
A DEMO Machine - A Formal Foundation
for Execution of DEMO Models

Marek Skotnica1(B), Steven J.H. van Kervel2, and Robert Pergl1

1 Czech Technical University, Prague, Czech Republic
skotnicam@gmail.com, robert.pergl@fit.cvut.cz

2 Formetis, Boxtel, The Netherlands
steven.van.kervel@formetis.nl

Abstract. The discipline of enterprise engineering and the DEMO
methodology provide enterprise designers with a formal techniques to
design companies where competency, responsibility and authority is
clearly defined. In such companies, process-based anomalies can be
avoided and people tend to cooperate more effectively and contentedly.

These techniques are so far mostly used just for business process mod-
eling consultancy. DEMO-based software systems are needed to adopt
and support these techniques in professional companies. This paper pro-
poses a theoretical computation concept called DEMO Machine that
provides us with formal foundations for a simulation of DEMO models.
We demonstrate these formal foundations on a Volley Club example.

Keywords: DEMO machine · Enterprise engineering · DEMO simula-
tion · DEMO software implementation

1 Introduction

The Enterprise engineering community has been working on formal theories and
methodologies for more than 15 years. The results were found to surpass the
state of the art of business process management (BPM) approaches in terms
of formal correctness, ontological completeness, and anomalies [1]. But, so far
an adoption of these principles in practice is very slow. One of the reasons is
that the largest benefit from these theories is provided to middle-sized or large
companies and these organizations tend to change very slowly. In addition, a
new technology adoption is associated with high risks. Large IT systems with
many complex features are required, as well, usually provided by large companies
such as IBM, Pega, Oracle, or Microsoft. There are no such large DEMO-based
IT systems so far. As argued in the FAR Ontology paper [2], it is not easy
to understand how the DEMO models are simulated. This work builds on van
Kervel’s work [3], simplifies it according to the Occam’s law and enables for
further extensions. It also builds on ForMetis company professional experience
in building DEMO-based systems.

The goal of this paper is to propose a theoretical computation foundations
that are easy to understand (like BPMN) and yet allow to express all the DEMO
c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 18–32, 2017.
DOI: 10.1007/978-3-319-57955-9 2



DEMO Machine 19

aspect models. This is a prerequisite for building DEMO-based IT systems that
could compete with state-of-the art BPM systems (BPMS). For this purpose,
we propose a DEMO Machine – an abstract formalism, which can be used for
DEMO model simulation and DEMO model code implementation.

The paper is organized as follows: In Sect. 2, the research question is sum-
marized. In Sect. 3, the underlying scientific foundations are briefly discussed.
In Sect. 4, formal definitions of DEMO Machine are proposed, investigated, and
represented in a formal notation. In Sect. 5, the proposed theories are demon-
strated on a Volley Club example. In Sect. 6, the current results are summarized
and further research is proposed.

2 Research Question

This paper elaborates on a research question proposed in FAR Ontology paper
Sects. 3.1 and 3.2 [2]. The DEMO Machine is meant as a formal computation
model (similar to the e.g. the Turing Machine). The DEMO Machine needs to
take into account challenges that are induced by the execution level and thus not
addressed in DEMOSL [2]. The research question was stated as: “How should
a DEMO Machine be designed to interpret DEMOSL?”.

3 Theories Used and Related Work

Theories used in this paper were already mentioned in the FAR Ontology
paper [2], therefore we just offer a brief summary of them: Guizzardi’s ontol-
ogy theories [4], the Enterprise Ontology [5], the DEMO methodology [5], van
Kervel’s papers [3,6].

This paper is also influenced by related work in this area, most notably:
Figueira and Aveiro [7], Huysmans [8], Krouwel [9], and Op’t Land [10].

4 DEMO Machine

This section elaborates on the research question proposed in Sect. 2. To investi-
gate characteristics of a software system, it is better to do it on its formal model
rather than on its software implementation. We do take an inspiration from
Turing’s invention called the Turing Machine [11], which was the first universal
computer made in 1936, years before any physical computers existed.

DEMOSL provides specification for the DEMO models of an enterprise. How-
ever, for the simulation of the models there are no definitions provided yet.
Therefore, we define the missing concepts and propose a formal DEMO Machine
that is able to simulate the models. This machine is independent on any software
implementation, and it is only based on the mathematical concepts.



