Chapter 2
A Deeper Look at Dataset Bias

Tatiana Tommasi, Novi Patricia, Barbara Caputo and Tinne Tuytelaars

Abstract The presence of a bias in each image data collection has recently attracted a
lot of attention in the computer vision community showing the limits in generalization
of any learning method trained on a specific dataset. At the same time, with the rapid
development of deep learning architectures, the activation values of Convolutional
Neural Networks (CNN) are emerging as reliable and robust image descriptors. In
this chapter we propose to verify the potential of the CNN features when facing
the dataset bias problem. With this purpose we introduce a large testbed for cross-
dataset analysis and we discuss the challenges faced to create two comprehensive
experimental setups by aligning twelve existing image databases. We conduct a series
of analyses looking at how the datasets differ among each other and verifying the
performance of existing debiasing methods under different representations. We learn
important lessons on which part of the dataset bias problem can be considered solved
and which open questions still need to be tackled.
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2.1 Introduction

Since its spectacular success in the 2012 edition of the Imagenet Large Scale Visual
Recognition Challenge (ILSVRC, [404]), deep learning has dramatically changed the
research landscape in visual recognition [275]. By training a Convolutional Neural
Network (CNN) over millions of data it is possible to get impressively high quality
object annotations [5] and detections [579]. A large number of studies have recently
proposed improvements over the CNN architecture of Krizhevsky et al.[275] with
the aim to better suit an ever increasing typology of visual applications [88, 236,
579]. At the same time, the activation values of the final hidden layers have quickly
gained the status of off-the-shelf state of the art features [384]. Indeed, several works
demonstrated that DeCAF (as well as Caffe [128], Overfeat [418], VGG-CNN [66],
etc.) can be used as powerful image descriptors [66, 203]. The improvements obtained
by previous methods are so impressive that one might wonder whether they can be
considered as a sort of “universal features”, i.e.image descriptors that can be helpful
in any possible visual recognition problem.

The aim of this work is to contribute to answering this question when focusing
on the bias of existing image collections. The dataset bias problem was presented ad
discussed for the first time in [489]. The capture bias is related to how the images are
acquired both in terms of the used device and of the collector preferences for point of
view, lighting conditions, etc. The category or label bias is due to a poor definition
of the visual semantic categories and to the in-class variability: similar images may
be annotated with different names and the same name can be assigned to visually
different images. Finally, each collection may contain a distinct set of categories and
this causes the negative bias. If we focus only on the classes shared among them, the
rest of the world will be defined differently depending on the collection.

All these aspects induce a generalization issue when training and testing a learning
algorithm on images extracted from different collections. Previous work seemed to
imply that this issue was solved, or on the way to be solved, by using CNN features
[128, 573]. However, the evaluation is generally restricted to controlled cases where
the data variability is limited to specific visual domain shift [128, 241] or some
images extracted from the testing collection are available at training time [349, 573].
Here we revisit and scale up the analysis, making three contributions:

1. We introduce a large-scale testbed for cross-dataset analysis and discuss the chal-
lenges faced when aligning twelve existing image datasets (see Fig.2.1).

2. We define two comprehensive experimental setups and we assess on them the
performance of the CNN features for dataset bias.

3. We propose a new measure to evaluate quantitatively the ability of a given algo-
rithm to address the dataset bias. As opposed to what proposed previously in the
literature [489], our measure takes into account both the performance obtained
on the in-dataset task and the percentage drop in performance across datasets.

Our experiments evaluate the suitability of CNN features for attacking the dataset
bias problem, pointing out that: (1) the capture bias is class-dependent and can be
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Fig. 2.1 We show here one image example extracted from each of the 12 datasets (columns) for
7 object categories (rows): mug, bonsai, fire-hydrant, car, cow, bottle, horse. The empty positions
indicate that the corresponding dataset is not annotated for the considered class

enhanced by the CNN representation due to the influence of the classes on which
the neural network was originally trained; (2) the negative bias persists regardless
of the representation; (3) attempts of undoing the dataset bias with existing ad-hoc
learning algorithms do not help, while some previously discarded adaptive strategies
appear effective; (4) fine-tuning the CNN network cannot be applied in the dataset
bias setting and if naively forced does not seem beneficial.

The picture emerging from these findings is that of a problem open for research
and in need of new directions, able to accommodate at the same time the potential
of deep learning and the difficulties of large-scale cross-database generalization.

