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Abstract. In this paper we propose a simple tensor-based approach
to temporal features modeling that is applicable as means for logistic
regression (LR) enhancement. We evaluate experimentally the perfor-
mance of an LR system based on the proposed model in the Click-
Through Rate (CTR) estimation scenario involving processing of very
large multi-attribute data streams. We compare our approach to the
existing approaches to temporal features modeling from the perspec-
tive of the Real-Time Bidding (RTB) CTR estimation scenario. On the
basis of an extensive experimental evaluation, we demonstrate that the
proposed approach enables achieving an improvement of the quality of
CTR estimation. We show this improvement in a Big Data application
scenario of the Web user feedback prediction realized within an RTB
Demand-Side Platform.

Keywords: Big data · Multidimensional data modeling · Context-aware
recommendation · Data extraction · Data mining · Logistic regression ·
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1 Introduction

Web content utility maximization is one of the main paradigms of the so-called
Adaptive Web [3]. Many researchers agree that Click-Through Rate (CTR) esti-
mation is important for maximization of Web content utility and that machine
learning plays a central role in computing the expected utility of a candidate
content item to a Web user. The click prediction – widely referred to as CTR
estimation – is an interesting and important data mining application scenario,
especially when realized on the Web scale [4,9,16]. Real-Time Bidding (RTB)
belongs to the best examples of widely-used Big Data technologies [15]. As con-
firmed by many authors, the research on RTB algorithms involves facing many
challenges that are typical for Big Data. In particular, RTB algorithms must be
capable to process heterogeneous and very sparse multi-attribute data streams
having the volume order of terabytes rather than gigabytes [4]. Moreover, to be
applicable in a real-world environment, an RTB optimization algorithm must be
able to provide its results in tens of milliseconds [15].
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Digital advertising is a rapidly growing industry already worth billions of dol-
lars. RTB is one of the leading sectors of the digital advertising industry. In this
paper, we contribute to the intensively investigated area of research on machine
learning algorithms optimizing RTB-based dynamic allocation of ads. The pro-
posed solution faces the challenges imposed by the RTB protocol requirements
and, at the same time, introduces the temporal feature engineering based on the
tensor model what has not been investigated yet.

Some of the tensor-based approaches to data modeling have already been
identified as addressing the Big Data challenges [5,10]. Although the area of the
research on tensor-based Big Data modeling has emerged quite recently [5], the
results achieved so far, indicate that, at least in online advertising application
scenarios, tensor-based approaches are able to outperform many alternative ones,
including those based on the matrix factorization and deep learning [16,21].

2 Related Work

As far as Big Data application scenarios are concerned, it is widely agreed that
Logistic Regression (LR) is the state-of-the-art CTR estimation method [4,16,
23]. For this reason, the scope of the research presented in this paper is limited
to feature modeling applicable to a data mining system based on LR.

In the context of the RTB Demand Side Platform (DSP) optimization sce-
nario, it is important to make the CTR estimation algorithm highly contextual
and capable to exploit various data augmentations [16,22]. In the relevant papers
these two requirements are sometimes integrated into the single, more general
requirement. Specifically, recommender systems deployed to perform CTR esti-
mation are required to model the heterogeneous data attributes explicitly from
multiple alternative and complementary ‘aspects’ [16]. The idea of such ‘multi-
aspect’ data modeling is familiar to researchers working on tensor-based data
representation methods [2,13]. The need for ‘multi-aspect’ data modeling has
been recognized by the authors of tensor-based RTB CTR estimation systems
[16] and by the authors of advanced classification systems theoretically-grounded
on the rough set theory [12]. All these types of data mining systems perform
some type of ‘multi-aspect’ data modeling by using combinations of multiple
‘interacting’ features [4,16].

There are a few approaches to building feature conjunctions that have been
presented in the literature on RTB CTR estimation [4,9,16,21]. Some of the
papers involve the explicit use of the cartesian product or the tensor product in
the models’ definitions [4,16].

