Chapter 1
The Geometric Meaning of Curvature: Local
and Nonlocal Aspects of Ricci Curvature

Frank Bauer, Bobo Hua, Jiirgen Jost, Shiping Liu, and Guofang Wang

Abstract Curvature is a concept originally developed in differential and Rieman-
nian geometry. There are various established notions of curvature, in particular
sectional and Ricci curvature. An important theme in Riemannian geometry has
been to explore the geometric and topological consequences of bounds on those
curvatures, like divergence or convergence of geodesics, convexity properties of
distance functions, growth of the volume of distance balls, transportation dis-
tance between such balls, vanishing theorems for Betti numbers, bounds for the
eigenvalues of the Laplace operator or control of harmonic functions. Several of
these geometric properties turn out to be equivalent to the corresponding curvature
bounds in the context of Riemannian geometry. Since those properties often are
also meaningful in the more general framework of metric geometry, in recent
years, there have been several research projects that turned those properties into
axiomatic definitions of curvature bounds in metric geometry. In this contribution,
after developing the Riemannian geometric background, we explore some of
these axiomatic approaches. In particular, we shall describe the insights in graph
theory and network analysis following from the corresponding axiomatic curvature
definitions.
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2 F. Bauer et al.
1.1 The Origins of the Concept of Curvature

The concept of curvature was first introduced in mathematics to study curves in
the plane or in space. The aim was to quantify the deviation of a curve from
being a straight line, that is, how “curved” it is, in a way that was intrinsic, that
is, did not depend on its parametrization. In fact, the shape of a curve in the
plane is completely characterized by the—possibly varying—curvature at its points.
(For a curve in three-dimensional space, an additional invariant, the torsion, is
needed.) This having been relatively easily understood, mathematicians then wanted
to proceed to surfaces in space. The obvious idea was to investigate the curvature of
curves on the surface. In particular, through each point on such a surface, we have
a one-dimensional family of orthogonal directions, and one can therefore look at
suitable curves on the surface with those tangent directions. This was worked out
by mathematicians like Monge and others, but in fact, this approach confused two
different aspects. This was only clarified by Gauss [36] in 1827. The point is that
while all curves are intrinsically alike and can only possibly differ by the way they
sit in the plane or in space, surfaces possess their own intrinsic geometry. Different
surfaces, regardless of how they sit in space, in general are not isometric, not even
locally. That is, you cannot map a piece of one surface onto another one without
stretching or squeezing it in some directions. The standard example is the distortion
in maps of the surface of the earth where one projects a piece of a (roughly) spherical
surface onto the flat plane and thereby necessarily distorts relative distances or
angles, depending on the chosen projection scheme. On the other hand, one and
the same piece of surface can sit differently in space. Here, the standard example is
a sheet of paper that you can roll into a cylinder or (part of) a cone.

Gauss then disentangled these two aspects, the interior and exterior geometry of
surfaces. His crucial discovery was that there exists a curvature measure, later called
the Gauss curvature K, that solely depends on the interior geometry of a surface and
is independent of how the surface sits in space. Another curvature measure, the mean
curvature H, in contrast describes the exterior geometry, that is, how the surface is
embedded or immersed in space. These curvature concepts, and what they mean for
the geometry of curves and surfaces in space, are presented in [30, 47].

In this chapter, we shall only be concerned with the interior geometry of surfaces
or other metric spaces. Therefore, our starting point is the Gauss curvature. It was
Riemann [74] in his habilitation address in 1854 who conceived the grand picture
of an intrinsic geometry of spaces of arbitrary dimension around the fundamental
concept of curvature. This lead to the development of Riemannian geometry. A
reference is [47] which the reader is invited to consult for background, further devel-
opments and perspectives, and for proofs of the results from Riemannian geometry
that we shall now discuss. For a historical commentary on the development of
geometry, we refer to [74].
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1.2 A Primer on Riemannian Geometry: Not Indispensable

1.2.1 Tangent Vectors and Riemannian Metrics

In this section, we work in the smooth category and assume that all objects possess
all the differentiability properties that will be required for our computations. We
consider a d-dimensional differentiable manifold M. Such a manifold can be locally
described by coordinates taking their values in R?. These coordinates are more
or less arbitrary, beyond some obvious requirements. The question then is how to
switch from one coordinate system to another one. The convenient calculus for this
purpose is the tensor calculus. This calculus employs some conventions:

¢ Einstein summation convention
a'b; = Zaibi 1.1)

Thus, a summation sign is omitted when the same index occurs twice in a
product, once as an upper and once as a lower index, with conventions about
placing the indices to be described below. In particular:

* When G = (g;);; is a metric tensor, the inverse metric tensor is written as G!'=
(g"):), that is, by raising the indices. In particular

1 wheni=k%

8gn = 0= 0 wheni # k. (12)

* More generally,
v = giiuj and v; = g’ (1.3)
In particular, this implies that for the Euclidean metric g; = §;, there is no

difference between upper and lower indices.

A tangent vector for M at some point represented by xg in local coordinates x is
an expression of the form

V=0_ (1.4)

this means that it operates on a function ¢ (x) in our local coordinates as

0
V@)oo = v

X [x=x0

(1.5)
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The tangent vectors at a point p € M form a d-dimensional vector space, called
the tangent space T,M of M at p. Since we have written a tangent vector in local
coordinates, the question then is how the same tangent vector is represented in
different local coordinates y with x = f(y). Applying here and in the sequel always
the chain rule, we get

0yl 9
=’ . 1.
v ox’ dyJ (1.6)

Thus, the coefficients of V in the y-coordinates are v’ g}yc ], With this transformation
rule, the result of the operation of the tangent vector V on a function ¢, V(¢), is
independent of the choice of coordinates.

A vector field then is defined as V(x) = v'(x) 32,-, that is, by having a tangent
vector at each point of M. As indicated above, we assume here that the coefficients
vi(x) are differentiable.

Returning to a single tangent vector, V = v’ az ; at some point xy, we consider a

covector w = w;dx' at this point as an object dual to V, with the rule
) =4 (1.7)
yielding
widx' (v’ 9 ) = wiv’8l = wj’ (1.8)
i Bxf i j iV . .

We write this as w(V), the application of the covector w to the vector V, or as V(w),
the application of V to .
We have the transformation behavior

dx' = dy® (1.9)

required for the invariance of w(V). Thus, the coefficients of @ in the y-coordinates
are given by the identity

. oxi .
widx' = w; | dy’. (1.10)
ayj

The transformation behavior of a tangent vector as in (1.6) is called contravariant,
the opposite one of a covector as (1.10) covariant.

A 1-form then assigns a covector to every point in M, and thus, it is locally given
as w;(x)dx’.

Having derived the transformation of vectors and covectors, we can then also
determine the transformation rules for other tensors. A lower index always indicates
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covariant, an upper one contravariant transformation. For example, the metric
tensor, written as g;dx’ ® dx’/, with g; = (Bi 0 ai ;) being the product of those two
basis vectors, operates on pairs of tangent vectors. It therefore transforms doubly

covariantly, that is, becomes

axt Ox/

o B
gy ayﬁdy Q dy”. (1.11)

gi(f(y)

The metric tensor provides a Euclidean product of tangent vectors,

(V, W) = gjv'w’ (1.12)
for V. = ! 32,-, W = w azi' In this formula, v and w' transform contravariantly,
while g; transforms doubly covariantly so that the product as a scalar quantity
remains invariant under coordinate transformations.

Equipped with a Riemannian metric, one can introduce all the notions and carry
out all the constructions that are familiar from Euclidean geometry. For instance,
two vectors V, W are called orthogonal if (V, W) = 0.

It is a basic property of tensors that computations can be carried out pointwise.
Therefore, at a given point, we can choose our coordinates or our frame of tangent
vectors conveniently. In particular, we can introduce Riemann normal coordinates
at the point under considerations. In those coordinates, we have a basis ¢; = azf of
tangent vectors that satisfy

a 0

Oxi’ Ox/

8ij = ( ) = 8, (1.13)

(with §;; = 1 for i = j and = 0 otherwise), and also
I = O0foralli,j, k. (1.14)

The Christoffel symbols F]j( will be defined below in (1.32).

Note, however, that (1.13) and (1.14) can only be achieved at a single point at a
time, and not throughout a local neighborhood. In fact, the curvature tensor, which
will be introduced below, provides the local obstruction for achieving these relations
throughout some local neighborhood.

1.2.2 Differentials, Gradients, and the Laplace-Beltrami
Operator

For a function ¢, we have its differential

dp = " dx', (1.15)
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a 1-form; this depends on the differentiable structure, but not on the metric. The
gradient of ¢, however, involves the metric; it is defined as

;00 9

o 1.16
ox/ Ox! ( )

grad¢p = g
A characteristic property of the gradient of a function ¢ is that it is orthogonal to
the level hypersurfaces ¢ = c. In fact, when V € T,M is tangent to such a level
hypersurface, it satisfies

0
V(g) = vk ¢ _ 0. (1.17)
ox*
When V then satisfies (1.17), we have
9 0
(grad ¢, V) = gug"’ ¢.vk _ 9 vk =0, (1.18)
ox/ dxk

that is, grad ¢ and V are orthogonal, indeed.
There also is a formula for the product of the gradients of two functions ¢, ¥,

AP LOY 0 0y

de, grady) = gug’ " = o 1.19
(grad . grad ) = gug”, 8", =8" 4 ;o (1.19)
Next, the divergence of a vector field Z = Z' az ; 18
1 90 . 1 9 . 0
divZ := . 7)) = , NZ, ). 1.20
IV /8 0x/ (VsZ) /8 0x/ <\/gg ( ox’ >) (1.20)

Geometrically, the divergence can be interpreted as the measure of the rate of change
of the volume when flowing in the direction of the vector field Z.
This allows us to define the Laplace—Beltrami operator

. 19 0
Af = div gradf = e i (¢ggv a;{i)' (1.21)

(Please note that the sign convention adopted here differs from that of Jost [47].)
A function f : 2 — R on some domain §2 C M is called harmonic if

Af = 0. (1.22)
Below, we shall introduce the volume form dvol of a Riemannian metric, see (1.34)

with the help of which we can then compute the L>-product of square integrable
functions f, g as

(f.g) = / F)g(@dvol(x). (123)
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We then have

(Afv g) = _(gradfs gradg) = (fv Ag) (124)

for smooth functions f, g.
The eigenvalues of A on a compact Riemannian manifold M, that is, those A for
which there exists some nontrivial function f3, called an eigenfunction, with

Afy + A =0, (1.25)

contain important geometric invariants about the geometry of M. All eigenvalues
are real because A is a symmetric operator by (1.24). The choice of sign in (1.25) is
such that all eigenvalues are nonnegative. Of course, Ao = 0 always is an eigenvalue
with a constant eigenfunction. Or putting it differently, a harmonic function is an
eigenfunction for the eigenvalue 0, and on a compact M, all harmonic functions are
constant by the maximum principle. When M is connected, all other eigenvalues
are positive. (More generally, the multiplicity of the eigenvalue 0 equals the number
of connected components of a Riemannian manifold.) The eigenvalues are usually
numbered in increasing order, that is, when M is connected, they are

0=y <A <A <.... (1.26)

Of course, one may also study the spectrum of noncompact Riemannian man-
ifolds, but in that case, the spectrum needs no longer be discrete, and we do not
consider that here.

There is a more abstract and more general definition of the Laplace operator in
Riemannian geometry. For a p-form @ = ¢ (x)dx"! A---Adx? with 1 < i < ...i, <
d, we have

d
3 D -
do = ?;;C)dx"/\dx”/\---/\dx’f’. (1.27)
=1

We can then define the formal adjoint d* of d w.r.t. the Lz-product (1.23), that is,

(d*f.g) = (f.dg) (1.28)

for all functions f, g for which these expressions are well-defined, e.g., smooth with
compact support. We can then define the Laplace operator on p-forms via

Aw = —(dd* + d*d)w. (1.29)

A differential form w is called harmonic if Aw = 0. On a compact Riemannian
manifold, @ is harmonic if and only if

do =0and d*w = 0. (1.30)
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For functions, that is, O-forms, the definition (1.29) agrees with the earlier (1.21). On
a compact Riemannian manifold, harmonic functions are constant, but in general,
there exist nontrivial harmonic forms.

Details can be found in [47]. We should alert the reader to the fact that here we
are using a different sign convention for Laplacians than in [47], in order to conform
to usage in graph theory below.

1.2.3 Lengths and Distances

Equipped with a Riemannian metric, one can measure the length of curves. Let [a, b]
be aclosed interval in R, y : [a, b] — M a (smooth) curve. The length of y is defined
as

b
L) = [ Vatwonioioa (131)

L(y) does not depend on the parametrization of y, that is if ¢ : [«, B] — [a, D] is a
change of parameter, then

Ly o) = L(y).

On a Riemannian manifold M, we can then define the distance between two
points p, g via

d(p,q) :=inf{L(y) : y : [a,b] = M piecewise smooth curve with y(a) = p, y(b) = q}.

Any two points p, g in a connected Riemannian manifold can be connected by a
piecewise smooth curve, and d( p, ) therefore is always defined.

