
Chapter 2
Differential Geometry

2.1 Introduction

A second major development in geometry in the eighteenth century was the study
of curves and surfaces in R2 and R3 defined by not necessarily algebraic functions.
These included two not quite independent developments that took place more or
less simultaneously. The first was the development of the now standard elementary
transcendental functions: the trigonometric, exponential, and logarithmic functions.
In Euler’s textbook from 1748 [62] these functions and their algebraic and analytic
properties (e.g.,

d

dx
sin x = cos x, sin(x + y) = sin x cos y + cos x sin y.

etc.) were fully developed and correspond to what one learns in contemporary precal-
culus and calculus courses in high school today. The second development involved the
solution of differential equations (primarily ordinary differential equations) which
provided a large variety of functions for analysis and geometrical representation. This
led to a large class of special functions that went by the names of the mathematicians
who created and developed them: Hermite, Legendre, Bessel, Euler’s Gamma func-
tion and many others. These functions were tabulated for computational use and their
various algebraic and analytical properties were developed, similar to those prop-
erties illustrated above for trigonometric functions. Over the course of time these
mathematical tools became very important for the applications of mathematics to
the worlds of chemistry, physics, biology and other areas of scientific understand-
ing. These methods preceded by one or two centuries contemporary techniques for
scientific analysis made available through the use of computers and simulation tools
involving modern numerical analysis, which were to diminish the once important
role of special functions.

In the latter half of the eighteenth century the differential geometry of curves and
surfaces began to develop and flourish. First we consider the development of what
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18 2 Differential Geometry

became known as planar curves and space curves (i.e., smooth curves in R2 and R3).
Differential geometry was named as a concept by Bianchi in 1894 (as noted by Kline
[125] on p. 554). This naming of the discipline came long after the most signifi-
cant developments in the field. It came to mean precisely manifolds equipped with
a Riemannian (or more general) metric, or more generally a connection, and where
the concepts of curvature played a central role. Indeed, the interaction of differential
analysis (i.e. calculus, differential equations, all aspects of analysis involving infinite
processes) with geometry is much older and broader than the more precise notion of
differential geometry as it is employed today. For instance, the notion of differential
topology, which developed in the mid-twentieth century, certainly involves mani-
folds and analysis, but doesn’t formally use the notion of a differential-geometric
metric as in differential geometry per se. Archimedes knew how to compute areas by
the method of exhaustion, and Fermat understood both differentiation of functions
(finding maxima and minima and tangents) and how to compute the area under some
curves, but he did not know the fundamental theorem of calculus (see [194] for a
discussion of these issues). All of these are indeed an interaction of analysis with
geometry, and are parts of the foundation of what became differential geometry two
centuries later.

2.2 Huygens and Newton

The first important task in differential geometry was to be able to efficiently compute
the tangent line to a given curve at a given point and, as any beginning student of
calculus knows, this is one of the first applications of the notion of the derivative. A
deeper question that we explore in greater detail in this section is: what is curvature?
More precisely, what is the curvature of a curve in a plane or in three-dimensional
space? What is the curvature of a surface in three-dimensional space? Finally, what
is curvature of an abstract two-dimensional or higher-dimensional manifold? This
last question is a key part of the geometric developments in the nineteenth century
and will be discussed in Part II.

Consider first the simple case of a curve in the plane defined by the graph of a
function as in Fig. 2.1. Then one learns in calculus that the curvature of the curve at
P = (x, y) is given by

K P = ± f ′′(x)

[1 + ( f ′(x)2] 3
2

, (2.1)

where the sign is chosen to be positive if the normal vector to the curve at P intersects
the approximating circle and is negative otherwise. In the illustration in Fig. 2.1, the
normal vector to the curve at P using the usual orientation would be pointing upwards
in the figure, away from the approximating circle, whose radius is 1/|K P |, and hence
in this case the curvature would be negative.
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P = (x , y) = (x , f (x))

y = f (x)
1

   Kp

Fig. 2.1 Radius of curvature of a curve at a point

This formula is given for the first time in Newton’s monograph of 1736 [169],
which was published as an English translation of his original Latin manuscript from
1671, which was never published, but was privately circulated among some of New-
ton’s colleagues. This monograph, published in 1736 after Newton’s earlier death,
was part of the basis for the controversy between adherents of Newton and Leibniz
on who had first invented (or discovered) calculus. Figure 2.2 shows the cover page
of this singular monograph, and Fig. 2.3 shows the table of contents, where the cur-
vature of a curve stands out so very distinctly as an object of study. The formula (2.1)
appears in the text of Newton’s monograph.