It is worth recalling that the tensor space is a space formed over a carte-
sian product of the constituent vector spaces. In the context of an algebraic
feature representation, it is a straightforward and widely-followed assumption to
represent features in their vector spaces and to map the feature values to the
dimensions of these spaces [8,14,18,20]. Although not all the authors of such
feature conjunctions models explicitly refer to the tensor product as the means
for building the algebraic representations of feature conjunctions, such a tensor-
based definition is a direct consequence of the assumption that the constituent
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features are represented by vector spaces. On the other hand, the authors of
many papers presenting tensor-based models of the data sets elements having the
form of the properties’ conjunctions, explicitly refer to the tensor product as the
means for building algebraic multi-feature data representations [8,14,16,18,20].

To the best of our knowledge, there are no publications presenting multi-
linear temporal feature models designed for CTR estimation systems based on
LR. Although temporal features are included in the overall feature sets of the
models proposed by the authors of the leading CTR estimation algorithms based
on LR [4,9,16,21], none of these models is both tensor-based and used for multi-
linear representation of temporal features. In consequence, none of these models
involves the use of feature conjunctions of different arity [4,9,16]. Moreover, the
impact of an application of temporal features (with or without their conjunc-
tions) on the quality of CTR estimation has not been presented in any of the
above-recalled papers. Therefore, we believe that the research results presented
herein are not only practically useful, but may also be regarded as original and
interesting theoretical contribution to the field of the research on feature models
for CTR estimation systems.

3 Tensor-Based Feature Modeling

Tensor-based data modeling is a broad topic – typically investigated from the
perspective of various approaches to tensor-based data processing [5,11,20]. It
has to be stressed that the scope of the tensor-based modeling that is represented
by the model proposed in this paper is relatively narrow – it is limited to (i) the
‘feature addressing’ scheme based on the tensor product of the feature-indexing
standard basis vectors and (ii) the use of a simple multi-tensor network. In such
a simplified form, a tensor-based model of additional features (herein referred
to as metafeatures) is equivalent to the state-of-the-art feature models defined
with the use of the cartesian product that are presented in the literature on CTR
estimation based on LR [4,16]. It also has the most distinctive property of any
tensor-based data representation, which is the ability to represent data in its
natural form in which vector space dimensions represent feature values, rather
than data/training examples [14,20]. Thanks to this property, any combination
of the features may be mapped on its dedicated tensor entry. Moreover, the use of
the multi-tensor hierarchy network (presented in Sect. 3.2) provides simple means
for the mapping between a conjunction features’ subset and the corresponding
tensor network node; the arity of the conjunction tuple maps to the level of the
tensor network – the level including the tensors of the order equal to the arity
of the conjunction tuple.

3.1 Tensor-Based Multidimensional Data Modeling

Let us use the notation in which A,B, . . . denote sets, A,B, . . . denote ten-
sors and a, b, . . . denote scalars. The tensor-based feature model represents the
multi-attribute data describing the given user feedback event (in the case of the
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application scenario presented in this paper – the event representing a user click
on a given ad in result of a given impression). This data have the form of a set of
logs E , in which each of the log entries is defined as a tuple of multiple features.
We model this set as an n-order tensor:

T = [ti1,...,in ]m1×···×mn
,

defined in a tensor space I1 ⊗ · · · ⊗ In, where each Ii, 1 ≤ i ≤ n indicates
a standard basis [14] of dimension |Ii| = mi used to index elements of the
domain Fi – the domain of feature i. The entries of tensor ti1,...,in represent
the outcome of the investigated event – formally described using the function
ψ : F1 × · · · × Fn → R. In the case of RTB CTR prediction task, the events’
outcomes are usually described by means of the binary-valued function ψ : F1 ×
· · · × Fn → {0, 1} defining non-click and click events, respectively.