20 M. Skotnica et al.

4.1 DEMO Model Definitions

In this section, essential DEMO model definitions are provided in a form that
is suitable for DEMO Machine simulation. The semantics of these concepts is
aligned with the DEMO theory [5]. DEMO model is an ontological representa-
tion of an enterprise. Demo models are commonly represented by four aspect
diagrams – OCD, PSD, OFD, and AM. Diagrams together express a DEMO
model. The following formalization deals with the DEMO model itself.

Definition 1. Actor Role. An actor role is an ordered tuple:

ActorRole := (Identifier,ActorRoleType) (1)

Identifier – A unique identifier of an actor role.
ActorRoleType ∈ {Elementary, Composite}
An elementary actor role is an atomic amount of authority, responsibility, and
competence. It is a producer in exactly one transaction, and a customer of zero,
one, or more transactions [5]. A composite actor role is a network of transaction
kinds and (elementary) actor roles, of which one does not (want to) know the
details [12].

Definition 2. Transaction Kind. A transaction kind is an ordered tuple:

Transaction := (Identifier, T ransactionKindName,Executor, Initiators)
(2)

The second axiom of the Ψ -theory states that coordination acts are performed
as steps in universal patterns [5]. These patterns, also called transactions, always
involve two actor roles and are aimed at achieving a particular result [5]. These
patterns are formally defined in Sect. 4.3.

Definition 3. Causal Link. A causal link is an ordered tuple:

CausalLink := (SourceTransactionKind, SourceState,

TargetTransactionKind, TargetState,MinCardinality,

MaxCardinality, InitiatorActorRole)
(3)

InitiatorActorRole – An initiator Actor Role to distinguish to which executor
this link applies since a transaction can have multiple initiators.

According to the theory, a causal link is defined as: “a link between a coordination
act and its resulting coordination fact, indicating the fact is result of the act.”
[12]. A Causal link is used in a tree-like structure to define a business process
composed of multiple transactions. For example, when there is a causal link from
T1/pm to T2/rq it means that you can initiate a new T02 instance from a T01
instance that is in state promised or a later state.



DEMO Machine 21

Definition 4. Conditional Link. A conditional link is an ordered tuple:

ConditionalLink := (SourceTransaction, SourceState, TargetTransaction,

TargetState, InitiatorActorRole)
(4)

InitiatorActorRole – An initiator Actor Role to distinguish to which executor
this link applies since a transaction can have multiple initiators.

Conditional link restricts the source transaction state from being reached until
the causal link’s cardinalities are satisfied. For example, there is a causal link
from T1/pm to T2/rq with cardinality 1..1. There is a conditional link from
T02/ac to T01/st. This means that you can perform cAct T01/st only when one
child transaction T02 reached ac.

Definition 5. DEMO Model. A DEMO Model is an ordered tuple:

DEMOModel := (Identifier, T ransactionKinds,ActorKinds,

ConditionalLinks, CausalLinks, Facts,Rules)
(5)

A DEMO Model is a conceptual representation of an enterprise or a sub-
enterprise at a given time frame. Facts and rules definitions are provided in [2].

4.2 DEMO Enterprise Application Definitions

We considered model definitions so far, but once the simulation of a model takes
place, the instances need to be taken into the account because they represent
the day to day operation of an enterprise.

Definition 6. Enterprise Position. A DEMO enterprise position is an
ordered tuple:

EnterprisePosition := (Identifier,ActorRoles) (6)

Identifier – Is and identifier of DEMO Enterprise Position
ActorRoles – Is a finite set of actor roles. An ActorRole can belong to several
Enterprise Positions.

An enterprise position is defined as a coherent set of actor roles. In practice, it
means a principle to group these roles and define responsibilities, competence,
and authorities at a generic level; e.g. sales director, production manager etc.
These are sometimes also called functional roles.

Definition 7. Actor. An actor is an ordered tuple:

Actor := (Identifier, EnterprisePositions) (7)

Identifier – A unique identifier of an actor instance.
EnterprisePositions – A finite set of enterprise positions



22 M. Skotnica et al.

An actor is a person or group of persons (board) that operates in an enterprise
in given enterprise positions.