Related Work. The existence of several data related issues in any area of automatic
classification technology was first discussed by Hand in [220]. The first sign of peril
in image collections was indicated in presenting the Caltech256 dataset [215] where
the authors recognized the danger of learning ancillary cues of the image collection
(e.g. characteristic image size) instead of intrinsic features of the object categories.
However, only recently this topic has been really put under the spotlight for computer
vision tasks by Torralba and Efros [489]. Their work pointed out the idiosyncrasies
of existing image datasets: the evaluation of cross-dataset performance revealed that
standard detection and classification methods fail because the uniformity of training
and test data is not guaranteed.
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This initial analysis of the dataset bias problem gave rise to a series of works
focusing on how to overcome the specific image collection differences and learn
robust classifiers with good generalization properties. The proposed methods have
been mainly tested on binary tasks (object versus rest) where the attention is focused
on categories like car or person which are common among six popular datasets: SUN,
LabelMe, PascalVOC, Caltech101, Imagenet, and MSRC [489]. A further group of
three classes was soon added to the original set (bird, chair and dog) defining a total
of five object categories over the first four datasets listed before [151, 268]. A larger
scale analysis in terms of categories was proposed in [389] by focusing on 84 classes
of Imagenet and SUN, while a study on how to use weakly labeled Bing images to
classify Caltech256 samples was proposed in [36]. Finally the problem of partially
overlapping label sets among different datasets was considered in [485].

Together with the growing awareness about the characteristic signature of each
existing image set, the related problem of domain shift has also emerged. Given a
source and target image set with different marginal probability distributions, any
learning method trained on the first will present lower performance on the second.
In real life settings it is often impossible to have full control on how the test images
will differ from the original training data and an adaptation procedure to remove
the domain shift is necessary. An efficient (and possibly unsupervised) solution is
to learn a shared representation that eliminates the original distribution mismatch.
Different methods based on subspace data embedding [164, 200], metric [407, 483]
and vocabulary learning [377] have been presented. As already mentioned above,
several works have also demonstrated that deep learning architectures may produce
domain invariant descriptors through highly nonlinear transformation of the original
features [128]. Domain adaptation (DA) algorithms have been mostly evaluated on
the Office (OFF31) dataset [407] and Office-Caltech (OC10) [200] containing office-
related object categories from three respectively 4 domains.

Despite their close relation, visual domain and dataset bias are not the same.
Domain adaptation solutions have been used to tackle the dataset bias problem, but
domain discovery approaches have shown that a single dataset may contain several
domains [238] while a single domain may be shared across several datasets [197].
Moreover, the domain shift problem is generally considered under the covariate
shift assumption with a fixed set of classes shared by the domains and analogous
conditional distributions. On the other hand, different image datasets may contain
different object classes.

Here we make up the lack of a standard testbed for large-scale cross-dataset
analysis and we evaluate the effect of the CNN features for this task. We believe that
widening the attention from few shared classes to the whole dataset structures can
reveal much about the nature of the biases and on the effectiveness of the proposed
representations and algorithmic solutions.
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2.2 A Large-Scale Cross-Dataset Testbed

In this section we first give a brief description of the considered image datasets,
created and used before for object categorization:

ETHS80 [293] was created to facilitate the transition from object identification (recog-
nize a specific object instance) to categorization (assign the correct class label to an
object instance never seen before). It contains 8 categories and 10 toy objects each
represented by 41 images captured against a blue background from viewpoints spaced
equally over the upper viewing hemisphere.

Caltech101 [160] contains 101 object categories and was the first large-scale collec-
tion proposed as a testbed for object recognition algorithms. Each category contains
a different number of samples between 31 and 800 images. The images have little or
no clutter with the objects centered and presented in a stereotypical pose.

Caltech256 [215]. Differently from the previous case the images in this dataset
were not manually aligned, thus the objects appear in several different poses. This
collection contains 256 categories with between 80 and 827 images per class.

Bing [36] contains images downloaded from the Internet for the same set of 256
object categories of the previous collection. Text queries give as output several noisy
images which are not removed, resulting in a weakly labeled collection. The number
of samples per class goes from a minimum of 197 to a maximum of 593.

Animals with Attributes (AwA) [287] presents a total of 30475 images of 50 animal
categories. Each class is associated to an 85-element vector of numeric attribute
values that indicate general characteristics shared between different classes. The
animals appear in different pose and at different scales in the images.

a-Yahoo [157]. As the previous one, this dataset was collected to explore attribute
descriptions. It contains 12 object categories with a minimum of 48 and a maximum
of 366 samples per class.