The first published account of the curvature of a general curve was due to Chris-
tiaan Huygens (1629–1695) in 1673 [114]. In both Newton and Huygens the funda-
mental definition of the center of curvature (center of the osculating circle at a given
point) is the intersection of normal lines to the curve near the given point on the curve
(see the figures in Huygens p. 84 [114] and Newton on p. 60 [169], reproduced here
in Figs. 2.4 and 2.5).

Huygens didn’t have calculus per se at his disposal, but he made estimates in terms
of normals at an approximating point (like the estimates of slopes of an approximating
secant to a tangent line in differential calculus), and using these estimates he was able
to compute the curvature for a variety of examples (cycloid, conic sections, etc.).

An interesting historical point is how Huygens came to study this phenomenon.
Some 16 years before the appearance of his monograph [114] he had built one of the
most important clocks in history: a pendulum whose motion is isochronous. That is,
the swing of the pendulum has a constant period of repetition. Huygens showed that
a simple pendulum, whose pendant moves in a circular arc, has a period that depends
on the size of the oscillations, whereas if the pendant moves in the arc of a cycloid,
then the period is fixed independent of the size of the oscillation.

The method Huygens used for making the pendant move in a cycloidal path
(which he patented in 1657) was to have the path be the involute of a curved plate
(which was also a cycloid), i.e., the curve traced out by a fixed string moving from a
center attached to a given curve, where initially the fixed string lies along the given
curve and moves away from it, with the free straight line portion of the string being
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Fig. 2.2 Title page of Newton’s 1736 Monograph on Fluxions
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Fig. 2.3 Table of contents of Newton’s 1736 monograph on fluxions
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Fig. 2.4 Huygens’s center of curvature from Horologium Oscillatorium
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Fig. 2.5 Newton’s center of curvature from Method of Fluxions
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Fig. 2.6 An involute being generated by a string attached to the curve C (called the evolute)

continuously tangent to the given curve (see the illustration in Fig. 2.6). The curve C
in Fig. 2.6 is called the evolute (which generates the involute traced out by the point
Q by the motion of the string). The problem Huygens posed and solved was: given
the involute, find the evolute, i.e., find the generating curve. Now the straight line T
is normal to the involute at the point Q (as Huygens showed), and, at the point of
contact at point R, T is tangent to C . Thus T is normal to the involute at Q, and R
can be seen to be the intersections of the normals close to Q (as both Huygens and
Newton showed). Hence R is the center of curvature of the involute at the point Q,
and the evolute C is the locus of centers of curvature of the involute at points near
Q.

In the second illustration of an involute in Fig. 2.7, one sees two “parallel” invo-
lutes, the curves C ′ and C ′′ being generated from the curve C , and one can see that
the involutes are orthogonal to the generating string at the intersection points (as
was proved by Huygens). Looking at the illustration from p. 4 (Fig. 2.8) of Huy-
gens’s book [114] one sees in Fig. II of the diagrams in Fig. 2.8 the cycloid-shaped
curve from which the pendant of the pendulum sweeps out the involute, which is the
cycloidal motion of the pendant. Huygens calculated the evolutes for a number of
examples, independent of the specific example he used in the design of his clock.
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Fig. 2.7 Involutes are orthogonal to the generating string

Some 2000 years earlier, in Book V of his famous work Conics, Apollonius was
able to compute the curvature of the classical conic sections. Apollonius was in fact
trying to solve a different set of problems, and curvature was not explicitly discussed.
In Heath’s translation [98], he shows what Apollonius did in modern notation. More
particularly, on p. 171 one finds that for the parabola of the form

1

2a
y2 = x,

the evolute (locus of centers of curvature) of this parabola has the form:

27ay2 = 4(x − 2a)3,

which is a semicubical parabola. He finds similar formulas for the ellipse and hyper-
bola.

Here Apollonius was studying the behavior of normals to conic sections. He
showed that each conic section has a unique normal passing through each point. He
defined a normal as being a straight line which was either a local maximum or a local
minimum-length straight line from some point not on the curve. He then showed
that such a line was indeed perpendicular to the tangent line at the given point. This
leads, by an interesting argument, to the conclusion that Apollonius has calculated
the points of the evolute, as Heath points out very explicitly.
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Fig. 2.8 Page 4 of Huygens’s book Horologium Oscillatorium [114]
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2.3 Curves in Space: Courbes à double courbure

Since the time of Newton, curvature of a curve in the plane became a standard
object of mathematical investigation. The first step in investigating the differential
geometry of curves in R3 was taken by Alexis Claude Clairaut (1713–1765) in his
book Recherches sur les courbes à double courbure [48], written when he was only
16 years old and published two years later, following up on work he had started
when he was 12 years old. We know this from the “Approbation” at the beginning
of the book, written by two of the reviewers of the book; and the page where this
appears, following the Preface, is the only place Clairaut’s name appears in the book,
not on the title page! See Fig. 2.9. Clairaut called curves in R3 “courbes à double
courbure”,1 and he says in his book that he was inspired by Descartes, who suggested
space curves could be studied in terms of their projections on two orthogonal planes.
Clairaut studied the tangent line to a curve, its arc length and the infinite variety of
normal lines in the plane perpendicular to the tangent line.