Definition 8. Transaction. A transaction is an ordered tuple:

Transaction := (DEMOModel, T ransactionKind, ParentTransaction,

InitiatorActor, ExecutorActor, State)
(8)

DEMOModel – A model according which a transaction behaves.
TransactionKind – Is a type of transaction.
ParentTransaction – Is parent transaction. May be empty in case of a root trans-
action.
InitiatorActor – An actor that initiated the transaction.
ExecutorActor – An actor that is responsible for the execution side of the trans-
action. May be empty or changed over time as the execution responsibility may
be delegated.
State – The current transaction state. States are further explained in Sect. 4.3.

A transaction represents an actual situation, in which the transaction kind is
carried out (by people).

Definition 9. DEMO Enterprise Application. A DEMO enterprise appli-
cation is an ordered tuple:

DEMOEnterpriseApplication := (Identifier, PublishedModels,

EnterprisePositions,Actors, T ransactions)
(9)

PublishedModels – Is a finite set of DEMO models.
Identifier – Is an identifier of DEMO Enterprise Application.
EnterprisePositions – A finite set of enterprise positions that actors can partic-
ipate in. Enterprise positions can only contain actor roles defined in Published-
Models.
Actors – Is a finite set of Actors.
Transactions – Is a finite set of Transactions.

A DEMO enterprise application represents an actual enterprise that consists of
DEMO models, actors, and their interactions. A DEMO model is a conceptual-
ization of an enterprise in one given time. A real-world enterprise changes over
time, and therefore it needs to act according to multiple DEMO models, resp.
their versions. For example, a mortgage company creates a contract in 1990
based on certain conditions, and these conditions do still need to apply in 2017
even though conditions for new mortgages are different. A DEMO Enterprise can
also consist of multiple sub-enterprises or departments represented by multiple
DEMO models. This concept is very important for a software system implemen-
tation, it allows aggregation of agenda – work-items from multiple DEMO Model
instances.



DEMO Machine 23

4.3 DEMO Axiom Definitions

There are three DEMO axioms that need to be formalized and performed in
order to calculate an agenda for a given transaction instance. Agenda, and cAct
definitions are provided in [2].

Definition 10. DEMO Axiom is a function that takes an agenda and calcu-
lates a set of cActs:

DEMOAxiom : (Transaction,Agenda) → {cAct} (10)

Transaction Axiom. For the purposes of software simulation, we do formally
define the transaction axiom as a state machine in Fig. 1. The circles are states
(cFacts), and the boxes are allowed actions (cActs). With this state machine, an
implementation of Transaction DEMOAxiom function is straightforward.

We propose also some practical changes that make the transaction axiom suit-
able for building enterprise information systems. We added a possibility to start
a transaction instance without being requested. This supports the real-world
situations where people start to negotiate about a transaction. Documents are
created, but no request has been made, yet. A distinction whether a transaction
starts with a request or initiate or both is done as an extra information on the
causal link in the PSD.

The second deviation from the theory is that we do not support revoke of
all states at all times. This simplification is mostly because of the composition
axiom. For example, when a child transaction is created from the promised state,
therefore you are not able to revoke the promise. Revokes combined with the
composition axiom are quite a challenging topic in the execution and are a
subject to further and mostly empirical research.

Composition Axiom. Composition axiom adds cActs based on the condi-
tional and causal links, so that the transaction instances can form a process. An
implementation of this axiom is out of scope of this paper, and it is a subject
for further research.

Rule Axiom. Rule axiom adds cActs based on the conditional and causal rules
based on the definitions from the FAR Ontology [2].

4.4 DEMO Model Simulation

An Operation of an organisation is the manifestation of its construction in time
[13]. Simulation is the imitation of the operation of a real-world process or system
over time [14]. DEMO model simulation is the imitation of the operation of
a DEMO model for a purpose of validation of the model correctness. DEMO
model execution is a DEMO model simulation for the purpose of supporting an
operation of an enterprise IT system.