MSRCORID [331]. The Microsoft Research Cambridge Object Recognition Image
Database contains a set of digital photographs grouped into 22 categories spanning
over objects (19 classes) and scenes (3 classes).

PascalVOC2007 [148]. The Pascal Visual Object Classes dataset contain 20 object
categories and a total of 9963 images. Each image depicts objects in realistic scenes
and may contain instances of more than one category. This dataset was used as testbed
for the Pascal object recognition and detection challenges in 2007.

SUN [541] contains a total of 142165 pictures' and it was created as a comprehensive
collection of annotated images covering a large variety of environmental scenes,
places and objects. Here the objects appear at different scales and positions in the

Version available on December 2013 at http://labelme.csail.mit.edu/Release3.0/Images/users/
antonio/static_sun_database/ and the list of objects reported at http://groups.csail.mit.edu/vision/
SUN/.


http://labelme.csail.mit.edu/Release3.0/Images/users/antonio/static_sun_database/
http://labelme.csail.mit.edu/Release3.0/Images/users/antonio/static_sun_database/
http://groups.csail.mit.edu/vision/SUN/
http://groups.csail.mit.edu/vision/SUN/
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Fig. 2.2 Three cases of Imagenet categories. Left some images in class chess are wrongly labeled.
Middle: the class planchet or coin blank contains images that can be more easily labeled as coin.
Right the images highlighted with a red square in the class truncated pyramid do not contain a
pyramid (best viewed in color and with magnification)

images and many of the instances are partially occluded making object recognition
and categorization very challenging.

Office [407]. This dataset contains images of 31 object classes over three domains:
the images are either obtained from the Amazon website, or acquired with a high-
resolution digital camera (DSLR), or taken with a low resolution webcam. The col-
lection contains a total of 4110 images with a minimum of 7 and a maximum of 100
samples per domain and category.

RGB-D [284] is similar in spirit to ETH80 but it was collected with a Kinect camera,
thus each RGB image is associated to a depth map. It contains images of 300 objects
acquired under multiple views and organized into 51 categories.

Imagenet [120]. At the moment this collection contains around 21800 object classes
organized according to the Wordnet hierarchy.

2.2.1 Merging Challenges

There are two main challenges that must be faced when organizing and using at once
all the data collections listed before. One is related to the alignment of the object
classes and the other is the need for a shared feature representation.

Composing the datasets in a single corpus turned out to be quite difficult. Even
if each image is labeled with an object category name, the class alignment is tricky
due to the use of different words to indicate the very same object, for instance bike
versus bicycle and mobilephone versus cellphone. Sometimes the different nuance
of meaning of each word is not respected: cup and mug should indicate two different
objects, but the images are often mixed; people is the plural of person, but images of
this last class often contain more than one subject. Moreover, the choice of different
ontology hierarchical levels (dog versus dalmatian versus greyhound, bottle versus
water-bottle versus wine-bottle) complicates the combination. Psychological studies
demonstrated that humans prefer entry-level categories when naming visual objects
[350], thus when combining the datasets we chose “natural” labels that correspond to
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Fig. 2.3 Three categories with labeling issues. The class bat has different meanings both across
datasets and within a dataset. A saddle can be a seat to ride a horse or a part of a bicycle. A skateboard
and a snowboard may be visually similar, but they are not the same object

intermediate nodes in the Wordnet hierarchy. For instance, we used bird to associate
humming bird, pigeon, ibis, flamingo, rooster, cormorant, ostrich and owl, while boat
covers kayak, ketch, schooner, speed boat, canoe and ferry. In the cases in which we
combine only two classes we keep both their names, e.g. cup and mug.

In the alignment process we came across a few peculiar cases. Figure 2.2 shows
samples of three classes in Imagenet. The category chess board does not exist at the
moment, but there are three classes related to the word chess: chess master, chessman
or chess piece, chess or cheat or bromus secalinus (we use “or” here to indicate
different labels associated to the same synset). This last category contains only a
few images but some of them are not correctly annotated. The categories coin and
pyramid are still not present in Imagenet. For the first, the most closely related class is
planchet or coin blank, which contains many examples of what would be commonly
named as a coin. For the second, the most similar truncated pyramid contains images
of some non-truncated pyramids as well as images not containing any pyramids at
all. In general, it is important to keep in mind that several of the Imagenet pictures
are weakly labeled, thus they cannot be considered as much more reliable than the
corresponding Bing images. Imagenet users are asked to clean and refine the data
collection by indicating whether an image is a typical or wrong example.