Since the input data form a sparse (incomplete) multidimensional structure,
the tensor T is usually stored in the form of n-tuples, for which a given tuple γ
is modeled as:

γ = (wγ , fγ
1 , . . . , fγ

n ),

where fγ
i ∈ Fi are the feature values defining the tuple γ and wγ = ψ(fγ

1 , . . . , fγ
n )

denotes its weight.

3.2 Multi-Tensor Hierarchy Network

In this paper we used the model, referred to as Multi-Tensor Hierarchy Network
(MTHN), enabling the representation of correlations observed in any subset
of the feature set. In contrast to other approaches (e.g., [16]), we do not use
any heuristic method for feature grouping which is necessary when simplifying
the model, e.g., to the single third-order tensor. The proposed model provides
the averaging framework enabling to represent the means within a network of
tensors, which is used for combinatorial exploration of all the possible subsets
of the features.

Let [n] = {1, 2, . . . , n} denotes the set enumerating features describing the
investigated event. For each subset S = {p1, . . . , pk} ⊂ [n] we construct the
tensor T(S) by averaging the data throughout all non-missing (i.e., known)
values in the respective (n − k)-dimensional ‘sub-tensor’ of the input n-order
tensor T. The fibres (one-dimensional fragments of a tensor, obtained by fixing
all indices but one) and slices (two-dimensional fragments of a tensor, each being
obtained by fixing all indices but two) are the examples of such sub-tensors that
are most commonly referenced in the literature [11,13].

Formally, for each subset S = {p1, . . . , pk} of [n], where 0 ≤ k < n,
such that R = [n] \ S = {r1, . . . , rn−k}, we construct tensor T(S) =
[t(S)j1,...,jk ]mp1×···×mpk

in such a way that, for a given combination of feature
values in S, we have:

t(S)j1,...,jk =
1
z

mr1∑

ir1=1

. . .

mrn−k∑

irn−k
=1

j1∑

ip1=j1

. . .

jk∑

ipk=jk

ti1,...,in (1)
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if z > 0, where z is a number of all known (i.e., non-missing) values in a sub-
tensor of tensor T defined by fixing ip1 , . . . , ipk

to feature values indices j1, . . . , jk.
The value t(S)j1,...,jk may be equivalently seen as the weight wφ of the ‘shortened’
tuple φ = (wφ, fφ

p1
, . . . , fφ

pk
). Note that in the case of RTB CTR modeling, value

wφ is just the CTR observed over all the events for which the features p1, . . . , pk

have their values equal to j1, . . . , jk.
Tensors T(S) form the hierarchical network of 2n tensor structures of orders

from the set {0, . . . , n} – called Multi-Tensor Hierarchy Network – corresponding
to all possible subsets of the set of n investigated features. In particular, the
model consist of:

– level 0 of MTHN – containing one node which is the tensor of order 0 T(∅) –
the scalar representing the weight value averaged over all known events (the
averaged CTR in RTB CTR estimation application scenario),

– for k ∈ {1, . . . , n − 1}: level k of MTHN – containing
(
n
k

)
k-order tensors

T({p1, . . . , pk}) representing the averages over events with k features with
fixed values,

– level n of MTHN – containing one node – n-order tensor T([n]) = T storing
the weights of input n-tuples.

Two nodes T(S) and T(S ′) of MTHN are connected if and only if they belong
to neighboring levels (‖S |−| S ′‖ = 1) and the set of features modeled by one of
them is a subset of features modeled by the other (|S ∩ S ′| = |S| or |S ∩ S ′| =
|S ′|) – in other words – one of them may be obtained from the other by averaging
over a single tensor mode.

The example of hierarchy of tensors T(S) for set S ⊂ [3] = {1, 2, 3} corre-
sponding to features ‘hour’, ‘weekday’ and ‘advertiser’, respectively, is illustrated
in Fig. 1.

