ep3xn=0 £E;n=0,
2042
E
Ei333=0, Epiz=3575 Eus=0 Enz=0, Enpz=0, Ej3n=0.

Using the converse relations, defining Lame’s elastic moduli A and p in terms of
Young’s modulus and Poisson’s ratio, as:

Ev E

A= =,
v-D+1 2w+ 1)

we can evaluate the Hooke’s law: o0;; = Ejjep as:

E (ex + uey) E (yex + ey) Eey,

oy = — oy =———— "2 Oy = .
v2—1 J v2—1 YT U+

For more elastic continuum derivations, see Mathematica packages listed in [1]
and the associated internet links.

References

1. Cabrera, R.: Clifford Algebra, Wolfram Library Archive (2015). http:/library.wolfram.com/
infocenter/MathSource/5101/

2. Fung, E.C.: A First Course in Continuum Mechanics, 3rd edn. Prentice-Hall, Englewood Cliffs
(1994)

3. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Butterworth Heinemann, Oxford

(1986)

Weisstein, E.W.: Lorenz Attractor, Wolfram MathWorld (2015)

Wikipedia: Calculus of Variations (2015)

Wikipedia: Hamilton’s Principle (2015)

Wikipedia: Linear Elasticity (2015)

Nown ks

http://library.wolfram.com/infocenter/MathSource/5101/
http://library.wolfram.com/infocenter/MathSource/5101/

2 Springer
http://www.springer.com/978-3-319-57927-6

The Evolved Athlete: A Guide for Elite Sport
Enhancement

lvancevic, T.; Lukman, L.; Gojkovic, Z2.; Greenberg, R.;
Greenberg, H.; Jovanovic, B.: Lukman, A,

2017, X0, 185 p. 94 illus., 88 illus. in color., Hardcowver
ISEM: 978-3-319-57927-65

	2 Mathematical Preliminaries
	2.1 Biomechanical Action Principle and Variational Methods
	2.2 Basic Elastic Continuum
	2.3 Basic Dynamical Simulations
	2.3.1 Basic Attractor Dynamics Simulation
	2.3.2 Action Principle and Basic Variational Derivations
	2.3.3 Basic Vector Calculus Implementation
	2.3.4 Basic Elastic Continuum Implementation

	References