Shortest curves are called geodesic. When they are parametrized proportionally
to arc length, that is, if

L(c|j 1) = (2 — t1)L(c) whenevera < t; <t < b,
they satisfy the following equations
() + Gi(x(t))fcj(t)}ck(t) =0, i=1,...,d (1.32)

with the Christoffel symbols

Iy = Zglé(gjli,k + 8key — &ikt)s
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where

and

d
8jtk = k 8jt-

In fact, even though not all solutions of (1.32) need to be globally length minimizing,
they will nevertheless be called geodesics. Actually, any geodesic is locally mini-
mizing, that is, it realizes the distances between any two sufficiently close points on
it. As the example of the great circles on the sphere shows, which are geodesics, but
no longer minimizing beyond a pair of antipodal points, geodesics need not globally
minimize distance. (In fact, compact Riemannian manifolds like the sphere always
possess closed geodesics, that is, geodesics that return to their starting point (with
the same direction they were starting with) and are parametrized on the unit circle.)

We point out that a geodesic is not just a length minimizing curve, but also carries
a particular parametrization, one that is proportional to arc length.

Equation (1.32) is a system of second order ODEs, and the Picard—Lindelof
theorem yields the local existence and uniqueness of a solution with prescribed
initial values and derivatives, and this solution depends smoothly on the data.

1.2.4 Volumes

On a Riemannian manifold, we can not only measure lengths and distances, but also
volumes. The issue of measurability can be checked in local coordinates, and so we
need not address it here. When §2 C M then is measurable, we define its volume as

Vol(£2) := / dvol(x) := / J/gdx (1.33)
Q 2
with the volume form

dvol := \Jgdx := \/ det(g;)dx. (1.34)

Lengths of curves and volumes of sets, in particular of the distance balls
U(p,r):={qgeM:d(p,q) <r}forr>0, (1.35)
then are the relevant metric quantities. Their behavior characterizes the geometry of
a Riemannian manifold. In order to control them, Riemann introduced the curvature

tensor that yielded invariants with which one can control distances between points
and volumes of balls.
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1.3 Curvature of Riemannian Manifolds

From our presentation of Riemannian geometry via tensor calculus, every quantity
seemed to depend on the choice of local coordinates. In fact, it is not difficult to
see that by a suitable choice of local coordinates, one can make the metric tensor
become the unit matrix at any given point p,

gii(p) = §j. (1.36)

Moreover, Riemann discovered that in addition, one can make also all first deriva-
tives vanish at that point by a suitable choice of local coordinates,

gijix = O forall i,j, k. (1.37)

Coordinates satisfying (1.36) and (1.37) are called (Riemann) normal coordinates.
However, these relations can in general only be achieved at a single point, that is,
unless we are dealing with a Euclidean metric, we cannot have (1.36) or (1.37)
simultaneously for all points in some open set.

Or to put it differently, we seek quantities that can distinguish between different
metric structures, like the geometry on a sphere and that of Euclidean space. Ideally,
in the spirit of Riemannian geometry which works with infinitesimal quantities,
such invariants should be computable at any point. The preceding tells us that such
quantities cannot be constructed from the metric tensor and its first derivatives at
a given point. In contrast, in general the second derivatives of the metric cannot
be made to vanish at a given point by a suitable choice of local coordinates. The
obstruction will be given by the curvature tensor. And the curvature tensor then will
furnish us a set of invariants that characterizes the local, and to a certain extent also
the global geometry of a Riemannian manifold.

1.3.1 Covariant Derivatives

In order to have a more invariant scheme of computation, we shall work with the
covariant derivative of Levi-Civita.

Definition 1.1 The covariant derivative V satisfies
d (0 ..
Da = I ok forall i,j (1.38)

and is extended to all vector fields V = v 2, via the product rule

ox!
9 awid 9
\Y J = IV . .
SV o T et TV o (1.39)
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Moreover,

Y B j
V., B,?:" v o w Vaf-i v PE (1.40)
With this notation, the geodesic equation becomes
dc
4 s =0 (1.41)
where we use the transformation rule
d dx’ 9
= . 1.42
dt dt ox? ( )

The geometric meaning is that the tangent vector is covariantly constant along the
curve, or in more intuitive terms, the tangent vectors at different points are parallel
to each other. In that sense, a geodesic is the Riemannian analogue of a Euclidean
straight line.

1.3.2 The Curvature Tensor; Sectional and Ricci Curvature

Since 1':;‘ = 1';5‘, we have

0
\) =V,

axi Ox/ o Ox1

for all i, j. (1.43)
Higher derivatives, however, in general do not commute, and we define
Definition 1.2 The curvature operator R is defined by

0

R(Bxi’

ad
aj):Va‘Vab—Va_Va_. (1.44)
X.

axt  ox/ axJ  oxt

We shall see below that this operator contains the basic invariants of a Riemannian
metric. But first, we want to express it in local coordinates and define some further
quantities. In local coordinates, we write

I N I
R(axi’ axj) axt = Rt (149

We put

Rklij = gkaZ'j,
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i.e.

Riey = <R<aii’ aif) aif’ aik>' (1.46)

When we choose Riemann normal coordinates, this becomes
1
Ryeyj = 5 (8jk.ti + 8iekj — 8jt ki — Gik.tj)- (1.47)

Definition 1.3 The sectional curvature of the plane spanned by the (linearly
independent) tangent vectors X = £ ai"’ Y = ¢ ai" € TM of the Riemannian
manifold M is

KX AY):= (RX,Y)Y,X)

X A Y2
_ RieEn&n' (1.48)
gingje (§'Eknnt — Eiginknt) '
_ RiuE g nt
(8ikgje — &ijgre)EME*nt
(IXAYP? = (X, X)(Y,Y)— (X, Y)?).
Definition 1.4 The Ricci curvature in the direction X = &' i,. e T'M is
Ric(X, X) = ﬂ(R(X 9 ) 9 X> (1.49)
=8 Coni ) ot ) :
In local coordinates, the Ricci tensor is
Ry = g/ Ry. (1.50)
The Ricci tensor is symmetric,
Rix = Ry. (1.51)

Finally, the scalar curvature is

R = g*Ry.

The indices k and [ appear in different orders on the two sides of (1.46), according to the
convention of Jost [47] that made an attempt to mediate between the different conventions in use
in Riemannian geometry.
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The preceding quantities are the basic invariants of a Riemannian metric. For
a surface, at any point there only is a single tangent plane, and the corresponding
sectional curvature is nothing but the Gauss curvature of that surface. The Ricci
curvature for a vector X is (up to a normalization constant ! , that will therefore
occur repeatedly in subsequent formulae) the average of the sectional curvatures of
all the different tangent planes containing the vector X. Again, for a surface, as there
is only one tangent plane containing X, it is again the Gauss curvature. In higher
dimensions, of course, the sectional curvatures provide more refined invariants than
their averages, the Ricci curvatures. Nevertheless, the Ricci tensor does contain a lot
of information about a Riemannian metric, and in the sequel we shall be concerned
with analogues of the Ricci tensor. Finally, the scalar curvature is the average (again,
up to a normalization factor [ll) of the Ricci curvatures of the tangent vectors at a
given point.

So, what does the curvature of a Riemannian manifold tell us about its geometry?

1.3.3 The Geometric Meaning of Sectional Curvature

A curve is just a curve and nothing else, that is, an object without any interesting
intrinsic geometry. Its internal structure is trivial, in the sense that any two curves
have the same internal structure. And a geodesic simply is locally a shortest
connection, and since any two points in a complete Riemannian manifold can be
connected by a shortest geodesic, that fact does not carry any specific information.
In order to probe the geometry of a Riemannian manifold, one needs to look at the
relation between different geodesics. The simplest such setting is the collection of
all geodesics emanating from one and the same point p. Let us consider two such
geodesics, ¢ (1), c2(t), with ¢1(0) = ¢2(0) = p, parametrized by arc length, that is,
d(ci(t), p) = t for sufficiently small # > 0,i = 1, 2. The crucial quantity then is the
distance between those geodesics as a function of ¢,

f(@) = d(c1(1), ca()). (1.52)
In the Euclidean plane, we have
f@ =yt (1.53)

with a constant y that depends on the angle between c¢; and ¢, at the origin p. In
contrast, on the unit sphere, we have

f(t) = ysint, (1.54)
whereas the relation in the hyperbolic plane is

f(t) = ysinht. (1.55)
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This already is the typical behavior, in the sense that on spaces of positive sectional
curvature, the distance between geodesics behaves like a trigonometric function,
whereas in spaces of negative curvature, geodesics diverge at an exponential rate.

Of course, the curvature is a quantity that is defined pointwise, and on a general
Riemannian manifold, it will therefore vary from point to point. But when it has a
lower or an upper bound, geometric conclusions follow. That is, when it is < x or >
A, then geodesics locally diverge at least as fast or at most as slowly as on a space of
constant curvature « or A, resp. That is, an upper/lower curvature bound controls the
distance between geodesics from below/above. Here, a space of constant curvature
K locally has the geometry of a scaled sphere when K > 0, of Euclidean space for
K = 0, or of a scaled hyperbolic space for K < 0. The scaling factor is determined
by the value of K. For instance, a space of constant curvature K > 0 is a sphere of
radius jK. The smaller the radius, the larger the curvature, which of course agrees
well with our intuition.

Thus, bounds on the sectional curvature control the distance function between
geodesics, or conversely, when we have a control over the local divergence of
geodesics, we can infer curvature bounds. This is a conceptually very useful result,
as we can turn it around. Geodesics as locally distance minimizing curves exist
in more general spaces than Riemannian manifolds, the so-called geodesic length
spaces, see e.g. [46]. For instance, polytopes are not smooth, but one can easily
define the lengths of curves and determine the distance minimizing ones. And on
such spaces, one can then check for the divergence of geodesics. We can then
simply declare such a geodesic length space to have curvature < K or > K when its
geodesics locally exhibit the corresponding distance bounds. This was the approach
taken by Busemann. A somewhat more restrictive curvature concept by Alexandrov
also uses certain convexity properties of distances between geodesics. For a detailed
treatment, we refer to [17, 46] and the references given there.

Putting it more abstractly, the idea simply is to identify a local property on a
Riemannian manifold that is equivalent to a uniform infinitesimal curvature bound.
And when this property then can be meaningfully defined on a class of spaces that
is more general than Riemannian manifolds, we can then use that as a synthetic
definition of a curvature bound. Of course, this then may be no longer compatible
with a colloquial understanding of curvature as a deviation of smooth surfaces from
being planar and thereby also abandon the aesthetic appeal of curvature, but such a
state of affairs is not uncommon in mathematics.

1.3.4 The Geometric Meaning of Ricci Curvature

Since we have just found a local geometric characterization of sectional curvature
bounds, we may now wish to ask whether something similar is possible for Ricci
curvature as well. As it turns out there are two characteristic consequences of (lower)
Ricci curvature bounds which we shall now describe.
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1.3.4.1 Volume Growth

The first concerns the volume of balls. Whereas the sectional curvature contains
information about the distance between geodesics, Ricci curvature yields estimates
for the volume of distance balls U(p,r) = {g € M : d(p,q) < r}. We have the
Bishop—Gromov volume comparison theorem.

Theorem 1.1 Let M be a d-dimensional Riemannian manifold with the lower Ricci
curvature bound

Ric > (d — 1A, (1.56)

which is an abbreviation for Ric(X, X) > (d — 1)A(X, X) for any tangent vector X,
or in local coordinates RyX'X' > (d — 1)Ag;X'X'. (The normalization here is such
that the model space M), of dimension d and constant sectional curvature A (i.e.,
a sphere, Euclidean or hyperbolic space depending on the sign of A) has Ric =
(d — 1)A.) Let V) (r) be the volume of a ball of radius r about any point in M. Let
p EM.

Then

Vol(U(p, 1))
Vi(r)

is monotonically decreasing in r. (1.57)

Of course, we have

. Vol(U(p,r))
lim =

tim 1, (1.58)

that is, infinitesimally, all volumes agree with the Euclidean one. The Ricci curva-
ture then tells us about the local deviation from the Euclidean volume. However,
only a lower Ricci curvature bound yields such a volume control. An upper Ricci
curvature bound is not strong enough to make the quantity in (1.57) monotonically
increasing. For that, one would rather need an upper sectional curvature bound; this
is the Theorem of P. Giinther.

1.3.4.2 The Weitzenbock and the Bochner Formula

The Weitzenbock-Bochner formula relates the Laplacian and the Ricci curvature.
This is not surprising, as both involve the trace of a Hessian, that of a function in the
case of the Laplacian and that of a metric in the case of Ricci.