4 Modeling Temporal Features Using MTHN

Although in this paper we investigate temporal features modeling, the MTHN
metamodel presented in Sect. 3 may be used to represent data tuples defined on
the basis of any feature sets, not only temporal ones. To illustrate the modeling of
temporal features performed in accordance with the approach proposed herein,
let us present just one of many possible MTHN metamodel use cases. In Fig. 1
an order-three MTHN-based model is presented that exemplifies the case of the
MTHN-based model built to represent average CTR values that reflect jointly
the content of the advertisers set (five advertisers for the 2nd season of the
iPinYou dataset) and two temporal features sets – the set consisted of the one-
hour long nychthemeron (day and night) time slots (twenty four hours of the day)
and the set of seven weekdays. This case is one of the cases that we evaluated
experimentally in Sect. 6.

To build the MTHN metamodel visualization presented in Fig. 1, we used
the set S = [3] = {1, 2, 3} to enumerate three features as follows: index 1 was
used to represent 24 one-hour long nychthemeron time-slots, index 2 was used
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Fig. 1. Visualization of a MTHN-based representation of the average CTR values in
the case of the 2nd season of the iPinYou dataset, with the advertisers set and two
temporal features sets consisted of the one-hour time slots set and the weekdays set.

to represent 7 weekdays, and index 3 was used to represent 5 advertisers of
the iPinYou dataset Season 2 [23]. The Fig. 1 presents MTHN consisting of
4 levels enumerated from bottom to top. In particular, level 0 is just tensor
T(∅). Level 1 contains tensors T({1}),T({2}),T({3}) (presented from left to
right) representing features values corresponding to hours, weekdays and adver-
tisers, respectively. Level 2 contains tensors T({1, 2}),T({1, 3}),T({2, 3}) rep-
resenting feature conjunctions of arity 2 of the form ‘hour× weekday’, ‘hour
× advertiser’, and ‘weekday × advertiser’ respectively. Finally, level 3 contains
the tensor T([n]) representing the feature conjunctions of arity 3 of the form
‘hour ×weekday × advertiser’.

In Fig. 1 the darkness of each box – representing a given entry of the given
tensor (in cases of some of the MTHN nodes, being a special case of a tensor: a
vector or a scalar) – illustrates the average CTR value observed for the feature
conjunction corresponding to this entry (the darker the box the higher the CTR
value). It should be stressed that such a visualization is just a demonstration of
an example of MTHN data structure application. In particular, the visualized
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CTR values should not be confused with values of LR feature weights. On the
other hand, in the particular case of average CTR values visualization, a MTHN
data structure of the proposed kind may be regarded as an novel ‘analytics
tool’ supporting a researcher in his/her analysis of different average CTR values
– observed contextually for different sets of features used for the tensor-based
‘segmentation’ of the features.

5 Evaluation Methodology

The main goal of the experimentation reported in this paper was to evaluate the
impact of the selected cases of an application of MTHN-based temporal feature
models on the RTB CTR estimation quality.

The analysis presented herein is based on extensive offline experiments involv-
ing the use of the iPinYou dataset and selected CTR estimation quality mea-
sures. We have assumed that the ultimate goal of our experimentation reported
herein is to present experimentally confirmed findings that are straightforwardly
applicable to RTB CTR estimation systems based on the LR framework.

5.1 Measures

Most of the authors of papers on RTB CTR methods presenting results of offline
experiments use the Area Underneath the ROC curve (AuROC) metric [4,16,
21,23], regarding it as enabling one to directly evaluate the systems’ ability to
distinguish between accurate and inaccurate predictions [7].

Nonetheless, AuROC, despite being useful for heavy-tailed recommendation
or link prediction systems [6,17,19], may not provide a full insight into the
RTB CTR estimation problem. Taking into account both the popularity and the
limitations of AuROC, complementary to the presentation of our AuROC results,
we show the Average Precision (AP) results (equivalent to the area underneath
the precision-recall curve). While both metrics measure true positive rate, AP
emphasizes precision while AuROC emphasizes false positive rate [6,17]. Such
a difference of how the true negatives are treated is especially evident when
the number of negative observations (non-clicks) is significantly higher than the
positive ones (clicks).