We noticed that the word bar usually indicates the flying mammal except in SUN
where it refers to the baseball and badminton bat. A saddle in Caltech256 is the
supportive structure for a horse rider, while in SUN it is a bicycle seat. Tennis shoes
and sneakers are two synonyms associated to the same synset in Imagenet, while
they correspond to two different classes in Caltech256. In SUN, there are two objects
annotated as skateboards, but they are in fact two snowboards. Some examples are
shown in Fig. 2.3. We disregarded all these ambiguous cases and we do not consider
them in the final combined setups.

Although many descriptors have been extracted and evaluated separately on each
image collection, the considered features usually differ across datasets. Public repos-
itories with pre-calculated features exist for Caltech101 and Caltech256, Bing and
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Caltech256, and for a set of five classes out of four datasets.” Here we consider the
group of twelve datasets listed in the previous section and extracted the same features
from all of them defining a homogeneous reference representation for cross-dataset
analysis.

2.2.2 Data Setups and Feature Descriptor

Dense set. Among the considered datasets, the ones with the highest number of
categories are Caltech256, Bing, SUN and Imagenet. In fact the last two are open
collections progressively growing in time. Overall they share 114 categories: some of
the 256 object categories are missing at the moment in Imagenet but they are present
in SUN (e.g. desk-globe, fire-hydrant) and vice versa (e.g. butterfly, pram). Out of
this shared group, 40 classes (see Fig.2.4) contain more than 20 images per dataset
and we selected them to define a dense cross-dataset setup. We remark that each
image in SUN is annotated with the list of objects visible in the depicted scene: we
consider an image as a sample of a category if the category name is in the mentioned
list.

Sparse set. A second setup is obtained by searching over all the datasets for the
categories which are shared at least by four collections and that contain a minimum
of 20 samples. We allow a lower number of samples only for the classes shared
by more than four datasets (i.e.from the fifth dataset on the images per category
may be less than 20). These conditions are satisfied by 105 object categories in
Imagenet overlapping with 95 categories of Caltech256 and Bing, 89 categories of
SUN, 34 categories of Caltech101, 17 categories of Office, 18 categories of RGB-D,
16 categories of AwA and PascalVOCO07, 13 categories of MSRCORID, 7 categories
of ETH80 and 4 categories of a-Yahoo. The histogram in Fig. 2.5 shows the defined
sparse set and the number of images per class: the category cup and mug is shared
across nine datasets, making it the most popular one.

Representation. We release the cross-dataset with three feature representations:

e BOWsift: dense SIFTs have been among the most widely used handcrafted features
in several computer vision tasks before the advent of the CNN representations, thus
we decided to use this descriptor as reference and we adopted the same extraction
protocol proposed in the Imagenet development kit? by running their code over the
twelve considered datasets. Each image is resized to have a max size length of no
more than 300 pixels and SIFT descriptors [315] are computed on 20 x 20 overlap-
ping patches with a spacing of 10 pixels. Images are further downsized (to 1/2 and
1/4 of the side length) and more descriptors are computed. We used the visual vocab-

2Available respectively at http://files.is.tue.mpg.de/pgehler/projects/iccv09/,  http://vlg.cs.
dartmouth.edu/projects/domainadapt/, http://undoingbias.csail.mit.edu/.

3www.image-net.org/download-features.


http://files.is.tue.mpg.de/pgehler/projects/iccv09/
http://vlg.cs.dartmouth.edu/projects/domainadapt/
http://vlg.cs.dartmouth.edu/projects/domainadapt/
http://undoingbias.csail.mit.edu/
www.image-net.org/download-features
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Fig. 2.5 Stack histogram showing the number of images per class of our cross-dataset sparse setup
(best viewed in color and with magnification)

ulary of 1000 words provided with the mentioned kit to obtain the Bag of Words
(BOW) representation [108, 445]: it was built over the images of the 1000 classes of
the ILSVRC2010 challenge [404] by clustering a random subset of 10 million SIFT
vectors.

e DeCAF6, DeCAF7: the mean-centered raw RGB pixel intensity values of all the
collection images (warped to 256 x256) are given as input to the CNN architecture of
Krizhevsky et al. [275] by using the DeCAF implementation.* The activation values
of the 4096 neurons in the 6-th and 7-th layers of the network are considered as image
descriptors [128].