Actually, the formulas are more general than that. Let ey, ...,es (d = dim M)
be a local orthonormal frame field (that is, (e;, ;) = &), with the dual coframe
fielde', ..., ¢! (thatis, ¢/(¢;) = &}). Then the Laplace-Beltrami operator acting on
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p-forms (p =0,1,...,d) is given by
A= Vez,-e,- +é A t(ej)R(e;, e)). (1.59)

Here, the second covariant derivative is defined as V)Z(Y = VxVy — Vy,y, and by
letting the e; form a Riemann normal frame, we can achieve Vv(,i ¢ = 0. ¢ stands for
a contraction operator, and R denotes a certain curvature expression. The details are
not so relevant here; they can be found in [47]. Here, we only want to emphasize the
following general aspect. The Weitzenbock formula (1.59) expresses the Laplace-
Beltrami operator on p-forms as the difference of a covariant second derivative
operator me and a curvature term. The second derivative operator is a negative
operator. Therefore, when the curvature term is also negative, so then is A. This
can be used as follows. Let w be a harmonic p-form, that is, Aw = 0. We then
compute A{w, w) with the help of (1.59) and, assuming that the curvature term is
positive, obtain an expression that is negative unless @ = 0. But on a compact
manifold, f Af = 0. But by what we have just said, for f = (w,w), ® being a
harmonic p-form, the integrand is pointwise negative unless @ = 0. Thus, @ must
vanish identically, and there is no harmonic p-form. Here, we do not spell this out
in detail, because in general, it is not so easy to interpret the curvature term in the
Weitzenbock Formula (1.59) geometrically. For 1-forms, however, the curvature
reduces to the negative Ricci curvature. This will allow us to derive interesting
geometric consequences.

Theorem 1.2 (Bochner’s Formula) For a smooth function f on a Riemannian
manifold M, we have

Adf.df) = 2(Adf.df) + 2|Vdf|> + 2 Ric(df. df). (1.60)

Here, Adf is the Laplacian of the 1-form df, as defined in (1.29). Note that since
d*> = 0, we have Adf = —dd*df = dAf. Also, Vdf is the Riemannian version of
the Hessian of the function f.

We can also desymmetrize (1.60) to obtain, for smooth functions f, g,

Aldf,dg) — (df . dAg) — (dg.dAf) = 2(Vdf, Vdg) + 2 Ric(df, dg) . (1.61)
Proof Equation (1.60) can be derived from (1.59). Here, however, we want to

provide a direct proof, which, in fact, is not very difficult. We use Riemann normal
coordinates as in (1.13), (1.14). We have

Adf = dAf
o 0%f T
= d(d" _ ok
d(g oxiox/ &'l axk)
PF 1 of
= ’ - imi im.ik — Siikm) - )dx.
(axiaxiaxk 2(g ik ¥ Bimik = Biik )8x’”)d
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We then compute

9? s of of
_ 5 ’fovf 420 Pf oo | gl of of
T Oxkoxi Oxkoxi & (0x%)20x% Ox/  (0x%)2 Oxi Ox/

;» wWe obtain

Using the preceding formula for (3x?)3'2f o

= 2|Vdf|)* + 2((Adf, daf) + ;(gki,kj + 8kjki — 8kk,ij) o af) — af.

oxt dx/ TR o axi
af of
= 2(Adf, df) + 2|Vdf|> + (gisj + 8kjsi — Skkij — &ij k) Sl Ol
and with (1.47)
af a
= 2(Adf,df) + 2|Vdf|* + 2R; f. f.
ox' ox/

= 2(Adf,df) + 2|Vdf|* + 2 Ric(df, df).
Thus, we have
Aldf.df) = 2(Adf.df) + 2|Vdf|> + 2 Ric(df . df).
For a harmonic 1-form @ on a compact manifold M, which, according to (1.30)
satisfies dw = 0 = d*w, and which therefore, by the Poincaré Lemma, can locally
be written as w = df for some function f, (1.60) becomes

Alw, ») =2|Vw|? + 2 Ric(w, w). (1.62)

As a consequence, we obtain Bochner’s Theorem.

Corollary 1.1 If M is a compact Riemannian manifold of positive Ricci curvature,
then all harmonic 1-forms vanish. Thus, the first cohomology group of M vanishes,

H'(M,R) = 0. (1.63)

Proof Integrating (1.62) and using [, Afdvol = [, divgradf dvol = 0 for a
function f on a compact manifold by the divergence theorem, yields

o:/ Alw, w)dvol = 2/ (|Vo|? + Ric(w, »))dvol. (1.64)
M M
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When the Ricci curvature is positive, the integrand on the right-hand side
is pointwise nonnegative. It therefore has to vanish identically, and since
J Ric(w, w))dvol > 0 unless @ = 0, the claim follows.

1.3.4.3 Eigenvalue Bounds

There is another important consequence of a lower Ricci curvature bound, namely
a bound for the smallest nontrivial eigenvalue A; (1.26) of the Laplace-Beltrami

operator A from below. This is the estimate of Lichnerowicz. This also follows
from Bochner’s formula.

Theorem 1.3 Let M be a compact d-dimensional Riemannian manifold with Ric >
(d— 1)p, with p > 0; this means that for every tangent vector X

Ric(X,X) > (d — 1)p(X, X), (1.65)
or equivalently, in local coordinates
RyiX'X' > (d — 1)pgiX'X'.
Then the first eigenvalue of A satisfies
AL > dp. (1.66)

Proof The proof comes from Bochner’s formula (1.60). As in the proof of Corol-
lary 1.1, integrating this formula yields

0 = (Adf.df) + (Vdf,Vdf) + /MRic(df, df). (1.67)
We have
— (Adf.df) = (4f, Af) < d (Vdf, Vdf) (1.68)
by the Schwarz inequality. Therefore, (1.67) and (1.65) yield
(4f., Af) = d p(df . df). (1.69)
If now f is an eigenfunction of A for an eigenvalue A, i.e.,

Af +Af =0,
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we obtain

Mdf. df) = —A(Af.f) = (Af. Af) =z d p(df . df) (1.70)

whence either df = 0, that is, f is constant, and hence A = 0, or (1.66) holds.
By Obata’s theorem, the estimate (1.66) is optimal, and when equality holds, M is a
sphere of constant sectional curvature p.

Again, however, the situation is asymmetric in the sense that an upper Ricci
bound does not imply an upper estimate for A;.

1.3.5 Harmonic Functions

One may also use the Bochner formula (1.60) to derive local gradient estimates for
harmonic functions f on domains £2 C M when the Ricci curvature of M is bounded
from below. Here, we do not even need to assume that the bound be positive.

In order to develop our geometric intuition and to motivate some of the
subsequent constructions, we now also want to relate harmonic functions to the other
property following from a lower Ricci bound, the control of the volume growth. We
start with the observation that a function # on a Euclidean domain 2 C R is
harmonic iff it satisfies the mean value property, that is,

1
h(x) = Vol(U(x. 1) Joen h(y)dy (1.71)

for all balls U(x,r) C 2. Again, in the spirit of the above local interpretation of
curvature bounds, we can then define a generalized harmonic function /# on a domain
§£2 C M by the requirement that

1

"D = Vorwen) o

h(y)dvol(y), (1.72)

where now, of course, the volume refers to the Riemannian metric on M. On a
general Riemannian manifold, however, we can require (1.72) only for some fixed
value r > 0, in contrast to the Euclidean mean volume property which holds for all
r > 0. This approach was developed in [44] and [46]. With this, we can relate the
regularity properties of such generalized harmonic functions to volumes of distance
balls. In fact, when x,y satisfy d(x,y) < 2r, then U(x,r) N U(y,r) # @, and
consequently

|A(x) — h(y)| is controlled by |h(2)|dvol(z).

(1.73)

Vol(U(x, 7)) J(w(xn Uy m\ W) NU(y.)
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(There is the slight subtlety that the volumes of U(x,r) and U(y,r) need not
agree, but this is not important for the geometric intuition we are trying to develop
here.) The crucial observation is that the larger vm(gg(,g(r):l;)()y ") the better the
estimate (1.73) becomes. That is, for such an estimate, we should not only control
the volumes of single balls, but rather the relative size of the volume of the
intersection of two balls. Again, this can be controlled by a lower Ricci bound,

as in Theorem 1.1. Even better, since

1 1
h(x) — h(y) = VolU G 1) Jucen h(z)dvol(z) — Vol(U(y. 1) Sy h(z)dvol(z),
(1.74)

if we could somehow pair the points & of U(x, r) with the points 1 of U(y, r) in an
optimal manner, that by some transfer n = T'(§) in such a manner that 2(§)—h(T(§))
becomes small then we could even improve our estimate. Thus, we are naturally
lead to the issue of the optimal transport of the points in one ball to those of
another ball. The approach to the regularity of generalized harmonic maps by
considering volumes of intersections of balls was first pursued in [45]. Anticipating
some subsequent constructions, the connection between optimal transport and the
regularity of generalized harmonic maps is developed in [18]. We should also
mention the important result of Zhang [90] on the Lipschitz regularity of harmonic
maps on Alexandrov spaces with lower Ricci bounds (a concept to be defined
below).

1.4 A Nonlocal Approach to Geometry

Riemannian geometry constitutes an infinitesimal approach to geometry, in the
sense that the crucial operators like tangent vectors operate by evaluating derivatives
of smooth objects at a point. Nonlocal operations are derived operations in
Riemannian geometry, insofar as they are obtained by processes of integration from
infinitesimal ones. A nonlocal approach to geometry, in contrast, would take objects
or operations that depend on two points as its basic ingredients. For instance, a
vector field then is a function with two arguments, p : M x M — R. Infinitesimal
objects could then be obtained by limiting processes where the two points approach
each other. However, there also exist spaces where such limiting processes do not
make sense, and in those cases only a nonlocal approach to geometry is feasible.

Such nonlocal approaches have been much utilized in image processing. There,
the basic model is that of Kindermann—Osher—Jones [53] and Gilboa—Osher [37].
Our approach to nonlocal geometry, however, will be different from that of Gilboa
and Osher [37] and other papers in image processing, as well as from that of
Bartholdi et al. [9]. It was developed in [41-43], and as we believe, is more
systematic and natural.
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We start with a function w : M x M — R. w(x, y) may express the similarity or
vicinity between the points x and y. We shall usually assume that w is nonnegative,

w(x,y) > 0, but w #0, (1.75)
and symmetric,
o(x,y) = o(y,x). (1.76)
We also put
o(x) = /Ma)(x, y)dy, (1.77)

and assume, of course, that this is < co. We view @ as the density of a metric.

We use @(x) and w(x,y) to define the L2-norms for functions u : M — R and
vector fields p : M x M — R. The scalar product for functions with respect @ (x) is
defined by

s = [ o

In particular, this yields the Lf(-) -norm for functions,

Jull, = g = [P

For vector fields p,q : M x M — R, we define their scalar product with respect to
w(x,y)

P92 = / p(x, y)q(x, y)w(x, y)dxdy.

The difference vector field of a function u : M — R is defined by

Du(x,y) = u(y) — u(x). (1.78)

The definition of the difference vector field does not depend on @ or w, but we shall
now use the metric to define a divergence operator as an adjoint.

For a vector field p : M x M — R, its divergence operator divp : M — R is now
defined by

1
divp(e) = / (p(x.y) — p(y.0))o(x. y)dy. (1.79)
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The divergence operator satisfies forany u : M — Randp: M xM — R,
(Du,p);2 = —(u,divp),2. (1.80)

Our nonlocal geometry becomes analogous to Riemannian geometry when we
view @ (and w) as a (Riemannian) metric on §2 and Du as the differential of u
which does not depend on the metric @ and div as the gradient operator with respect
to the metric @ (and w).

From our new nonlocal variational setting we also obtain a nonlocal Dirichlet
functional

1 1
D(u) := 2(Du,Du)L(zE =, /Q /Q(u(x) —u(y)*w(x, y)dxdy.

(In image processing, the normalization factor i is used instead, but here we work
with ; for reasons of compatibility with the rest of this contribution.) Analogously
to what we did above in Riemannian geometry (1.21), we define the Laplacian of a
function as the divergence of the difference vector field of a function u.

Apu(x) = ;div (Du) = a_)zx) /(u(y) —ux))o(x,y)dy = u(x) —u(x). (1.81)

The Laplace operator satisfies

(Asu,v);2 = —(Du,Dv) 2 = (u, Agv),2 (1.82)

for all L2-functions u, v. We shall encounter this Laplace operator again below as the
normalized Laplacian of graph theory. Equation (1.81) is also the Euler-Lagrange
equation for the nonlocal Dirichlet functional.

When applied to image analysis (see e.g. [2, 76, 89] for background on PDE and
variational methods in image processing), the nonlocal weight w(x, y) should reflect
the statistical dependencies between the pixels x and y in collections of images.
(An alternative conceptualization would be that of Kimmel et al. [52] who work
with a varying Riemannian metric obtained by pulling back a fixed metric in the
feature space under consideration via a map u that represents the varying image
during the denoising process.) We now sketch the application of the preceding to
image denoising as developed in [42, 43]. The task of image denoising is to recover
original images u from noise-corrupted versions f

f=u+v.