24 M. Skotnica et al.

Initiator ExecutorInitiator Executor

Initiator ExecutorInitiator Executor Initiator Executor

Initiated

Request Requested

Decline

Promise

Declined

Promised

StateStated

AcceptedAccept

Reject Rejected

Request
Revoked

Refuse 
Revoke 
Request

Allow 
Revoke 
Request

Revoke 
Request

Requested

Declined

Initiated

Promise
Revoked

Revoke 
Promise

Requested

Promised

Revoke 
Accept

Allow 
Revoke 
Promise

Refuse 
Revoke 
Promise

Refuse 
Revoke 
Accept

Allow 
Revoke 
Accept 

Accept
Revoked

Accepted

Stated

State
Revoked

Revoke 
State

Allow 
Revoke 
State

Refuse 
Revoke 
State

Promised

Stated

Rejected

Initiate

Fig. 1. Transaction axiom state machine

Definition 11. A DEMO Machine is an ordered tuple:

DEMOMachine := (DEMOEnterpriseApplication,

ExternalFactImplementations, TransactionInstanceLinking,

InputInstructions,OutputMessages)
(11)

DEMOEnterpriseApplication – A DEMO enterprise application.
TransactionInstanceLinking – Ternary relation that represents connections
between transaction instances in the outside world.
ExternalFactImplementations – Outside world implementations of functions that
calculate external facts.
InputInstructions – A set of instructions that the machine needs to process.
OutputMessages – Results produced by the machine that represent facts about a
behaviour of an enterprise.

The DEMO Machine is receiving instructions on the input and producing
messages on the output.

The list of allowed instructions is:

– GetActorAgenda(Actor) – Writes an Agenda for a specified Actor into
OutputMessages.

– PerformCAct(cAct) – Performs a cAct and puts a new Agenda for the
actor instance (defined in cAct) into OutputMessages. Performing an empty
cAct causes a recalculation of the model instance.



DEMO Machine 25

The Algorithm 1 shows a pseudo-code of how the agenda is calculated for a
transaction instance.

Algorithm 1. Agenda calculation
1: function CalculateAgenda(transactionInstance, actorPerformCActs)
2: #Adds actors perform cActs
3: agenda ←actorPerformCActs
4: #Adds allowed cActs based on Transaction axiom
5: agenda.add(TransactionAxiom(agenda))
6: #Adds allowed and restricted cActs based on Composition axiom
7: agenda.add(CompositionAxiom(agenda))
8: #Adds perform and restricted cActs based on Rule axiom
9: agenda.add(RuleAxiom(agenda))

10: #Find perform cActs that are allowed and not restricted.
11: if agenda has cAct c to perform then
12: #Performs cActs selected to be performed
13: PerformCAct(transactionInstance, c)
14: #Transaction states have been changed so recalculation of agenda is

needed.
15: return CalculateAgenda(transactionInstance, nil)
16: else
17: #No cActs to be performed found, agenda reached a stable state.
18: return agenda

The presented algorithm is just a high-level abstract schema. A detailed
description of the DEMO Machine calculation is outside of the scope of this
paper.

5 Proof of Concept – Volley Club

In this section, a proof-of-concept DEMO Machine is demonstrated on a Volley
club model from the book “The Essence of the Organization” by Jan Dietz [15].
The model is well specified in the book, so we do not elaborate on it much, and
we rather point out the differences in our approach and the proposed way of
simulation.

To verify the formal definitions, we created a proof-of-concept software imple-
mentation of the presented DEMO Machine. In this section we use a general
object-oriented pseudo-code inspired by C# to implement the simulation accord-
ing to the definitions provided above.

5.1 DEMO Model

The organization construction diagram (OCD) in Fig. 2 contains two transac-
tions describing the situation where a customer comes into the club, requests a
membership, pays for it, and he becomes a member.



26 M. Skotnica et al.

Fig. 2. OCD model volley club [15]

The Process Diagram (PSD) describes how are the two transactions related.
The membership payment is requested after a membership start is promised.
There is also a conditional link which specifies that the membership execution
phase can’t be done until the membership payment is accepted. Cardinality is
not mentioned here, but we expect only one payment per membership. Later
payments are not part of the model.

The Action Model (AM) here consists of four rules, and all of them are for
the membership starter (A1). The logic of working with facts defined in the OFD
is also included in the rules, but DEMO materials do not elaborate on how they
should be dealt with. The precise definition, how to execute this AM rules, is
also not provided, but for a communication between human stakeholders, this
notation is sufficient.

