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Abstract In this article spatio-temporally resolved particle image velocimetry data
of a flat plate’s boundary layer are shown. With this set up, it is possible to capture
the highly unsteady phase transition from laminar to turbulent state of the boundary
layer close to the surface. In the evaluation of the boundary layer data it is shown
that it is possible to link the laminar-turbulent phase transition to the (2+1)D directed
percolation universality class. This can be shown by the unique exponents of the
directed percolation class which will be extracted from the PIV data.

1 Introduction

The description of transition into turbulence has always been a challenging task.
Thirty years ago Pomeau was the first to describe the dynamics of laminar-turbulent
transition by a system of coupled oscillators [1]. Thereby he paved the way for
the statistical description of laminar-turbulent transition by the directed percolation
theory. This theory allows a simple description of complex phase transitions with
only three critical exponents. These exponents are unique for each universality class
of percolation, so the transition from a laminar to a turbulent flat plate’s boundary
layer may be ascribed to a known class.

Until the last decade it was not possible to provide experimental evidence to
show the spatio-temporal intermittency which occurs in the transition from laminar
to turbulent flow. Due to more accurate measurement techniques nowadays it is
possible to capture the transition with much higher temporal and spatial resolution.

This has led to more detailed investigations with respect to directed percolation
of different flow situations such as channel flow [2, 3], Couette flow [4], shear flows
[5-8] and fully turbulent flows [9]. All of them show promising results, which support
the presumption of Pomeau.
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In contrast to the experiments mentioned, the evaluation presented in this article
is the first which is carried out on a flat plate’s boundary layer in an airflow and also
the first evaluation which uses PIV data as basis.

2 Experimental Setup and Methodology

The experiment is based on high speed stereoscopic particle image velocimetry (HS-
PIV). In order to investigate the boundary layer of the flat plate, a wind tunnel with
a closed test section is used (see Fig. 1). It has a cross section of 25 x 25 cm? and
a length of 200 cm. The flat plate under investigation has a length of 100 cm. It is
positioned 30 cm downstream the wind tunnel nozzle at a height of 10 cm above the
bottom of the test section.

The experiment is performed at a velocity of u, = 11.5 m s~! and a free stream
turbulence intensity below 0.3%. Due to the limited field of view (FOV) of the
PIV measurements it is necessary to induce perturbations into the boundary layer.
Therefore a small step of 0.1 mm height is placed 5 cm downstream the leading
edge. Hereby the transition area can be tuned so that its streamwise length fits into
the HS-PIV FOV.

The used HS-PIV system consisted of a high speed laser LDY 303 by Litron, light
sheet optics and two Phantom Miro M320S high-speed cameras which are used at
a reduced resolution of 1408 x 1048 px” resulting in 154 x 126 PIV interrogation
windows. The light sheet is directed perpendicular to the inflow direction and illumi-
nates a plane parallel to the plate’s surface. The origin of the plane is located 5.8 cm
downstream of the leading edge. In focus the light sheet has a thickness of 1 mm and
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Fig. 1 Experimental setup for HSPIV measurements of a flat plate’s boundary layer. The light
sheet is adjusted parallel to the flat plate’s surface in a region where the onset of the transition can
be captured
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its height above the plate’s surface is I mm. The boundary layer thickness estimated
by the Blasius equation is 2 mm at the point of measurement. Thus, the upper half
of the boundary layer is investigated in the PIV measurement.

With this set up a sampling rate of 1000 velocity fields per second is possible. The
velocity fields have a size of 6 cm in streamwise (x-direction) and 5 cm in spanwise
direction (y-direction) with a spatial resolution of 0.04 cm in each direction. In
total, 8250 velocity fields in three independent measurements are acquired. Each
measurement has a duration of 2.75 s, because of the limited internal camera storage.
Particle images are captured and processed using LaVision software DaVis 8.3.

3 Experimental Data

In the percolation theory only two states exist: a cell is either laminar (off) or turbulent
(on). For this reason, all velocity fields need to be binarized by a certain criterion. In
Fig. 2a snapshot of the velocity magnitude is plotted. Shown is the development of
the velocity along the local Reynolds number Re, = @ where x is the denoted
as the propagation length along the plate and the spanwise direction. The right hand
side shows the same velocity field, but binarized.

In order to binarize the data, a velocity threshold is used. Based on the velocity,
one can directly draw a conclusion on the state of the boundary layer. If the velocity
increases compared to the laminar boundary layer there must be a mixing between
the high energetic ambient flow and the low energetic boundary layer. This only
happens if the boundary layer becomes unstable and thus transitive and turbulent.