The variational or PDE based methods constitute an important class of image
denoising strategies, see for [2, 25, 65, 75]. The variational methods for denoising
images balance a fidelity term that measures the deviation of the resulting image u
from the noisy input f and a regularizing or smoothing term that suppresses irregular
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oscillations, which are supposed to stem from the noise, in the image u. The basic
idea can be seen in the classical H' model

/(| gradu|2(x) + Au —f)z(x))dx, (1.83)

where, in the absence of a specific Riemannian metric, gradu would be the
Euclidean gradient. Of course, we can also assume that there is some other
Riemannian metric in the background with respect to which gradient and integration
can be defined. A is a parameter that balances the relative weights of the two
terms, and in some contexts, it also arises as a Lagrange multiplier. However, this
scheme blurs images quickly, and hence is not directly useful in image denoising.
The problems stem from the gradient term. Based on the nonlocal geometry just
developed, we [42, 43] have then proposed the following H' model

F(u) = ; / / (u(y) — u(x))*w(x, y)dydx + A / (u —f)?(x)@ (x)dx. (1.84)

This is different from Gilboa-Osher’s nonlocal H! model [37] (which simply works
with A [(u — f)*(x)dx as the fidelity term) insofar as here we have derived the
fidelity term from the same geometry as the regularization term. The Euler-Lagrange
equation for (1.84) is

Azu = A(u —f), (1.85)
or equivalently
u(x) —u(x) = —Au—f)(x). (1.86)
The variational problem can also be seen as a constrained problem:
w = argmin{D(w) | lu 1, = [M|,0°}, (1.87)
where o2 is the variance of an additive noise added in a noisy image f and |M|,, is

the area of M with respect to w, i.e. [M|, = [, @(x)dx. Hence in this case A is also
a Lagrange multiplier of this constrained problem and can be computed by

1 _
A= _|M|w02 /M(u —f)Asum. (1.88)

Again, in order to understand the geometric properties of the solutions of (1.85),
one should start with the corresponding harmonic functions, that is, the solutions of

Agu=0 (1.89)
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on some domain §2, that is,
u(x) = u(x) (1.90)

for all x € £2. Thus, we are again in the situation described at the end of Sect. 1.3.5.
This time, we would need some control on intersections of weighted sets, that is, on

d(x) — d(y) (1.91)

for x,y € M. Again, as we shall argue below, some concept of generalized Ricci
curvature is adequate here.

1.5 Generalized Ricci Curvature

Over the years, several notions of generalized curvature for metric spaces have
been proposed and investigated. For a long time, research was concerned with
sectional curvature. The reason is that, as explained above, sectional curvature
inequalities can be characterized in terms of relations involving only distance
functions. Thus, no further structure beyond the metric is needed in principle. In
contrast, Ricci curvature in Riemannian geometry involves some averaging and
contains information about volumes and eigenvalues of a Laplace operator which
again we have introduced and discussed in terms of some local averaging. Such
an operation, however, needs a measure. Therefore, in order to define some kind
of generalized Ricci curvature, we need some measure on our space in addition to
the metric, that is, the distance function. In recent years, this has become a rather
active research topic, see for instance [64, 69, 81]. We shall not attempt to survey
this here, but only mention that notions of generalized Ricci curvature for possibly
discrete spaces have been introduced by Bonciocat—Sturm [22], Ollivier [70, 71] and
Bakry and Emery [4]. Here, we shall discuss the latter two approaches, as they are
more suited to those geometric topics that we are interested in, namely eigenvalue
bounds and the regularity of harmonic functions. Another approach, also based on
optimal transport and probability spaces, but using the gradient flow of the entropy,
is presented in Chap. 5.

First, however, we shall develop another notion of generalized Ricci curvature
for simplicial, or more generally, CW complexes, due to Forman [32], which takes
Bochner’s Theorem 1.2 and its Corollary 1.1 as its starting point and does not require
a measure.
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1.5.1 Forman’s Ricci Curvature

This notion of Ricci curvature is defined for CW complexes satisfying the following
combinatorial condition: When, for two p-dimensional cells o1, o2, it happens that
B C @ N & for some (p — 1)-cell B, then & N & = p. This condition will
henceforth be assumed. It is satisfied for simplicial, or more generally, polyhedral
complexes.

The notation & < B, or equivalently, 8 > « means that the cell « is contained in
the boundary of the cell 8. Two p-cells «;, o, are called upward neighbors if there
isa (p + 1)-cell y with y > «; for both i = 1,2, and they are called downward
neighbors if there is (p — 1)-cell 8 with B < «; for both i = 1, 2. They are called
transverse neighbors if they are both up- and downward neighbors, and parallel
neighbors if they are either up- and downward neighbors, but not both.

When we indicate the dimension p of a cell o, we shall also write o”.

Definition 1.5 The curvature of the p-cell « is
Fy(o) = H{(p+ 1)-cells y > a} + #{(p—1)-cells B < a} — #{parallel neighbors of a}.
(1.92)

More generally, when we have a weighted cell-complex with weights w,, the
curvature of a weighted p-cell « is

F@) =w( ) "+ 3

yrtlisq Y Br—l<a

LIPS VN

arFa yrtlsey>a pr—l<a,B<a \/WaW&
With this notion of curvature, Forman [32] can derive an analogue of the Weitzen-
bock formula (1.59). In fact, by Eckmann [29], there is a natural analogy between
the (co)homology of simplicial (or more general) complexes and the Hodge-
de Rham cohomology of p-forms on Riemannian manifolds. For details of the
following, see for instance [49]. Let C, be the vector space of real p-chains, that is,
formal linear combinations of the p-cells of our complex. We then have a boundary
operator

d,:Cp— Cp1, (1.94)

which satisfies d,—1 o d, = 0 and therefore defines a homology theory. We can also
introduce a scalar product on C, by letting different cells be orthogonal and setting

(a, @) = w, for some w, > 0. (1.95)

(In the unweighted case, we should simply put w, = 1 for all cells.)
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With this product, we can define the adjoint 37 : C,—1 — C;, of 9, via
(0xpr o) = (B, B,a”). (1.96)
As in (1.29), we can then define a Laplace operator via

0, = =070, — 9,0,

, on p-cells. (1.97)

Importantly, Forman found a decomposition that is analogous to (1.59),
0, =B,—-F, (1.98)

where B,, is a negative operator analogous to V2 in (1.59), and F), is given by (1.92)
in the unweighted and by (1.93) in the weighted case.

In particular, one can then derive an analogue of Bochner’s vanishing Theo-
rem 1.1,

Corollary 1.2 Let M be a finite regular CW-complex satisfying the above combi-
natorial condition. If F,(co) > 0 for all p-cells a, then

H,(M,R) = 0. (1.99)

We notice that the preceding corollary holds for all p, and not just for p = 1. There
are, of course, also corresponding versions of Corollary 1.1. but we don’t want to
enter the underlying algebraic aspects of the curvatures appearing in those versions,
which all come, of course, from (1.59). Rather, we specialize Forman’s curvature to
dimension 1, to obtain the Forman-Ricci curvature for 1-dimensional cells, that is,
edges e. Then (1.92) becomes

Ric(e) := Fi(e) = #§{2-cells f > e} + 2 — ff{parallel neighbors of e}. (1.100)

In particular, when M is a graph, that is, there are only vertices (0-cells) and edges
(1-cells), then for an edge ¢ = (v, v2)

Ric(e) = 4 — degv; — deg vy, (1.101)

where the degree deg v of a vertex is defined as the number of its neighbors, that
is, other vertices connected to v by an edge; see Sect. 1.6.1. Of course, in that case,
the condition of Corollary 1.2 is only satisfied in the trivial case where the graph
consists of a single edge. Actually, the conclusion of that Corollary continues to
hold on a connected graph when Ric(e) > 0 for all e and Ric(ep) > 0 for at least one
eo. That is satisfied when the graph is a path (see Sect. 1.6.1 for the definition. The
Corollary becomes more powerful on complexes that also contain 2-dimensional
cells, because in that case, we may get a positive contribution ff{2-cellsf > e}
in (1.100).
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In contrast to the other generalized Ricci curvature notions that we shall
present below, Forman’s version is of a purely combinatorial nature. This is in
line with the approach of Eckmann [29] who, as already noted, developed the
analogy between the theory of the Hodge-Laplace operator (1.29) operating on
p-forms on Riemannian manifolds and the combinatorial properties of the discrete
Laplace operator operating on p-simplices in simplicial complexes. For the issue of
consistent choices of weights w,, across the different dimensions p, we refer to [39].
In this context, we should also mention the work of Garland [35] who derived and
used a combinatorial Bochner formula on Bruhat-Tits buildings (for a geometric
interpretation, see [51]).

1.5.2 Ollivier’s Ricci Curvature

We now present Ollivier’s definition. We first need to introduce the L'-Wasserstein
distance W;. For more general on Wasserstein distances (also called Wasserstein
metrics), we refer to Chap. 5.

Definition 1.6 Let (X, d) be a metric space equipped with its Borel sigma algebra,’
and let m;,my be (Radon) probability measures on X. The L'-Wasserstein or
transportation distance between the probability measures m; and m; is

Wi(my,mp) =  inf / d(x,y)d&(x,y), (1.102)
g€lT0mm2) J (xy)exxx

where [ [(m;, m,) is the set of probability measures £ that satisfy

/ dE(x,y) = my (0. / dE(x,y) = mo(). (1.103)
yeEX x€X

Of course, on a discrete space, like a graph, the integrals are replaced by sums.

The conditions (1.103) mean that we start with the measure m; and end up with
my, or in stochastic terminology, that the marginales of £ be m; and m,. When we
consider the distance d(x, y) as the transportation cost from x to y, then W, (my, my)
is the minimal cost to transport the mass of m; to that of m,. £ is considered as a
transfer plan between m; and m,, or a coupling of the two random walks governed
by m; and my, respectively. Those £ which attain the infimum in (1.102) are called
optimal couplings. Optimal coupling exist under rather general conditions, but they

The Borel sigma algebra is the set of all subsets of X that are obtained from the open balls by
taking complements, finite intersections and countable unions. For the sets in the Borel sigma, one
can then define their volumes w.r.t. to a Radon probability measure. The technical details are not
so important for understanding the essence of the subsequent constructions.
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need not be unique. A comprehensive reference for the theory is [83]. A shorter
introduction is [31].

The transportation distance W, (m;, m,) can also be expressed by the Kantorovich
duality formula,

WiGmi,m) = sup [ / ) - / Xf(y)dmz(y)], (1.104)
X€ Y€

fLip(f)=1

where Lip(f) := sup,, 7 (2)(;’; §y )l is the Lipschitz seminorm of f.

Definition 1.7 Let (X,d) be a complete and separable metric space equipped
with its Borel sigma algebra and a family of probability measures m,,x €
M which depend measurably on x and which have finite first moments, i.e.,
/ 4 d(x, y)dm,(y) < oo. For any two distinct points x,y € X, the (Ollivier-) Ricci
curvature of (X, d, m) then is defined as

Wl (mxs my)
d(x,y)

The probability measures m, could also be interpreted as the probability densities
associated to a random walk, as we shall elaborate upon below when we discuss
graphs.

A positive lower bound for k(x,y) has many geometric consequences. For
instance Ollivier [71] observed the following Bonnet-Myers type result.

K(x,y)=1— (1.105)

Theorem 1.4 Suppose that k(x,y) > k > 0 for all x,y € X. Then for any x,y € X
one has

Wi (8, my) + Wi (8y, my)

d(x,y) < , (1.106)
K(x,y)
and hence
diam(x) < > SUPx W1(8em) (1.107)
K
Proof d(x,y) = Wi(:.8,) < Wi(6r,my) + Wilme,my) + Wi(8,,my) <

Wi(8x, my) + (1 —k)d(x,y) + Wi(8y, my).

On a Riemannian manifold, however, this result is weaker than the usual Myers
Theorem [68], which scales differently with the Ricci bound. For other Myers type
theorems for tessellations, we refer to Keller’s contribution to this volume (Chap. 6,
Sect. 6.2.3).
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1.5.3 Curvature Dimension Inequality

We now present Bakry and Emery’s approach to a generalized lower bound for
the Ricci curvature [4]. The theory is systematically developed in [8]. As the
approach of Forman, it starts from a Weitzenbdck-Bochner identity, but proceeds
very differently, by abstracting the algebraic aspects of the Bochner formula (1.61)
which states that on Riemannian manifolds

1 1 1
JAldf.dg) — (df.dAg) — (dg.dAf) = (Vdf. Vdg) + Ric(df.dg). ~ (1.108)
The symmetric version of this formula, (1.60), is
1 .
L AldfI* = (df . dAf) + ||V 3 + Ric(df . df). (1.109)

As a motivation for the algebra, we recall the product formula

1 1 1
ZA(fg) = 2ng + 2gAf+ (df , dg). (1.110)

Bochner’s formula establishes an important connection between geometric and
analytic properties of a manifold. Many analytical consequences of a lower Ricci
curvature bound are established through it, see for instance the proof of the Lich-
nerowicz estimate Theorem 1.3. However on more general spaces than Riemannian
manifolds, it is not clear how to define the Hessian Vdf and the Ricci tensor. But
using the simple inequality
2
ivarlg = .
n

an immediate consequence of the Bochner identity is that on an n-dimensional
manifold whose Ricci curvature is bounded from below by K one has

JAP = (df.dAf) + | (AP + Kldr P (L111)

We have used this already in the proof of Theorem 1.3. The advantage of this
inequality over the Bochner identity (1.109) is that now all the objects in (1.111)
can easily be defined on metric measure spaces.

It was the important insight by Bakry and Emery [4] that one can use the
inequality (1.111) as a substitute for the lower Ricci curvature bound on spaces
where a direct generalization of Ricci curvature is not possible. Indeed, Bakry and
Emery take Eq. (1.111) as the starting point of their approach. We will briefly outline
their approach now.
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For the sake of generality, we state the following definitions for a general
differential operator L instead of restricting ourselves to the Laplace-Beltrami
operator A on a Riemannian manifold. However, it might be helpful to keep the
Laplace-Beltrami operator as one particular example in mind.