1. Action Rule for A1(1) – When the membership start (T1) is requested, in
case the person who is requesting is eligible, then it is automatically promised,
otherwise declined. Eligibility means that the person is old enough, starting
day of the membership is the first day of some month and maximum number
of members was not reached.

2. Action Rule for A1(2) – When the membership start (T1) is promised,
then automatically request the membership payment.

3. Action Rule for A1(3) – When the membership payment (T2) is stated,
while the paid amount for the membership has been paid, then accept the
membership payment (T2), otherwise reject (T2).

4. Action Rule for A1(4) – When the membership start (T1) is promised
while the membership payment (T2) is accepted, then execute the member-
ship start (T1) and state the membership start (T2).

5.2 DEMO Machine Model

Here is how the same Volley club model looks like when described by the concepts
introduced in this paper.



DEMO Machine 27

OCD and PSD remain the same. They are represented as:

AspirantMember = ("Aspirant member", Composite);

MembershipStarter = ("Membership starter", Elementary);

Payer = ("Payer", Composite);

T1 = ("T01","Membership Start", MembershipStarter, {AspirantMember})

T2 = ("T02","Membership Payment", Payer, {MembershipStarter})

VolleyClubModel = ("Volley Club", {T1, T2}, {AspirantMember,

MembershipStarter, Payer}, ...)

Information about memberships or person is likely to be stored in an external
database and there is no use in duplicating them inside the DEMO Machine, as
explained in [2].

The action model implementation differs from the DEMO, so let’s go through
the Volley club business rules and see how they are expressed in the DEMO
Machine.

Action Rule for A1(1) is represented by an external fact and a causal rule.
The external fact contains all the business conditions that are needed in order to
evaluate, whether a person is eligible for a membership. The LogicalProposition
is there merely to suggest what logic should be used to evaluate such fact. The
real logic then lies in the outside world implementation, and it calls the database.
A benefit of this approach is that we do not need to change the model when this
business rule is modified. A new implementation version is simply plugged in,
and the system goes on.

The causal rule T1RequestedCausalRule is there to implement the action
part (state transition) of the AM rule. It says: “When an instance of trans-
action1 is in state Requested and fact IsMemberElegibleFact is evaluated as
True, then add a cAct with SettlementType=Perform and Intention=Promise
to the transaction instance agenda. If the fact is evaluated as False, then add a
cAct with SettlementType=Perform and Intention=Decline to the transaction
instance agenda.” This explanation may seem to be more complicated than the
previous action rule, but it covers much more scenarios. Adding of an enforcing
cAct is used instead of a direct state transition, because the transition may be
forbidden by some conditional rule. The state transition also needs to be allowed
by the transaction or the composition axiom. In case of multiple rules enforcing
different state transitions, a priority should be assigned to the rules.

IsMemberElegibleFact = ExternalFact("Is member eligible for application

?",

LogicalProposition = "Person.Age >= Minimal_Required_Age",

VolleyClubCalculationEngineId)

T1RequestedCausalRule = CausalRule(T1, Requested, IsMemberElegibleFact,

cAct(T1, T1.Current, T1.Current.Executor, Promise, Perform),

cAct(T1, T1.Current, T1.Current.Executor, Decline, Perform))

Action Rule for A1(2) – is represented by a causal rule and an external
fact. The external fact will be always True in this case since there are no business
conditions. The causal rule is expressed bellow and it says: “If the transaction
instance of type T1 is in state Promised and the TrueExternalFact is evaluated



28 M. Skotnica et al.

as True, then add a cAct that (i) performs creation of a new instance of T2 that
will be a child of the current T1 transaction instance and (ii) will be in state
Created to the current transaction instance agenda”.

T1_Promised_CausalRule = (T1, Promised, TrueExternalFact, cAct(T1, T1.

Current, T1.Current.Executor, Create(T2, 1), Perform), null)

An interesting problem is that the transaction instance T1 can get into state
Promised multiple times. Does it mean that it should create a new instance
of T2 each time it gets there? And does it depend on some external system?
In this model, the creation of unwanted transactions is controlled by the 1..1
cardinality defined in the PSD. However, for generic purposes, we introduced a
possibility for external fact implementation to return a number of transactions
to be created together with the fact result. This is the way, how we can control
how many transactions are created.