According to that, the interrogation cell is set to O (off) if u(x)7y and 1 (on) oth-
erwise. A parameter variation yielded u7; = 4 m's™! as an appropiate threshold that
reflects turbulent structures for the given measurement distance to the wall. However,
percolation exponents do only slightly depend on chosen velocity threshold.
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Fig. 2 Left Example of a measured velocity field. Right Binarized velocity field by a threshold of
UThresh = 4 ms ™!
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Fig. 3 Scaling of turbulent fraction with Reynolds number Re, = uX)x 4o ctreamwise direction.

v
The measurement points are shown in blue with error bars. The red curve represents a fit according

to (1). The inset shows the plot in logarithmic scale to emphasize the exponential behavior. Here,
the turbulent fraction is plotted against the reduced Reynolds number

The turbulent fraction p (Re, ) can be determined directly from the binarized data.
The turbulent fraction is the ratio of turbulent to laminar cells for each interrogation
window. For this reason, a two-dimensional turbulent fraction results for the PIV data.
This two-dimensional turbulent fraction is averaged along the y-direction to obtain a
one-dimensional distribution. This distribution is plotted against the local Reynolds
number Re, in Fig. 3. The shown errorbars represent the standard deviation. The
inset of the figure shows the logarithmic illustration of the turbulent fraction over
the reduced Reynolds number Re*R;fe". The turbulent fraction shows a monotonic
growth with increasing local Reynolds number. At the so called critical point the
turbulent fraction increases rapidly. This is typical for directed percolation and can
be described by the exponential relation between the turbulent fraction p(Re,), the
local Reynolds number Re, and the critical point Re, shown in (1):

Re, — Re,. p
p(Rex) = po - (—) - ey
Re,
In this equation py is a constant factor and the exponent 8 is one of three unique
exponents of percolation theory which describes the increase of the turbulent fraction.

In percolation theory, Re, is the point where the phase transition between two
states happens. In our case, it is the point where the transition between laminar and
turbulent phase begins. In case of the experiment, this corresponds to the point at
which the turbulent fraction begins to grow strongly.

The fit with (1) results in a critical Reynolds number Re, = 18040 &+ 380 and
the exponent B.x, = 0.59 & 0.04. In order to obtain the other two unique exponents
of percolation theory 1) and p; which describe the spatial and temporal spreading
behavior, the development of laminar clusters must be considered. Laminar cluster
are regions in the time development of the flow at Re, where laminar cells are
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Fig. 4 Left Histogram of laminar clusters in space. Red dashed line represents the theoretical
slope of (2+1)D directed percolation. Right Histogram of laminar clusters in time. Red dashed line
represents the theoretical slope of (2+1)D directed percolation

surrounded by turbulent cells. In percolation theory, the number (Nj ;) of clusters of
a particular size (L, ) scale with the following laws for space (2) and time (3):

Ny(Ly) o L™ 2)
Ni(L,) < L. A3)

The histograms of the cluster sizes are shown in Fig. 4. On the left hand side, the
laminar cluster sizes in space, and on the right hand side, the cluster sizes in time
are shown. The red dashed lines show slopes of the theoretical cluster distribution in
(2+1)D directed percolation theory.

4 Discussion and Concluding Remarks

In the preceding chapter, the experimental results were presented. From the turbulent
fraction, the first unique exponent f is derived. This exponent is close to the the-
oretical exponent for (2+1)D directed percolation ., = 0.583. The other unique
exponents for the scaling behavior of the cluster sizes also follow the laws of (2+1)D
directed percolation visually. The cluster in space follow the law better than the
clusters in time. The small deviation could be a result of the limited temporal resolu-
tion. Another explanation is a limited size effect due to the limited FOV of the PIV
measurements.

All in all, the transition of the flat plate’s boundary layer can be described by the
(2+1)D directed percolation theory. The extracted exponents from the experiment
seem to match the theory. Therefore, the highly dynamic behavior of the transition can
be reduced to mainly three unique exponents and this phenomenon can be assigned
to one of the known percolation classes.
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5 Future Work

Since these first results are promising a validation is needed. Therefore, the turbulent
boundary layer of the flat plate will be investigated more detailed at different heights
and at different free stream velocities.

Furthermore, other transient flows such as channel flow or even more complex
flows such as airfoil boundary layers will be investigated. If it is possible to show that
transitions from laminar to turbulent flow belong to a universality class of percolation
this results could be used for computational fluid dynamic models to simulate the
transition in a more accurate way.
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