Definition 1.8 For a differential operator L we define the gradient form I" by

2I(f,9)(x) = (L(f - g) —f - L(g) — L(f) - g) (x) (1.112)

and the iterated gradient form I, by

2I5(f.8) = LI'(f.g) = I'(f.Lg) = I"(Lf. g). (1.113)

Here, (1.112) should be seen as an abstract version of (1.110), and (1.113) then
of (1.108).

Definition 1.9 We say that an operator L satisfies the curvature dimension inequal-
ity CD(n, K) (CD-inequality for short) if, for any function f

B = W+ KTO).

Note that for L = A, this definition is nothing but the inequality (1.111) written in
the I" notation.

The curvature dimension inequality has proven to be useful in various situations
and many results (including the Lichnerowicz estimate Theorem 1.3 and Myers
theorem), that require a lower bound on the Ricci curvature, could be generalized
to metric measure spaces, see [4, 5, 7]. Another important result that could be
proved in the curvature dimension inequality formalism was a generalization of the
Li-Yau gradient estimates. In the special case of an n-dimensional compact manifold
with non-negative Ricci curvature, the Li-Yau gradient estimates [58] for positive
solutions u of the heat equation Zu := (A — d,)u = 0 read

Vul?  du n
< (1.114)
u? u — 2t ’

Bakry and Ledoux [6] generalized Li and Yau’s result and could show that under
the assumption of CD(n, 0) the gradient estimate (1.114) is satisfied for diffusion
semigroups (for a definition see below) generated by an operator L.

Definition 1.10 Given an operator L, the semigroup P, = e is said to be a

diffusion semigroup if the following identities are satisfied for any smooth function
P :R—->R:

T (f,gh) =gl (f,h) +hI[(f,g) (1.115)

(@of,g) =@ (NI(f.2) (1.116)

L(® of) = ' (fIL(f) + 2" (HT (/). (1.117)
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Gradient estimates are very powerful tools in geometric analysis. In particular
they imply Harnack inequalities, heat kernel and eigenvalue estimates, see [47, 57]
for an overview. We shall discuss in Sects. 1.6.3-1.6.5 the curvature dimension
inequality and the Li-Yau gradient estimates for graphs.

The curvature dimension inequality formalism is also very useful for infi-
nite dimensional analysis. In particular, we mention that CD(co, K) implies a
dimension-free version of the gradient estimate, the Bakry-Emery gradient estimate
(see Theorem 1.13 below).

1.6 Ricci Curvature and the Geometry of Graphs

We now apply both the geometric intuition developed in the previous sections
and Ollivier’s concept of generalized Ricci curvature (Definition 1.7), Bakry and
Emery’s curvature dimension inequality (Definition 1.9) to the special case where
the underlying metric space is a graph.

1.6.1 Basic Notions from Graph Theory

In order to prepare for the discussion about the relation between Ricci curvature and
the geometry, we introduce some basic definitions and constructions from graph
theory, including the (normalized) graph Laplacian. For more details, see [48] and
the references given there.

We first consider a locally finite unweighted graph G = (V, E). V is the vertex
and E the edge set. We say that x,y € V are neighbors, and write x ~ y, when they
are connected by an edge. The degree d, of a vertex x is defined as the number of
its neighbors. “Locally finite” then means that every vertex has only finitely many
neighbors, or equivalently, that d, is finite for every x € V.

While for the moment, we might wish to exclude self-loops, that is, edges
connecting a vertex with itself, subsequently, in Sect. 1.6.2.2, we shall have to
allow for their possibility. We also assume that G is connected, that is, for every
pair of distinct vertices x,y € V, there exists a path between them, that is, a
sequence x = Xxg,X1,...,X, = y of distinct vertices such that x,—; ~ x, for
v = 1,...,m. Since we can decompose graphs that are not connected into their
connected components, the connectivity assumption is no serious restriction. A
cycle in G is a closed path xo, x, ..., X, = xo for which all the vertices xi, ..., x,
are distinct. Form = 3,4, 5, ..., we speak of a triangle, quadrangle, pentagon,... A
graph without cycles is called a tree. A graph is called bipartite if its vertex set can
be decomposed into two disjoint components V7, V, such that whenever x ~ y, then
x and y are in different components. Any tree is bipartite. More generally, a graph is
bipartite iff it has no cycles of odd length. In particular, it has no triangles.
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Triangles will play a crucial role in our discussion of Ricci curvature on graphs.
Therefore, we now introduce some corresponding notation. For two vertices x, y, we
let N,, be the set of all vertices z that are neighbors of both x and y. Equivalently,
this is the set of all vertices z for which x, y, z constitute a triangle. We let #(x, y)
then be the number of vertices in N,,, that is, the number of joint neighbors of x and
v, or equivalently, the number of triangles containing x and y.

We have an obvious metric d on the vertex set V. For neighbors x, y, d(x,y) = 1.
For arbitrary vertices x, y, d(x, y) is the length of the shortest path connecting x and
v, i.e. the minimal number of edges that needs to be traversed to get from x to y.

We next introduce the (normalized) graph Laplacian operating on L?-functions
on the vertex set V. Here, we use the scalar product

(v, u) ;= dev(x)u(x) (1.118)

x€V
to define L?(G). We then put

A L*(G) — [*(G)

1 1
M@= (Y v —dw) = () - v, (1.119)

Y y~x y.y~x

When we attach to each vertex x € V the measure

1 .
fy~x;
m(y) = YT (1.120)
0 else,

we see that this is the discrete version of (1.81). We point out that the definition
of the Laplacian utilized here is equivalent to that used in [26], but different from
the algebraic graph Laplacian often considered in graph theory; the latter would not
have the factor dlx . We can also consider, for neighbors x ~ y, the discrete differential

Du(x,y) := u(y) — u(x), (1.121)

the analogue of (1.78). D can be considered as a map from functions on the vertices
of G to functions on the edges of G. In order to make the latter space also an L*-
space, we introduce the product

(Du.Dv) =3 7 (u(y) = u(e)(©(3) = (). (1.122)

e=(x.y)
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Note that we are summing here over edges, and not over vertices. If we did the latter,
we would need to put in a factor 1/2 because each edge would then be counted
twice. We then have

(Au,v) = —(Du, Dv) (1.123)

for all u, v € L*(G), as in (1.82).
We now list some basic properties of A.

1. A is selfadjoint w.r.t. (., .):
(u, Av) = (Au,v) (1.124)

for all u,v € L*>(G). This is the analogue of (1.82). Of course, it follows
from (1.123).
2. A is nonpositive:

(Au,u) <0 (1.125)

for all u. This follows from the Cauchy-Schwarz inequality.

3. Au = 0 iff u is constant. In fact, when Au = 0, there can neither be a vertex
x with u(x) > u(y) for all y ~ x with strict inequality for at least one such y,
since Au(x) = 0 means that the value u(x) is the average of the values at the
neighbors of x. Since G is assumed to be connected, u# then has to be a constant
(if G were not connected, a solution of Au = 0 would have to be constant on
every connected component of G.) Of course, this is a discrete version of the
standard maximum principle argument.

We are again interested in the eigenvalues of the Laplacian, that is, in those A
with

Au+du=0 (1.126)

for some nontrivial function u € L?(G), called an eigenfunction for A. From the
properties of A just listed, we can infer some immediate consequences for the
eigenvalues.

» All eigenvalues are real, because A is selfadjoint.

» All eigenvalues are nonnegative, because A is a nonpositive operator.

* On a finite graph, the smallest eigenvalue is Ao = 0, with a constant eigenfunc-
tion (when the graph is not finite, a constant function is no longer in L?). Since
we assume that " is connected, this eigenvalue is simple. In other words,

A >0 (1.127)
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for k > 0 where we order the eigenvalues as
AM=0< A <...<Ag

and putK := N — 1.
* The largest eigenvalue Ay_; is 2 iff G is bipartite and is < 2 else.

The eigenfunctions v;, v; for different eigenvalues A;, A; are orthogonal to each
other,

(vi,v)) = 0. (1.128)

In particular, since the constants are the eigenfunctions for the eigenvalue Ay = 0,
for all i > 0, we then have

> dyix) = 0. (1.129)

We do not want to go into the more detailed properties of the eigenfunctions
here, but only mention the fact that when G is bipartite, then an eigenfunction
for the largest eigenvalue Ay_; equals a constant on one of the two classes and a
different constant on the other classes, where these two constants need to be such
that (1.129) is satisfied. For a non-bipartite graph, we do not have such a simple
highest eigenfunction, and in some sense, this is the reason why Ay_; < 2 in that
case. We refer to [11] for details and a systematic analysis of the highest eigenvalue.

The eigenvalues can be obtained from a variational principle, the Courant-
Fischer-Weyl min-max principle,

. (Du, Du)
A = min max . (1.130)
ug,...,ux E0  u€spanfug,...,ux} (Lt, M)
(ujuj)=0,Yij u#£0

In fact, the min-max is obtained for a corresponding eigenfunction. The above facts
about A and Ak can also be obtained from this formula and (1.123).

The normalized graph Laplacian that we have introduced here and whose
properties we shall also investigate below is also called Tutte’s Laplacian or the
harmonic Laplacian (though with the opposite sign convention) in graph theory,
and it should be distinguished from the algebraic or combinatorial Laplacian which
is more commonly used in graph theory and investigated in Keller’s contribution
to this volume (Chap. 6, Sect. 1.3) where it is called the uniform Laplacian. That
Laplacian is defined as

Av(x) i= Y w(y) —dw@) = Y ()~ v(@), (1.131)

Y y~x Y.y~x
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that is, without the normalization factor dlx. That combinatorial Laplacian also
encodes many important properties of graphs, and in particular, it leads to a trace
formula. Here, however, we work with the normalized instead of the combinatorial
Laplacian, because the former is the operator underlying random walks and
diffusion processes and therefore also seems to be better adapted for our approach
to discrete Ricci curvature. In particular, the reader should note that the Laplacian
used by Keller is different from that employed here, the spectral bounds of Chap. 6,
Sect. 1.3 are not directly comparable with those presented here. On the other hand,
the Laplacian discussed in Baird’s contribution (Chap. 7) is the same as ours.

1.6.2 Ricci Curvature and Clustering

In this section, we essentially describe the results of Jost and Liu [50]. As explained,
in order to define Ricci curvature, we not only need a metric, but also a measure.
Therefore, we recall the probability measures from (1.120)

1 .
0 ify ~x;

nu(y)==§ x (1.132)

0 otherwise.

We can interpret this in terms of a random walker that sits at x at time ¢t € N and
then selects a neighbor of x with equal probability dl as the target of his walk at time
t+ 1. '

Theorem 1.5 On a locally finite graph G = (V,E), we have for any pair of
neighboring vertices x, Yy,

1 , 11 , ,
kx,y)>—(1—-  —  — By 11— — _ fx.y) n f(x y)7
dx dy dx AN dy + dx dy dx \V4 dy n dx \V4 dy

where we have put
dy A dy := min{d,,d,}, d.V d, := max{d,,d,}.

Remark For the case where f{(x,y) = 0, this result was obtained in [59]. For our
purposes, however, the key point is to understand how the presence of triangles in a
graph improves the lower Ricci bound.

Proof (Sketch of the Proof of Theorem 1.5) We first establish some notation. A
vertex z is called a common neighbor of x and y if z ~ x and z ~ y. It is called
an exclusive neighbor of xif z ~ x,z £ y,z # y.

We suppose w.l.o.g.,

de =d,Vdy, dy=d;Nd,
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In order to estimate « (x, y) from below, we need a good transfer plan that moves
m, to my; here is the idea.

1. Move the mass of ! from y to y’s exclusive neighbors;
2. Move a mass of ! from x’s exclusive neighbors to x;

3. Fill gaps using the mass at x’s exclusive neighbors. Filling the gaps at common
neighbors costs 2 and the one at y’s exclusive neighbors costs 3.

The question then is whether (1) and (2) can be realized. For (1), this means that
the share of mass that y’s exclusive neighbors should receive, 1 — dl, - n(j;y ) (the total
mass minus what has to go to x or to the common neighbors of x and y) is at least
what is originally at y, i.e.,

1 ) 1 1 1 bl
IR - - —j(xAZ) >0, (1.133)
£ y £ y

recalling that we assumed d, > d,. In the situation depicted in Figs. 1.1 and 1.2
this is possible. But if, for instance, y had no exclusive neighbors, this would not be
possible.

Fig. 1.1 Starting
configuration; mass 0 at all
vertices without number
attached

=

A=
=

Fig. 1.2 Target
configuration

wn|—

n|—
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Fig. 1.3 Mass moved from 1
vertices with larger value to
those with smaller ones

3
X y
3 0
1
Similarly, for step (2) we would need
1 ) 1 1 9
po b B T T Y (1.134)
dy dy dy d. dy dcvd,

The construction of the actual transport plan then needs to consider 3 cases
according to whether the first two steps can be realized or not. For the details,
we refer to [50]; suffice it here to consider the following 1-Lipschitz function as
depicted in Fig. 1.3 and recall the duality formula (1.104).