Another problem is in determining the executor actor instance for a created
transaction instance of T2. It is clear in this particular model that the mem-
bership payer will be the same person as an aspirant member. However, it is
not formally defined. We do delegate this problem to the outside world imple-
mentation. Once it is notified about the created instance of T2, it has all the
information it needs to assign the executor. More empirical experience shows,
whether this is sufficient, or a more sophisticated solution needs to be designed.

This proof of concept implementation does not contain the composition
axiom, and therefore the rules to create child transactions are not implemented,
as well.

Action Rule for A1(3) – is represented by a causal rule and an exter-
nal fact. The external fact is a business rule that determines whether the paid
amount was enough. The causal rule then performs accept or reject.

IsPaidAmountEnoughFact = ExternalFact("Is paid amount for membership

enough?",

LogicalProposition = "this.Membership.AmountToPay <= this.Membership.

Payment.AmountPaid", VolleyClubCalculationEngineId)

T2StatedCausalRule = CausalRule(T2, Requested, IsPaidAmountEnoughFact,

cAct(T1, T2.Current, T2.Current.Executor, Accept, Perform),

cAct(T2, T2.Current, T2.Current.Executor, Reject, Perform))

Action Rule for A1(4) – is represented by a conditional rule and a com-
munication fact. We only want the execution phase to be allowed when the child
transaction of T1 instance is in state Allowed. We capture such fact using a com-
munication fact that says: “Are all current transaction instance children with
type T2 accepted?”. If there is no child transaction with type T2, the fact is
evaluated as Undefined.

The conditional rule says: “If there is a cAct with Intention=State and Set-
tlementType=Allow within the current transaction instance agenda and the
fact IsMembershipPaidFact is not evaluated as true, then a cAct with Inten-
tion=State and SettlementType=Restrict is added to the current transaction
agenda.” Simply put, the transaction instance state Stated can be only reached
when the fact is True.



DEMO Machine 29

IsMembershipPaidFact = CommunicationFact("Is membership paid?",

CommunicationFactExpression = "this.children<T02>.all(t => t.state ==

accepted)", VolleyClubCalculationEngineId)

T2StatedCausalRule = ConditionalRule(T1, IsMembershipPaidFact, State)

5.3 Volley Club Outside World Implementation

The outside world consists of the implementation of external facts, transaction
relation provider, and state change receiver. It can be implemented in any pro-
gramming language, as long as it provides values required in the definitions. In
our proof of concept implementation, we created a simple implementation of
such system that accessed a database and returned relevant values. However, a
detailed description of such implementation is not relevant for purposes of this
paper.

5.4 Step by Step Execution

In this section, we will provide detailed description of what happens in the
execution of Volley club model during the happy-flow scenario.

At first, a Volley club enterprise application is created, and an implementa-
tion of the outside world is attached. The Activity Log shows all the changes
in the running enterprise application, and we present all steps of the simulation
bellow.

Step 1 – We create enterprise positions and attach them to actor roles. Then we
assign actors to enterprise positions. Marek is going to be a Customer, which is
an enterprise position with actor roles Aspirant member and Payer. Elisabeth is
going to be an Employee – the Membership starter since she works in the Volley
club.

Step 2 – Marek would like to be a member of Volley club, so he initiates a new
transaction 1 instance and selects its executor to be Elisabeth. He is prepared
to do a request of the membership, but he needs to fill out the starting day.
He fills today and performs the request. Because there is nothing to restrict
Marek’s request, the transaction moves to state Requested. New Membership
object is created, and it stores the data Marek entered. In state T1 Requested,
a causal rule is defined and therefore evaluated. Marek is 27 years old, and
that is enough to be a member of Volley club. The causal rule adds enforcing
cAct to the agenda, and it moves the transaction to state Promised. In the
Promised state, there is a conditional rule that restricts the State from being
performed before the membership is paid. The communication fact is evaluated
as Undefined, because there is no accepted child T2. No interaction was required
from Elisabeth.

New transaction T01 was created with name=T01.1.

T01.1:Request:Allow

Initiator of T01.1 performed Request.