The next steps in the study of space curves were taken by Euler, who primarily
looked at space curves which were defined as the intersections of surfaces in R3 (see
Volume 2 of Euler’s Introductio of 1748 [62]). Michel Ange Lancret (1774–1807)
singled out in 1806 the three principal directions of a space curve at any point (tangent,
normal, and binormal), and formulated the additional notion of torsion of a curve
[132].

The final steps in the study of space curves were taken by Augustin-Louis Cauchy
(1789–1857) in 1826 in his Leçons sur les Applications du Calcul Infinitésimal à la
Géométrie [38], and by Serret [216] and Frenet [75] in their back-to-back papers
in 1851 and 1852. Cauchy gave us the formulation of space curves we use today
(without the vector notation), and Serret and Frenet gave the final form to the structure
equations (which today bear their name, the Frenet–Serret equations), which brought
together the formal characterization of space curves in terms of the three principal
directions of a curve and its curvature and torsion.

2.4 Curvature of a Surface: Euler in 1767

The concept of the curvature of a curve in R3 was well understood at the end of
the eighteenth century, and the later work of Cauchy, Serret and Frenet completed
this set of investigations begun by the young Clairaut a century earlier. The problem
arose: how can one define the curvature of a surface defined either locally or globally
in R3? An important contribution is made by Euler in his paper entitled “Recherches
sur la courbure des surfaces”2 [65] from 1767 (note this article is written in French,

1“curves with double curvature”. The expression “courbes à double courbure” was used to describe
space curves for a long time by many mathematicians after the initial impetus of Clairaut.
2“Research on the curvature of surfaces”.
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Fig. 2.9 Excerpt from the beginning of Clairaut’s book Recherches sur les courbes à double
courbure [48]

not like his earlier works, most of which were written in Latin). Figure 2.10 shows
the first page of the article and we quote the translation here:

In order to know the curvature of a curve, the determination of the radius of the osculating
circle furnishes us the best measure, where for each point of the curve we find a circle whose
curvature is precisely the same. However, when one looks for the curvature of a surface, the
question is very equivocal and not at all susceptible to an absolute response, as in the case
above. There are only spherical surfaces where one would be able to measure the curvature,
assuming the curvature of the sphere is the curvature of its great circles, and whose radius
could be considered the appropriate measure. But for other surfaces one doesn’t know even
how to compare a surface with a sphere, as when one can always compare the curvature of a
curve with that of a circle. The reason is evident, since at each point of a surface there are an
infinite number of different curvatures. One has to only consider a cylinder, where along the
directions parallel to the axis, there is no curvature, whereas in the directions perpendicular
to the axis, which are circles, the curvatures are all the same, and all other oblique sections
to the axis give a particular curvature. It’s the same for all other surfaces, where it can
happen that in one direction the curvature is convex, and in another it is concave, as in those
resembling a saddle.
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Fig. 2.10 The opening page of Euler’s work on curvature [65]

In this paper Euler describes quite clearly the problem of formulating a concept
of curvature of a surface in R3. In particular, in the quote above one sees that Euler
recognized the difficulties in defining curvature for a surface at any given point. He
does not resolve this issue in this paper, but he makes extensive calculations and
several major contributions to the subject. He considers a surface S in R3 defined as
a graph

z = f (x, y)
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near a given point P = (x0, y0, z0). At the point P he considers planes in R3 passing
through the point P which intersect the surface in a curve in that given plane. For
each such plane and corresponding curve he computes explicitly the curvature of the
curve at the point P in terms of the given data.

He then restricts his attention to planes which are normal to the surface at P
(planes containing the normal vector to the surface at P). There is a one-dimensional
family of such planes Eθ , parametrized by an angle θ . He computes explicitly the
curvature of the intersections of Eθ with S as a function of θ , and observes that there
is a maximum and minimum κ1 and κ2 of these curvatures at P , corresponding to
two planes E1 and E2. These curvatures are called the principal curvatures of the
surface at the point P . In the generic case, Euler shows that the two planes E1 and
E2 are orthogonal to each other. Moreover, he shows that the curvature κθ for the
plane Eθ can be computed in terms of the principal curvatures, namely

κθ = κ1 cos2 θ + κ2 sin2 θ.

This is as far as he goes, but it is a great step forward in understanding the curvature
of a surface. He does not use this data to define what we now call the curvature of the
surface S at the point P . This step was taken by Gauss in a visionary and extremely
important paper some 60 years later [81].
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