That is, we put

0, at y's exclusive neighbors;
1, at y or common neighbors;
2, atx;

3, at X’s exclusive neighbors,

fl@) =

If there are no paths of length 1 between common neighbors and x’s exclusive
neighbors, nor paths of length 1 or 2 between the exclusive neighbors of x and y, we
have by Kantorovich duality,

Wi(msy, my) Z; [F(y) +3(d = 1 = (x, ) + #(x, ¥)] — ; (f () + 1(x.))
X y

22 ey 2(xy)
d. d, d, d.

That is, in this case, the estimate in our theorem should be an equality. In other
cases, f is not optimal for Kantorovich duality, and the estimate can be further
improved. In other words, paths of length 1 or 2 between neighbors of x and y also
affect the curvature. Thus, not only triangles, but also quadrangles and pentagons
(but not polygons with more edges) influence Ricci curvature. This aspect has been
investigated in detail in [21].
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In conclusion,

2 2 iy | 2M(xy)
, > _9 .
K Z =24 F Y ana, T dava,

So much for a sketch of the proof.

Looking at examples, the simplest one is the lattice Z¢ with edges between
vertices of Euclidean distance 1, that is, the Cayley graph for the abelian group
Z4 with the obvious set of generators. Here, when we look at the neighborhoods of
two lattice points x,y of distance 1, we get the optimal transport plan by moving
each vertex in the neighborhood of x by a distance of 1 to the nearest one among the
neighbors of y. Therefore, W, (m,, m,) = 1, and consequently, for this graph, the
Ricci curvature vanishes.

The lower bound of Theorem 1.5 is sharp both for complete graphs and for trees,
as we shall now explain. On a complete graph %, (n > 2) with n vertices, {(x,y) =
n — 2 for any x, y. Hence the inequality

e
n—1
is sharp.

For some other graphs, the lower bound of Theorem 1.5 is not sharp, however.
For instance, for polyhedral surfaces, recently Loisel and Romon [63] obtained more
precise results.

We shall now show that trees also attain the lower bound of Theorem 1.5. This
coincides with the geometric intuition of Ricci curvature developed in Sect. 1.3.4.1.
Since trees have the fastest volume growth rate, they should have the lowest Ricci
curvature.

Proposition 1.1 On atree T = (V, E), for any neighboring x, y,

11
Kk(x,y) = —2 (1 — 4 dy)+. (1.135)

Proof We shall prove that 1 + 2 (1 - a} - a} ) is also a lower bound of W;. If
X Y/ +

x or y has degree 1, say dy = 1, so that y is its only neighbor, then obviously
Wi (my, my) = 1. So only the case 1 — dlt — dlv > 0 remains.

We consider the 1-Lipschitz function

0,ifz~y,z#x;
1,ifz=y;
2,ifz =x;
3,ifz~x,z#nx

f@) = (1.136)
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Since on a tree, there is only one path joining two vertices, there is no further path
between neighbors of x and y. So f can be easily extended to a 1-Lipschitz function
on the whole graph. Then by Kantorovich duality, we have

1 1
Wilme,my) >  Bdi—1)+1)— -2
d, dy

=3- "7, (1.137)

We can also relate this to the above heuristic discussion of the relation between
Ricci curvature and the relative volume of the intersection of balls. In fact,
g, y)/dy v dy is me A my(G) := m(G) — (my — my)1(G), i.e. the intersection
measure of m, and m,. The vertices x; that satisfy x; ~ x, x; ~ y constitute the
intersection of the unit metric spheres centered at x and y, resp.

We also have an easy upper bound for the Ricci curvature of a graph.

Theorem 1.6 On a locally finite graph G = (V, E), for any neighboring x,y, we
have

K(x,y) < E%yd). (1.138)
x vV dy

Proof All masses, except those at common neighbors, have to be moved at least a
distance 1. Hence

Wi(my, my) > (1 — jx({;);)y) x 1,

and the conclusion follows from the definition of « (x, y).
We now return to graphs that may contain triangles. Watts-Strogatz [85] have
introduced the local clustering coefficient

1
c(x) == dds— 1) > txy) (1.139)

Y. y~x

in order to measure the extent to which neighbors of x are directly connected.
Expressed in words,

number of realized edges between neighbors of x

c(x) = (1.140)

number of possible edges between neighbors of x

This clustering coefficient is an important quantity in network analysis. For instance,
in social networks where the vertices represent individuals and the edges friendship
relations, the question addressed by the clustering coefficient is “How many of the
friends of my friends are also my friends?”.



40 F. Bauer et al.

We may also consider this local clustering coefficient as an average over the
ff(x, ) for the neighbors of x. As such an average, we should also try to compare it
to averaged Ricci curvature. In other words, we should consider the discrete version
of scalar curvature,

K(x) 1= ; > k(). (1.141)

¥ yy~x

This scalar curvature «(x) and the local clustering coefficient ¢(x) then control
each other.

Corollary 1.3 With D(x) := max, y~d,, we have

x_lc(x)zlc(x)z—2+

—1
d, d, v D)

Proof From Theorems 1.5 and 1.6.

1.6.2.1 Stochastic Processes on Graphs
As a preparation, we consider a graph with a lower Ricci bound
K(x,y) > k for all x ~ y, (1.142)
or equivalently,
Wi(my,my) < (1 —k)d(x,y) =1—kforall x ~y. (1.143)

We shall now interpret this in probabilistic terms as a path coupling criterion for
random walks. This translates a lower bound of the Ollivier-Ricci curvature into
a control on the expectation value of the distance between two coupled random
walks. The general tool is the Bubley-Dyer Theorem which tells us that when the
contraction property (1.143) holds for the measures m,, then it also holds for any
other pair of measures (see [23] or [56, 72]).

Theorem 1.7 For a probability measure |1, we put
PP() =) p@)my(). (1.144)

If (1.143) holds for each pair x ~ y € V, then also for any probability measures |4
andvonV

Wy (uP,vP) < (1 — k)W (., v). (1.145)
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The important consequence for us is that we can iterate (1.143) during a random
walk. Initially, two walkers are starting at x and y, with transition probabilities m,
and m,. With §, the Dirac measure at x, we have after the first step §,P!(-) :=
8,P(-) = m,(-). By iteration the distribution of a 7-step random walk starting from x
with a transition probability m, becomes

SP() = D ma)mey (6) - my_, () (1.146)

X e Xp—1

fort > 1.
Theorem 1.7 therefore implies that when (1.142) and hence (1.143) holds, then
for any ¢ and any X, y, not necessarily neighbors,

Wi (8P 8P") < (1 — k)'d(x. 7). (1.147)

In order to link this to Ricci curvature, we now consider two random walks ()_(,, 1_/,)
with distributions 6zP", §5P" that are coupled in the sense that the joint probabilities
satisfy

pX =%, Y, =) =7 F.5),

where &‘f Y (-,-) is the optimal coupling of §zP" and §5P" as in the definition of the
Wasserstein distance W;. The term W;(8zP', §;P") then becomes the expectation
value of the distance E*?d(X,, Y,) between the coupled random walks X; and Y.

Corollary 1.4 If (1.142) holds, then for any x,y € V,

EYd(X,.Y,) = Wi(&:P', 8P < (1 — b)'d(%. 7). (1.148)

1.6.2.2 Weighted and Neighborhood Graphs

Following [11], we now translate the properties of random walks into geometric
structures, the neighborhood graphs. In Sect. 1.6.2.3, we shall then use this construct
to derive eigenvalue bounds in terms of lower Ricci curvature bounds on graphs.

For this purpose, we shall need to work with a somewhat more general class of
graphs than before. More precisely, we shall need to consider weighted graphs, and
also allow for the possibility of self-loops. That is, for any x, y € V, not necessarily
different, we have a symmetric, nonnegative connection weight

Wy = Wy > 0. (1.149)
We can then declare x and y to be neighbors, x ~ y, iff w,, > 0. Of course,

the unweighted graphs that we have considered before constitute the special cases
where w,, = 1iff x ~ y and w,, = 0 else. As mentioned, here, we also allow
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for the possibility of self-loops, that is, vertices x with w,, > 0. A weighted graph
is connected if for every x,y € V, there exists a path xo = x,x,...,x, = y with
Wy >0fori=1,...,n

Remark Of course, one could also allow for non-symmetric or negative weights.
The spectrum of non-symmetric graphs was systematically investigated in [10], and
some results on graphs with possibly negative connection weights can be found,
for instance, in [12, 13]. For our present purposes, however, the class of weighted
graphs satisfying (1.149) suffices.

We now need to adapt some of the preceding constructions and results to
weighted graphs. First of all, we now define the measure m, by

Wy
my(y) = dy

X

, where now d, := way. (1.150)
y

Of course, all this and what follows reduces to our previous definitions for
unweighted graphs. We can again consider m,(y) as the probability that a random
walker starting at x moves to y in one time step. Since now possibly m,(x) > 0,
because there might be a self-loop at x, the random walker might now be lazy and
simply stay at x.

Again, the L?-product is given by

(u,v) = deu(x)v(x). (1.151)
The Laplacian now is
1
M@ = Y wev(y) = v() =Y m(»v(y) —v(). (1.152)
Ty y

As before, the Laplacian is self-adjoint and nonpositive so that, with the same
conventions as before, the eigenvalues are nonnegative real numbers. We also have
a version of Theorem 1.5 for weighted graphs, taken from [14].

Theorem 1.8 On a weighted graph, we have for neighbors x,y

K (x, >_|1- v Wy .XIX\/ X1y
(2) = d,  d, 2 d.  d,

X1 ENyy

+
. ny _ vcley s W;x . wc;ly
* Y X1 ENyy * Y +
w Wyiy w. Wyy
+ Z X1x A X1y + XX + )).
.~ d, " d. ' d,

X1 ENyy
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Again, this inequality is sharp.
With the notation (1.144), i.e.,

UP() = p@)my(),

the Dirac measure §, at x and §,P'(-) = 8,P(-) = m,(-), the distribution of a t-step
random walk starting at x with transition probability m, becomes

§P' ()= Y melx)my (x2) -, () (1.153)

X e Xp—1

for t > 1. The probability that the random walker moves from x to y in 7 steps then
is

Waxp Wepxy o Wy Jifr>1:
8P () = | ot (1.154)
e ifr=1.

We now define a family of graphs G[f] for + > 1 whose weights equal the
transition probabilities of the ¢-step random walks on the graph G.

Definition 1.11 The neighborhood graph G[f] = (V, E[t]) of the graph G = (V,E)
of order t > 1 is the weighted graph with vertex set V and edge weights

wylt] := 8P (y)dx (1.155)

from (1.154).

Obviously, G = G[1]. Also, wy,[f] > 0 if and only if there exists a path of length ¢
between x and y in G. We also remark here, without exploring this further, that the
discrete heat kernel p,(x,y) on G is

wyy[f]

Pt(x»y) = dxdy

see for instance Grigor’yan [38].

Example 1.1 We consider the following two examples.

G G2l
1 1
° ° ° 1/2W 112
112

Note that the neighborhood graph G[2] is disconnected. In fact the next
lemma shows that this is the case because G is bipartite. Note furthermore that
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E(G) £ E(G[2)).

H H[2]

112 1

For this example we have E(H) C E(H[2]).
We now list some elementary properties of the neighborhood graph GJz], its
Laplacian A[f] and the latter’s eigenvalues A;[f], taken from [11, 14].

Lemma 1.1

(i)
(ii)
(iii)
(iv)

(v)

(vi)

t even: Glt] is connected if G is not bipartite, but disconnected if G is bipartite.
And GIf] is not bipartite.

t odd: Gt] is always connected (since G is assumed to be connected) and Gt
is bipartite iff G is bipartite.

dy[t] = dy for all x € V. Hence the inner product (1.151) is the same on all the
G[1].

The Laplacian on G[t] is

Alf] = —id + (id + A)". (1.156)

Therefore, for even t, the eigenvalues of Alt] satisfy
0=2Af] <M <...<An[] < 1. (1.157)
Let d[t](x,y) be the distance on G[t] defined as the smallest number of edges

needed for a path connecting x and 'y (this is independent of the weights, except
that vertices & and 1 are connected by an edge iff wgy > 0). Then

() = di(x. ), (1.158)

with the convention d[t](x,y) = oo if G[t] is not connected and x and y are in
different components. Conversely, if E C E[t], then

d[f](x,y) < d(x,y). (1.159)

Note that at the end of Sect. 1.6.1, we had observed that the largest eigenvalue is
2 for a bipartite graph. In (1.157), in contrast, that eigenvalues is bounded by 1
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for even z. This discrepancy stems from the fact that for even 7, the graph G[t] has
self-loops which were not permitted for the graph G = G[1] in Sect. 1.6.1.

In [11], an important relation between the eigenvalues of the original graph G
and those of its neighborhood graphs was found.

Proposition 1.2

(i) If Milf] = (], then

= (1= <A< <Ayor < 1+ (1 =[] (1.160)

if t is even and
1— (=[] <A (1.161)

iftis odd.
(i) If An—1[t] < ABlt), then all eigenvalues of A are contained in

lo.1=a =z [U[1+ 0 -2 2]
for even t, whereas
Ano1 < 1= (1= Bl

foroddt.