30 M. Skotnica et al.

T01.1:Request:Allow,T01.1:Request:Perform

Fact "Is member eligible for application?" was evaluated as True.

T01.1:Promise:Allow,T01.1:Decline:Allow,T01.1:RevokeRequest:Allow,T01.1:

Promise:Perform

Fact "Is membership paid?" was evaluated as Undefined.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T01.1:State:Restrict

Step 3 – Elisabeth received a request from Marek, and she would like to deliver
him the membership. However, she needs to ask for a payment first, and therefore
she initiates a new transaction 2. After the transaction 2 was initiated, the
conditional rule was evaluated again. Now, the result of communication is not
Undefined but False. This is because the T2 exists.

New transaction T02 was created with name=T02.2.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Request:Allow,T01.1:

State:Restrict

Step 4 – Elisabeth calculated a membership fee for Marek, and she requested
a membership payment. The communication fact is still False.

Initiator of T02.2 performed Request.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Request:Allow,T01.1:

State:Restrict,T02.2:Request:Perform

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Promise:Allow,T02.2:

Decline:Allow,T02.2:RevokeRequest:Allow,T01.1:State:Restrict

Step 5 – Marek promises to pay for the membership. Before he states the
payment, he needs to fill the amount to pay based on the requested amount
created by Elisabeth. He fills 30 Euro and states the payment. When transaction
2 is stated, a causal rule that validates if the paid amount is valid is activated.
The sum of money matches and transaction 2 is accepted. Communication fact
“Is membership paid?” is finally evaluated as True.

Executor of T02.2 performed Promise.

Fact"Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Promise:Allow,T02.2:

Decline:Allow,T02.2:RevokeRequest:Allow,T01.1:State:Restrict,T02.2:

Promise:Perform

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:State:Allow,T02.2:

RevokePromise:Allow,T01.1:State:Restrict

Executor of T02.2 performed State.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:State:Allow,T02.2:

RevokePromise:Allow,T01.1:State:Restrict,T02.2:State:Perform

Fact "Is paid amount for membership enough?" was evaluated as True.

Fact "Is membership paid?" was evaluated as False.



DEMO Machine 31

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Accept:Allow,T02.2:

Reject:Allow,T02.2:RevokeState:Allow,T02.2:Accept:Perform,T01.1:State

:Restrict

Fact "Is membership paid?" was evaluated as True.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:RevokeAccept:Allow

Step 6 – Elisabeth is allowed to state the membership, and she does so. The
communication fact “Is membership paid?” was evaluated once more because
transaction 2 could have changed in the meantime.

Executor of T01.1 performed State.

Fact"Is membership paid?" was evaluated as True.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:RevokeAccept:Allow,T01

.1:State:Perform

T01.1:Accept:Allow,T01.1:Reject:Allow,T01.1:RevokeState:Allow,T02.2:

RevokeAccept:Allow

Step 7 – Marek accepts the membership creation.

Initiator of T01.1 performed Accept.

T01.1:Accept:Allow,T01.1:Reject:Allow,T01.1:RevokeState:Allow,T02.2:

RevokeAccept:Allow,T01.1:Accept:Perform

T01.1:RevokeAccept:Allow,T02.2:RevokeAccept:Allow

Step 8 - Marek is a proud member of Volley club. We can see that his record
was created in the database. The TransactionId is there to associate the DEMO
engine transaction instance identifier with the membership record. The relation
could be also stored inside the DEMO engine as transaction instance’s external
identifier.

6 Conclusions and Further Research

In this paper, we proposed a theoretical computation model called the DEMO
Machine, and we demonstrated its capability to simulate DEMO models on a
Volley club example. We strive to contribute to developing model-driven sys-
tems based on DEMO models. However, there are still many topics for further
research. Apart from the specific topics mentioned in the text, we would like to
stress the evolvability of DEMO models and its consequences, alignment with
existing business process management systems, and adoption of DEMO-based
systems for the end users, so they are easy to use and comprehend.

Acknowledgement. This research has been supported by CTU SGS grant No.
SGS16/120/OHK3/1T/18.