As realized by some authors [22,23], in the context of the RTB, the quality
of CTR estimation should be measured in a way that reflects the real-world
requirement of the system’s ability to preserve a high Key Performance Index
value under the time constraints of the given campaign execution. In terms of
precision and recall measures, a useful RTB optimization cannot severely reduce
the bidding frequency. This means that the increase of precision should not lead
to a severe reduction of recall. Under such conditions, the CTR estimation results
presented as ‘summarized’ curves – such as AuROC and AP – are not considered
as sufficiently informative for a real-world DSP.

Following the above-stated observation, in the analysis of experiments pre-
sented in Sect. 6 we additionally analyze the results from the perspective of the
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CTR estimation system’s ability of achieving different trade-offs between preci-
sion (i.e., CTR) and recall.

5.2 Dataset

To evaluate the proposed model we used the first publicly available large-scale
RTB dataset released by iPinYou Information Technologies Co., Ltd [23]. The
dataset contains impression, click, and conversion logs collected from several
campaigns of different advertisers during various days and is divided into a
training set and a test set. Each record contains five types of information: (i)
temporal features (timestamp of the bid request), (ii) user features (iPinYou ID,
browser user-agent, IP address, etc.), (iii) ad features (creative ID, advertiser ID,
landing page, etc.), (iv) publisher features (domain, URL, ad slot ID, size, visi-
bility, etc.), and (v) other features regarding the RTB auction (bid ID, bidding
price, winning price, etc.).

In this paper we partition the dataset in two different ways:

(a) by timestamps, in the same manner as described in [16,23],
(b) randomly, using the same training ratios (tr) as in (a) (i.e., tr ≈ 0.7897 for

season 2 and tr ≈ 0.6667 for season 3).

The major dataset statistics are shown in Table 1. More detailed information on
the dataset may be found in [16,23].

Table 1. Dataset statistics (using the partitioning by timestamps).

Season Dataset Impressions Number of feature values Clicks CTR (%)

2 Training set 12, 190, 438 801,890 8,838 0.073

Test set 2, 521, 627 543,711 1,873 0.074

3 Training set 3, 147, 801 589,872 2,700 0.086

Test set 1, 579, 071 482,208 1,135 0.072

6 Experiments

We trained the CTR estimator to predict the probability of the user click on a
given ad impression using information extraction from raw user feedback data.
As suggested in [23], in each of the tested variants the following pre-processing
was performed:

– The timestamps were generalized into the corresponding weekday and hour
value.

– The OS and browser names were extracted from the user-agent field.
– The floor prices were quantized into the buckets of 0, [1, 10], [11, 50], [51, 100]

and [101,+∞).
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Table 2. CTR estimation performance in terms of AuROC and AP (%); the best
results in each row are highlighted by bold font setting.

Dataset
partitioning

iPinYou
dataset
season

day+hour MTHN(domain) MTHN(advertiser)

AuROC AP AuROC AP AuROC AP

By
timestamp

2 90.67 15.580 90.67 15.591 90.54 16.243

3 75.23 0.312 76.52 0.328 76.01 0.317

Random 2 86.19 11.671 86.52 11.781 85.84 11.922

3 78.91 0.530 79.22 0.555 78.66 0.531

We evaluated two variants based on the proposed tensor-based feature mod-
eling metamodel:

– MTHN(domain) – reflecting two temporal features sets consisted of weekdays
and hours, and the content of the domains set (the set of Web domains offering
ad impressions),

– MTHN(advertiser) – reflecting two temporal features sets consisted of week-
days and hours, and the content of the advertisers set.

The state-of-the-art algorithm based on the basic temporal feature modeling
proposed in [23] (referred to as day+hour) was chosen as a baseline.