That is, eigenvalues bounds on Gf] translate into eigenvalue bounds on the original
graph G. This is a powerful principle for estimating the eigenvalues of G as we
shall see. As the neighborhood graphs constitute a geometric representation of the
random walk on G, this can be seen as a scheme for translating properties of the
random walk into eigenvalue bounds. The scheme itself is not new, but here we can
offer an intuitive and easy to apply geometric version of it. Just read on to the next
section.

1.6.2.3 Ricci Curvature and Eigenvalues of Graphs

In this section, we assume that the graph G is finite, that is, it has finitely many, say
N, vertices, and then also finitely many edges. Here, we present the theory developed
in [14] which partially builds upon the neighborhood graph concept of Bauer and
Jost [11].

We now come to the estimates of the eigenvalues in terms of the Ricci
curvature.We can build here upon well established relations between the coupling
of stochastic processes and eigenvalue estimates, see [23, 28]. In this connection,
Ollivier [70] showed
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Theorem 1.9 When we have a lower Ricci curvature bound
Kk(x,y) = k, (1.162)
(in fact, it suffices to have this for all x ~y), then
k<A <...<Ay_1<2—k (1.163)

A problem with this estimate is that for most graphs, k < 01in (1.162), so that (1.163)
only yields a trivial estimate. We shall subsequently present the estimate of Bauer
et al. [14] which is nontrivial for all connected finite graphs that are not bipartite.
Nevertheless, in order to understand the relation between Ricci curvature and
eigenvalues, let us derive (1.163) here.

Proof We consider the transition probability operator
P: L*(G) — L*(G))

PA) =Y f(mme(y) = Y _F(3)EP(Y). (1.164)
y y

Then

P =Y f()8P' (). (1.165)
.

We construct a discrete time heat equation,

flot+ 1) —f(x0) = Af(x, 1), (1.166)

where the initial state f(x,0) = fi(x) satisfies Afi(x) = —Afi(x) = Pfi(x) — fi(x)
for A # 0. By iteration, the solution of (1.166) is

fG0) = PARE) = (1= )i ). (1.167)

Then we have for any x,y € V

1= AAG A =G0 —fG.0)]
= |P'H(E) — P
< @) —FOOED ®.F)

o

< Lip(f)EVd(X,,Y;)
< Lip(fi)(1 —k)'d(&, ).
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Here, Lip(f) is always finite since the underlying space V is a finite set. In the last
inequality we used Corollary 1.4.

Since the eigenfunction f; for the eigenvalue A is orthogonal to the constant
function, i.e. (f;, 1) = 0, we can always find x¢, yo € V such that | f1 (x0) —f1(yo)| >
0. It follows that

s < (|11 :I;|) Lip(f1)d(xo, yo)

for some positive €. This, however, leads to a contradiction when ¢ — oo, unless

=k (1.168)
[1—A] = ’
(1.168) easily implies (1.163).

Of course, the preceding proof is analogous to methods familiar in Riemannian
geometry. More precisely, the solution of the heat equation

af (x, 1)
ad

" = arn (1.169)

on a Riemannian manifold with the eigenfunction f as the initial value is f(x, ) =

fi(x)e=*, containing information about both the eigenvalue A and the eigenfunction

f1(x). The calculation in the preceding proof then is the discrete analogue of the

gradient estimate for the solution of the heat equation in Riemannian geometry.
This discrete gradient estimate is provided in

Theorem 1.10 On a graph G, the following are equivalent:

(i) The Ricci curvature is bounded from below by k, i.e. k(x,y) > k, for all x ~ y;
(ii) |P'f(x) — P'f(y)| < (1 —k)'Lip(f) holds for any function f, x ~ y andt € Z.".

Proof We have already shown that (i) implies (ii). The reverse direction follows
from the Kantorovich duality (1.104).

We shall now show how the Ricci geometry of neighborhood graphs can improve
the estimate of Theorem 1.9 and in fact obtain an estimate that is nontrivial for any
graph that is not bipartite, following [14].

Lemma 1.2 Let k be a lower bound of k on G. If E C E[t], then the curvature k|t
of the neighborhood graph Glt] satisfies

k[f](x,y) > 1 —t(1 —k)’, Vx,yeV. (1.170)
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Proof From Lemma 1.1 (vi) and Corollary 1.4 and using that the transportation
distance (1.102) is linear in the graph distance d(-, -), we obtain

Wi(s.P', 5,P") < Wi (8P, 8,P")
E (1 - k)td('xv y)
< 1(1—k)'d[1](x,y).

By the definition of the Ricci curvature, we obtain (1.170).

We can now see the upper bound of the largest eigenvalue in Theorem 1.9.
W.lo.g. k > 0, in which case E C E[f]. From Lemma 1.2 and A; > k, we know on
G,

M =1 —t(1 —k).
Then with Proposition 1.2 (i), for even ¢,
Anot <1411 (1—k).

Letting t — 400 yields Ay—; < 2 — k, indeed.
The neighborhood graph technique then leads to the following generalization of
Theorem 1.9, the main result of Bauer [14].

Theorem 1.11 Let k[t] be a lower bound of Ollivier-Ricci curvature of the neigh-
borhood graph G(t]. Then for all t > 1 the eigenvalues of A on G satisfy

I— (=)t <A <+ <Ay <141 —k):. (1.171)

If G is not bipartite, then for all sufficiently large t, k[tf] > 0, and hence (1.171) is
nontrivial in the sense that the lower bound is positive and the upper bound is < 2.

1.6.3 Curvature Dimension Inequality and Eigenvalue Ratios

In Sect. 1.5.3 we introduced Bakry and Emery’s curvature dimension inequality
in a general setting. Here we will discuss the curvature dimension inequality for
graphs. Apparently, the first paper on this subject is [77]. We also mention the recent
contribution [1] where a concept of coarse Ricci curvature from the Bakry-Emery
perspective is developed.

For simplicity, we will restrict ourselves to the graph Laplace operator A. We
recall the definition of the curvature dimension inequality from Sect. 1.5.3:
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Definition 1.12 We say that a graph G satisfies the curvature dimension inequality
CD(n, K) if, for any function f

D)= AP+ KT,

Note that for graphs I' is given by

r(f.9)m = 2; 3w (F() —FE) (8 (3) — g(x)

y~x

and A is given by Eq.(1.119). To ease notations, we assume that the graph G is
finite and unweighted in the remaining part of this section. In the graph setting,
the curvature dimension inequality was studied in [50]. We proved the following
theorem, thereby generalizing an earlier result of Lin and Yau [59].

Theorem 1.12 Every graph satisfies CD(2, t(x) — 1), where

= min (5 + 550

Again, the presence of triangles play a crucial role for the lower curvature bound.

Bakry-Emery gradient estimates for a solution u# of the continuous time heat
equation (A — d,)u = O still hold for a graph G satisfying CD(n, K). Actually,
if we ignore the role of dimension in Definition 1.12, that is, taking n = oo, the
CD-inequality is characterized by such kind of gradient estimates. Let us denote by
u(x, ) = P;f(x) a solution of the heat equation with u(-,0) = f(:). (Recall that we
used P'f for solutions of discrete time heat equations in Sect. 1.6.2.3.)

Theorem 1.13 On a graph G, the following are equivalent:

(i) CD(o0,K) holds;
(ii) T'(p.f) < e 2K'P,(I"(f)) holds for all t > 0 and all functions f.

Proof (i) = (ii): For 0 < s <, define F(s) := e 2Ksp (I ( Pi—sf)) and calculate

d
gF O = 2P (pis f) = KT (pi=sf)) = 0.

Hence F(s) < F(1).

(i) = (i): Employ the fact that P,f = f + tAf + o() to look at the gradient
estimate at t = 0.
For more details of the proof, see Proposition 3.3 in Bakry [3] or [61]. Note that the
proof does not require the diffusion property (Definition 1.10).

We should compare this result with Theorem 1.10; the latter can thus be seen as
a time-discrete version of the Bakry-Emery gradient estimate.
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Partially building upon this characterization of the CD-inequality, in [61] the
following eigenvalue ratio estimates were obtained.

Theorem 1.14 There exists an absolute constant C, such that for any graph G
satisfying CD(o0, 0) and any natural number k,

A < Cdgk* Ay, (1.172)

where dg := maX,ey d.

We remark that this estimate does not depend on the size of G. Such dimension-
free eigenvalue ratio estimates also hold in the continuous category, see [60],
improving the previous results of Funano and Shioya [33, 34]. Examples in [61]
show that in (1.172) the order of k is optimal and the dependence on d is necessary
and optimal.

We shall not elaborate on the proof for Theorem 1.14 here, but only discuss an
interesting application for the analysis of spectral clustering algorithms. Spectral
clustering algorithms are very powerful tools for data mining, see e.g. [54, 55, 82].
Such algorithms typically consist of two steps. In the first step, the first k + 1
eigenfunctions of A are used to provide coordinates for the vertices of a graph
G, thereby embedding G into R¥*!. The second step consists in partitioning the
vertex set V into small groups via the Euclidean metric (or the spherical metric after
normalization). The output will be a partition Sy, S, ..., Sk of V, such that each §;
has small expansion. Here, the expansion ¢ (S;) of S; is defined as

|E(Si, V\ S
Si) = , 1.173
o) =" ) (1.173)
where |E(S;,V \ S)| = erS,-,er\S,- 1, and vol(S;) = ) ., dx In fact, the
underlying mathematical problem is to find the (k + 1)-partition of V that attains
hy = gmin lnfllaﬁ)gﬁ(&), (1.174)

where the minimum is taken over all collections of £ 4+ 1 non-empty, mutually
disjoint subsets {Si}f;o with Uf:o Si = V. Roughly speaking, in the algorithm,
one tries to use the solutions of the optimization problem in (1.130), i.e. the
eigenfunctions of A, to approximate the solution of the optimization problem
(1.174). Therefore, the efficiency of the clustering algorithm depends on the relation
between A, and h;.

Solving a conjecture of Miclo [66], Lee et al. [55] proved the following so-called
higher order Cheeger inequalities. There exists an absolute constant C such that for
any graph G and all natural numbers £,

bt
2" < Iy < CK /Ay (1.175)
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Roughly speaking, & lies between A; and +/A;. It is an interesting question for
which kind of graphs, A is equivalent to A} up to constants, for some « € [1/2, 1].
This would indicate the efficiency of the spectral clustering algorithm when applied
to different kinds of graphs.

In [61], the following higher order Buser type inequalities were derived from
Theorem 1.14.

Theorem 1.15 There exists an absolute constant C, such that for any graph G
satisfying CD(o0, 0) and any natural number k,

C(dgk) ™ VAx < hy < Iy (1.176)

This implies that & is equivalent to +/A; up to constants for graphs satisfying
CD(00,0). Therefore, the curvature condition helps to identify a class of graphs
on which the algorithm performs poorly. A deeper understanding of the structure
of non-negatively curved graphs would provide further insight into the spectral
clustering algorithm. In this respect, it is shown that the Cartesian product of two
regular graphs satisfying CD(o0, 0) satisfies again CD(o0, 0) in [61]. (If we consider
the non-normalized Laplacian in the CD-inequality, the regularity constraints are not
needed.)

1.6.4 Exponential Curvature Dimension Inequality on Graphs

We will now discuss a modification of the curvature dimension inequality that was
introduced in [15].

Definition 1.13 We say that a graph G satisfies the exponential curvature dimen-
sion inequality at the point x € V, CDE(x,n,K) if for any positive function
f:V — Rsuch that (Af)(x) < 0 we have

()
f

We say that CDE(n, K) is satisfied if CDE(x, n, K) is satisfied for all x € V.
It is useful to note that

D) —T (f, ) (x) > i(Af)(X)z + KT (f)(x).

rgy 1 A(f?)
L(f)—-T (f, f ) = 2AF(f)—F (f, of ) (1.177)
and we define
~ r
o) = Io(f) — T (f, ;f ) ) .
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This definition might seem to be rather artificial and not well motivated. However
the exponential curvature dimension inequality is quite natural in several respects. In
[15] it was shown that for diffusion semigroups defined in Definition 1.10 (and thus
in particular of the Laplace-Beltrami operator), the exponential curvature dimension
inequality is in fact weaker than the original curvature dimension inequality.

Theorem 1.16 [f the semigroup generated by L is a diffusion semigroup, then the
condition CD(n, K) implies CDE(n, K).

An advantage of the exponential curvature dimension inequality over other curva-
ture notions on graphs is that the curvature can be arbitrarily negative. In contrast,
for Ollivier’s Ricci curvature and the classical curvature dimension inequality the
curvature is always bounded from below, see Theorems 1.5 and 1.12. There are
other properties of the exponential curvature dimension inequality that make it a
useful curvature notion. Here however, we only mention that it is the right curvature
notion for Li-Yau gradient estimates on graphs. We will discuss this issue in the next
section.