References

1. Nuffel, D., Mulder, H., Kervel, S.: Enhancing the formal foundations of BPMN by
enterprise ontology. In: Albani, A., Barjis, J., Dietz, J.L.G. (eds.) CIAO!/EOMAS
-2009. LNBIP, vol. 34, pp. 115–129. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01915-9 9

http://dx.doi.org/10.1007/978-3-642-01915-9_9
http://dx.doi.org/10.1007/978-3-642-01915-9_9


32 M. Skotnica et al.

2. Skotnica, M., Kervel, S.J.H., Pergl, R.: Towards the ontological foundations for
the software executable DEMO action and fact models. In: Aveiro, D., Pergl, R.,
Gouveia, D. (eds.) EEWC 2016. LNBIP, vol. 252, pp. 151–165. Springer, Cham
(2016). doi:10.1007/978-3-319-39567-8 10

3. Van Kervel, S.J.H.: Ontology driven enterprise information systems engineering.
TU Delft, Delft University of Technology (2012)

4. Guizzardi, G.: Ontological foundations for structural conceptual models, vol. 015.
University of Twente, Enschede (2005)

5. Dietz, J.L.G.: Enterprise Ontology Theory and Methodology. Springer, Heidelberg
(2006)

6. Van Kervel, S., Dietz, J., Hintzen, J., Van Meeuwen, T., Zijlstra, B.: Enterprise
ontology driven software engineering. In: Proceedings of the 7th International Con-
ference on Software Paradigm Trends, ICSOFT 2012, pp. 205–210 (2012).

7. Figueira, C., Aveiro, D.: A new action rule syntax for DEmo MOdels based auto-
matic worKflow procEss geneRation (DEMOBAKER). In: Aveiro, D., Tribolet,
J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174, pp. 46–60. Springer, Cham
(2014). doi:10.1007/978-3-319-06505-2 4

8. Huysmans, P., Oorts, G., Bruyn, P., Mannaert, H., Verelst, J.: Positioning the
normalized systems theory in a design theory framework. In: Shishkov, B. (ed.)
BMSD 2012. LNBIP, vol. 142, pp. 43–63. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37478-4 3

9. Krouwel, M.R., Op ’t Land, M.: Combining DEMO and normalized systems for
developing agile enterprise information systems. In: Albani, A., Dietz, J.L.G.,
Verelst, J. (eds.) EEWC 2011. LNBIP, vol. 79, pp. 31–45. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21058-7 3

10. Op’t Land, M.: Exploring normalized systems potential for dutch MoD’s Agility
(2011). Accessed 25 April 2014

11. Turing, A.M.: On computable numbers, with an application to the entscheidung-
sproblem. Proc. London Math. Soc. s2–42(1), 230–265 (1937)

12. Dietz, J.L.: The Essence of Organization - an Introduction to Enterprise Engineer-
ing. Sapio bv (2012)

13. Jan, D., Jan, H.: Theories in Enterprise Engineering Memorandum - TAO
14. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simula-

tion, 3rd edn. Prentice Hall, Upper Saddle River (2000)
15. Dietz, J.L.G.: Enterprise ontology - understanding the essence of organizational

operation. In: Chen, C.S., Filipe, J., Seruca, I., Cordeiro, J. (eds.) Enterprise Infor-
mation Systems VII, pp. 19–30. Springer, Dordrecht (2006)

http://dx.doi.org/10.1007/978-3-319-39567-8_10
http://dx.doi.org/10.1007/978-3-319-06505-2_4
http://dx.doi.org/10.1007/978-3-642-37478-4_3
http://dx.doi.org/10.1007/978-3-642-37478-4_3
http://dx.doi.org/10.1007/978-3-642-21058-7_3


http://www.springer.com/978-3-319-57954-2


	A DEMO Machine - A Formal Foundation for Execution of DEMO Models
	1 Introduction
	2 Research Question
	3 Theories Used and Related Work
	4 DEMO Machine
	4.1 DEMO Model Definitions
	4.2 DEMO Enterprise Application Definitions
	4.3 DEMO Axiom Definitions
	4.4 DEMO Model Simulation

	5 Proof of Concept -- Volley Club
	5.1 DEMO Model
	5.2 DEMO Machine Model
	5.3 Volley Club Outside World Implementation
	5.4 Step by Step Execution

	6 Conclusions and Further Research
	References