To learn the LR model parameters, we used the Stochastic Gradient Descent
(SGD) algorithm. The initial parameters (i.e., weights corresponding to the
binary feature values) were set to 0. The learning rate in all the experiments was
set to 0.01. The tolerance for the stopping criterion was set to 0.0001. Specifically,
the learning was stopped when the logistic loss value change observed between
two consecutive iterations reached the specified tolerance-defining threshold
value. The training examples were randomly shuffled after each iteration so as
not to introduce a bias into the optimization results [1].

The CTR estimation performance results concerning both dataset partition-
ing scenarios – the timestamp-based one and the random one – are presented in
Tables 2 and 3. In the case of the random approach, the mean values from 10
experiments are shown for all the presented measures. Table 2 demonstrates the
performance comparison provided by means of AuROC and AP measures. The
standard error of each presented mean is less than 0.1% and 0.02% for AuROC
and AP correspondingly.

Table 3 presents the CTR estimation system’s ability of achieving different
trade-offs between precision (i.e., CTR) and recall. Specifically, CTR values for
recall equal to 1/8 and 1/4 were evaluated. Finally, Fig. 2 presents the precision
vs recall curve (i.e., all CTR values) for iPinYou Dataset Season 2.
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Table 3. CTR estimation performance in terms of P(R = 1/8) and P(R = 1/4) (%); the
best results in each row are highlighted by bold font setting.

Dataset
partitioning

iPinYou
Dataset
season

day+hour MTHN(domain) MTHN(advertiser)

P(R = 1/8) P(R = 1/4) P(R = 1/8) P(R = 1/4) P(R = 1/8) P(R = 1/4)

By
timestamp

2 33.62 29.46 38.91 31.73 34.41 32.37

3 0.58 0.39 0.54 0.44 0.52 0.42

Random 2 33.16 23.11 33.74 24.05 31.58 23.16

3 1.01 0.68 1.08 0.73 1.03 0.72

Fig. 2. PvR curve for Season 2 partitioned by timestamps.

7 Conclusions

On the basis of the extensive experimental evaluation (presented in Sect. 6), we
have demonstrated that the proposed tensor-based model of temporal features
enables to improve the quality of CTR estimation. We have shown this improve-
ment in a Big Data application scenario of the Web user feedback prediction
(corresponding to the task typically realized within an RTB DSP). In partic-
ular, we have shown that, in the investigated scenario, one may improve the
quality of CTR estimation by using a simple, order-three MTHN-based models
combining two temporal features sets – the set consisted of the one-hour long
nychthemeron (‘day and night’) time slots (i.e., ‘hours’) and the set of week-
days (‘days of the week’) – with the set of domains and, equivalently, with the
set of advertisers. The high-performance results of the approach applying the
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MTHN(domain) variant indicate the potential of context-aware modeling – in
this case based on the features that describe the Web publishers.

The improvement beyond the state-of-the-art algorithm based on LR (pro-
posed in [23]) was achieved despite the referenced algorithm already involved
the use of a basic (not tensor-based) temporal feature model. Additionally, our
result was achieved despite the relative simplicity of the tensor-based model.
The simplified form of a tensor-based feature representation model presented in
this paper does not provide the properties that are widely-regarded as the key
source of the practical value of tensor-based data representations. In particu-
lar, being used merely as a training data representation structure, the model
itself provides no means for tensor-based feature similarity modeling nor tensor
decomposition [11,13] – the techniques that naturally constitute the area of the
future research on advancing the model. Moreover, although the use of a multi-
tensor hierarchy (see Sect. 3.2) enables performing a sophisticated tensor data
centering (which is known as a crucial for effective multilinear data processing
[2]), such an application of the model proposed herein is out of the scope of this
paper, as well.

Nevertheless, the progress beyond the quality of the state-of-the-art CTR
estimation method that has been presented in Sect. 6 indicates that the proposed
tensor-based temporal feature model is likely to be worth incorporation into
many RTB CTR estimation systems based on LR.
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