1.6.5 Li-Yau Gradient Estimate on Graphs and Its Applications

In this section we discuss the gradient estimates obtained in [15]. Bakry and
Ledoux’s general result on gradient estimates [6], discussed in Sect. 1.5.3, cannot be
applied to graphs. The reason is that the graph Laplace operator does not generate a
diffusion semigroup. However in [15] it was observed that, on graphs, for the choice
of @(f) = /f a key formula similar to a combination of (1.116) and (1.117) still
holds:

2VfAVS = Af =2 (V) (1.178)

In fact in the proof of the gradient estimate this simple equality will take over the
role of the key identity

A
Alogu= """ —|Vlogul? (1.179)
u

in the proofs in the continuous setting. In the special case of a finite graph with
non-negative curvature we have the following gradient estimate:

Theorem 1.17 Let G be a finite graph satisfying CDE(n, 0), and let u be a positive
solution to the heat equation on G. Then for all t > 0

F(Ju)  8(Ju) _

) i S (1.180)
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After having established the right notion of curvature and having identified the key
identity (1.179), we can now give a rather simple proof of this theorem. But first we
state a simple lemma from [15].

Lemma 1.3 Let G(V, E) be a (finite or infinite) graph, andlet g, F : Vx[0,T] — R
be functions. Suppose that g > 0, and F has a local maximum at (x*,t*) € Vx]0, T].
Then

L@F) (", 1°) < (LQF (X", 17),

where & ;= A — 0,.
Proof (Proof of the Theorem) Let
. (2r(¢u> 2ar(¢u))
=t - :
u Ju

Fix an arbitrary 7 > 0. Our goal is to show that F(x,T) < n for every x € V.
Let (x*, r*) be a maximum point of F in V x [0, T]. We may assume F(x*, r*) > 0.
Hence t* > 0. Moreover, by identity (1.178) which is true both in the continuous
and the discrete setting, we know that

(2 (Vuw)  Au) .—ZA\/M
F_t( u a u)_t Ju

where we used the fact that Zu = 0 (recall that . = A — 9,) which implies

(1.181)

(1.182)

23,\/14 _ Ou_ Au

= = . 1.183
Ju u u ( )

We conclude from (1.182) that
(AVu)(x*,t*) < 0. (1.184)

In what follows all computations are understood to take place at the point (x*, 7*).
We apply Lemma 1.3 with the choice g = u. This gives

LW)-F>ZLu-F)= 2Lt - 2L (Ju) — Au))
=1 LI (Vu) — Au) — 2T (JVu) — Au),

where we used (1.182) and the definition of .. We know that .Z(u) = 0. Also,
since A and .Z commute, .Z (Au) = 0. So we are left with

u

tf =20 (Vu) — Au > t* - L (2T (JVu))

= 1" (A (Vu) — 4 (Vu, 9/w)) = 4r* - Tr(Ju) . (1.185)
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The last equality is true by (1.177) and (1.183). By (1.184) and the CDE(n, 0)-
inequality applied to /u(-, t*) we get

F 4 r* F\’
L Ay () =
n n

r* t nt*

Thus F < n at (x*, *) as desired.

Let us briefly discuss the differences between the gradient estimates (1.114) on
Riemannian manifolds and (1.180) on graphs. There exists a one parameter family
of gradient estimates ¢, for p > 0,

|VuP|>  du _n

u? u — 2t

Note that the larger p, the stronger %, is. In the Riemannian case, the original Li-Yau
inequality (1.114) corresponds to ¢. It is known that the Li-Yau gradient estimate
is sharp, that is p = 1 is optimal on Riemannian manifolds. In the discrete setting
it was shown in [15] that &, cannot hold for any graph with p > 0.5. Thus the
gradient estimate (1.180) which corresponds to p = 0.5 is in this sense, although
weaker than its continuous counterpart (1.114), optimal.

For simplicity of exposition, we only present the most simplest case of the Li-Yau
gradient estimate on graphs here. In [15] local and global gradient estimates were
also obtained for graphs with general lower curvature bounds and more general
operators than the Laplacian. For possible applications and further generalizations
of the Li-Yau gradient estimates on graphs, including heat kernel estimates and
Harnack inequalities we refer the reader to [15, 16, 73]. See also [67] for related
work.

1.6.6 Applications to Network Analysis

Some of the preceding tools are quite useful for the analysis of empirical networks.
Depending on the data, such networks can be represented by unweighted or
weighted and possibly also directed graphs. For instance, one can then study the
eigenvalue spectrum. More in line with the present contribution, one can also
look at the distribution of their Ricci curvatures. The Forman-Ricci curvature is
computationally easiest, and there are systematic correlations with the Ollivier-
Ricci curvature. This is an ongoing research project with Samal, Saucan, Sreejith,
Mohanraj, and Weber, see [78—80, 86—88].
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1.6.7 Other Curvature Notions for Graphs

At the end, we briefly mention some curvature notions for graphs other than Ricci
curvature.

For the notion of combinatorial curvature, we need to fill in faces into the graph.
We therefore assume that the possibly infinite graph G is embedded into a 2-
manifold S(G) such that each face is homeomorphic to a closed disk with finite
edges as the boundary. For instance, G could be a planar graph, that is, a graph
embedded into the plane. Therefore, we call such a G = (V,E, F) that can be
embedded into a 2-manifold as described, with its sets of vertices V, edges E, and
faces F, a semiplanar graph. For each vertex x € V, the combinatorial curvature at
x is defined as

d, 1
Dx)=1-— , 1.186
) s T ¥ (1.186)

fax

where, as before, d, is the degree of the vertex x, whereas | f]| is the degree of the
face f. The sum is taken over all faces incident to x (i.e. x € f). For more details on
the combinatorial curvature, see the contribution of Keller in this volume (Chap. 6).

When we replace each face of G with a regular polygon of side lengths one and
glue them along the common edges and equip the polygonal surface S(G) with the
resulting metric structure, then (1.186) simply measures the difference of 27 and
the total angle X at the vertex x,

2P (x) = 27 — X, (1.187)

Let x(S(G)) denote the Euler characteristic of the surface S(G). We then have the
Gauss-Bonnet formula of G of DeVos and Mohar [27],

Y @) < ((S(G)). (1.188)

x€G

whenever Xyec:o)<0®P(x) converges. Thus, the combinatorial curvature captures a
topological property of semiplanar graphs.

We can also compare the combinatorial curvature with another version of curva-
ture naturally obtained from the surface S(G), its generalized sectional (Gaussian)
curvature. It turns out that the semiplanar graph G has nonnegative combinatorial
curvature precisely if the polygonal surface S(G) is an Alexandrov space with
nonnegative sectional curvature, i.e. Sec S(G) > 0 (or Sec(G) > 0 for short). This
principle is systematically explored in [40].

Here, a metric space (X, d) is called an Alexandrov space if it is a geodesic space
(i.e. each pair of points in X can be joined by a shortest path called a geodesic)
and locally satisfies the Toponogov triangle comparison. Essentially, nonnegative
curvature in the present context means that the total angles of geodesic triangles
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are at least 2. Upper curvature bounds, like nonpositive sectional curvature can be
interpreted as convexity properties for the distance function. The basic geometric
setting for Alexandrov curvature type bounds is this. One starts with a geodesic
triangle, that is, three points a1, a», a3 € X with mutual distances d(a;, a;) that satisfy
the triangle inequality, as it befits a metric space. And since X is a geodesic space,
they can be pairwise joined by shortest geodesics. Such a configuration is called a
triangle. Such a triangle, however, does not yet possess nontrivial geometric content,
as we can find a comparison triangle in any surface Cx of constant curvature K (with
the only restriction that for positive K, there is some restriction on the size of our
triangle so that it fits into a hemisphere of Cx) with the same side lengths. (Thus,
for positive K, Ck is a sphere of curvature K, for K = 0, it is the Euclidean plane,
and for K < 0, it is a scaled version of the hyperbolic plane with curvature K.) That
is, we choose points ay, a,, az € Cx with

d(ai.a;) = dg(a;, ay), fori,j=1,2,3,

where dk is the distance in Ck. In order to get at specific properties of (X, d), we
need to consider a fourth point. Alexandrov takes the midpoint a4 of a; and a,, that
is,

1
d(a4,a1) = d(a4,a2) = zd(al,az).

In particular, a4 sits on a shortest geodesic from a; to a;. One then compares
d(as, as) with dg(as, as). When the former is smaller (larger) than the latter for
every such triangle, one says that (X, d) has curvature smaller (larger) than K. In
particular, an upper curvature bound implies uniqueness of the geodesic from a;
to a,, as one readily observes. (Of course, we have to keep in mind here that for
positive K, we had to restrict the size of our triangle, so that it could be realized
inside a hemisphere of Ck.) Monographs on Alexandrov spaces are [20, 24]. In
fact, there was an earlier notion of curvature bounds for metric spaces, by Wald
[84], which looked at general configurations of four points aj,...,as € X with
their mutual distances and checked into which constant curvature spaces such
a quadrilateral can be isometrically embedded. This works nicely for surfaces
(which was Wald’s purpose, as the title of his paper [84] already clarifies), because
a quadrilateral on a surface can be isometrically embedded into some constant
curvature surface, and one can use the latter’s curvature to assign a curvature to the
original quadrilateral. One then gets curvature bounds in the sense of Wald when
every quadrilateral satisfies a corresponding bound. For higher dimensional spaces,
the requirement is perhaps somewhat too general. For instance, a tetrahedron in
Euclidean 3-space, that is, a configuration of four points with all non-zero distances
being equal can be isometrically embedded into some two-dimensional sphere,
but not into the Euclidean plane. The notion of Wald curvature and its relation to
Alexandrov curvature is discussed in more detail in Saucan’s contribution to this
volume (Chap. 2, Sects. 2.3 and 2.5).
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Importantly, the preceding notions of Alexandrov and others refer to sectional,
and not to Ricci curvature. As is already clear from the classical setting of
Riemannian geometry, the content of the two notions is different. Ricci curvature
is an average of the sectional curvatures containing a fixed tangent vectors, and
as such, it is naturally a coarser notion than the latter. In closing this article, we
would like to elucidate this aspect from the perspective gained from the preceding
considerations. Ricci curvature, as we have seen, is essentially about the relation
between two distance balls in a metric space. Ricci curvature is about such quantities
as the relative size of their overlap as a function of their radii and the distances of
their centers, or more precisely, how easy or difficult it is to transport the mass of
one of them to the other. Thus, it is natural to speculate that we should get more
refined invariants when we look at the overlap patterns of three (or perhaps more?)
instead of two balls. In fact, it was found in [19] that this can be used to define
sectional curvature bounds in general metric spaces. Those spaces, in contrast to the
situation covered by Alexandrov’s approach, need not be continuous, but could well
be discrete. Let us now describe this concept.

Again, in the metric space (X, d), we consider a triangle, that is, a triple of points
(a1, as,a3) in X, and the comparison triangle in R? (for simplicity of exposition)
with the same side lengths. That is, we choose points a;, a,, a3 € R? with

d(ai,a;) = |a;i —a) . fori,j=1,2,3,

where | - || is the Euclidean norm. The idea is now to look at the smallest radius
r > 0 such that the three closed balls around the a; with radius r have a nonempty
intersection,
B(ay,r) N B(az,r) N B(as, r) # 0, (1.189)
(of course, B(a,r) = {p € X : d(p,a) < r}) and to compare this with the
corresponding radius 7 for the Euclidean comparison triangle. We then say that
(X, d) has nonpositive sectional curvature if
r<r. (1.190)

In more detail, we define the functions

/O(al,az,a3)(x) = 'InlaZX'i d(xa ai)a x € X,
i=1,2,

and,

- 2
Py ay.as) (X) = Jmax, |x —aill , xeR
i=1,2,3
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and call
r(als as, a3)a lnf p(al,az,ag)(x) and r(alva27 a3)anlin p(t_ll,t_lz,c_l3)(x)
xX€X x€R

circumradii of the respective triangles. The definition then is

Definition 1.14 (Nonpositive Curvature) We say that the metric space (X, d) has
generalized nonpositive sectional curvature if, for each triangle (a;, a», a3) in X, we
have

r(ai,az,a3) < r(ay,az,as), (1.191)

where a; with i = 1,2, 3 are the vertices of an associated comparison triangle.

Of course, one checks that when (M, g) is a Riemannian manifold, then it possesses
generalized nonpositive sectional curvature in the sense of Definition 1.14 iff it
has nonpositive sectional curvature in the sense of Riemannian geometry, see
Sect. 1.3.2. And of course, the construction can be naturally extended to define other
upper sectional curvature bounds, by taking appropriate 2-dimensional spheres or
hyperbolic spaces instead of the Euclidean plane as comparison spaces. Also, by
reversing the inequality in (1.191), one may also define lower curvature bounds, as
in Alexandrov’s approach described above.

This leads us to a final remark. As just observed, we can as well define
upper as lower sectional curvature bounds, and either of them has nontrivial
geometric content. In contrast, in our discussion of Ricci curvature bounds, we have
exclusively discussed lower bounds. The reason for this restriction appears already
in the classical context of Riemannian geometry. In fact, an important theorem of
Lohkamp [62] says that every differentiable manifold can be equipped with a metric
of negative Ricci curvature. Therefore, carrying a metric of negative Ricci curvature
imposes no topological restriction whatsoever on a manifold. By way of contrast,
nonnegative Ricci curvature, or more generally, a lower Ricci curvature bound, is
a contentful condition that implies many further geometric properties, as we have
discussed and explored in this article.
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