In our experiments we use the L2-normalized version of the feature vectors and
adopt the z-score normalization for the BOWsift features when testing DA methods.
‘We mostly focus on the results obtained with the DeCAF features and use the BOWsift
representation as a reference baseline.

Evaluation Protocol. Our basic experimental setup considers both in-dataset and
cross-dataset evaluations. With in-dataset we mean training and testing on samples
extracted from the same dataset, while with cross-dataset we indicate experiments
where training and testing samples belong to different collections. We use Self to

“https://github.com/UCB-ICSI-Vision-Group/decaf-release/.
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specify the in-dataset performance and Mean Other for the average cross-dataset
performance over multiple test collections.

One way to quantitatively evaluate the cross dataset generalization was previously
proposed in [489]. It consists of measuring the percentage drop (% Drop) between
Self and Mean Others. However, being a relative measure, it loses the information
on the value of Self which is important if we want to compare the effect of different
learning methods or different representations. For instance a 75% drop w.r.t a 100%
self average precision has a different meaning than a 75% drop w.r.t. a 25% self
average precision. To overcome this drawback, we propose here a different Cross-
Dataset (CD) measure defined as C D = (1 4 exp—{(Self=Mean Others)/100h) =1 T yges
directly the difference (Self — Mean Others) while the sigmoid function rescales
this value between 0 and 1. This allows for the comparison among the results of
experiments with different setups. Specifically C D values over 0.5 indicate a pres-
ence of a bias, which becomes more significant as C D gets close to 1. On the other
hand, C D values below 0.5 correspond to cases where either Mean Other > Self
or the Self resultis very low. Both these conditions indicate that the learned model is
not reliable on the data of its own collection and it is difficult to draw any conclusion
from its cross-dataset performance.

2.3 Studying the Sparse Set

Dataset Recognition. One of the effects of the capture bias is that it makes any
dataset easily recognizable. We want to evaluate whether this effect is enhanced or
decreased by the use of the CNN features. To do it we run the name the dataset
test [489] on the sparse data setup. We extract randomly 1000 images from each
of the 12 collections and we train a 12-way linear SVM classifier that we then test
on a disjoint set of 300 images. The experiment is repeated 10 times with different
data splits and we report the obtained average results in Fig.2.6. The plot on the
left indicates that DeCAF allows for a much better separation among the collections
than what is obtained with BOWsift. In particular DeCAF7 shows an advantage
over DeCAF®6 for a large number of training samples. From the confusion matrices
(middle and right in Fig. 2.6) we see that it is easy to distinguish ETH80, Office and
RGB-D datasets from all the others regardless of the used representation, given the
specific lab-nature of these collections. DeCAF captures better than BOWsift the
characteristics of A-Yahoo, MSRCORID, Pascal VOCO07 and SUN, improving the
recognition results on them. Finally, Bing, Caltech256 and Imagenet are the datasets
with the highest confusion level, an effect mainly due to the large number of classes
and images per class. Still, this confusion decreases when using DeCAF.

These experiments show that the idiosyncrasies of each data collection become
more evident when using a highly accurate representation. However, the dataset
recognition performance does not provide an insight on how the classes in each
collection are related to each other, nor how a specific class model will generalize to
other datasets. We look into this problem in the following paragraph.
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Fig. 2.6 Name the dataset experiment over the sparse setup with 12 datasets. The title of each
confusion matrix indicates the feature used for the corresponding experiments

Class-Specific cross-dataset generalization test. We study the effect of the CNN
features on the cross-dataset performance of two object class models: car and cow.
Four collections of the sparse set contain images labeled with these object classes:
PascalVOCO07 (P), SUN (S), ETH80 (E), and MSRCORID (M). For the class car
we selected randomly from each dataset two groups of 50 positive/1000 negative
examples respectively for training and testing. For the class cow we considered 30
positive/1000 negative examples in training and 18 positive/1000 negative examples
in testing (limited by the number of cow images in SUN). We repeat the sample selec-
tion 10 times and the average precision results obtained by linear SVM classification
are presented in the matrices of Table?2.1.

Coherently with what deduced over all the classes from the name the dataset
experiment, scene-centric (P,S) and object-centric (E,M) collections appear separated
from each other. For the first ones, the low in-dataset results are mainly due to
their multi-label nature: an image labeled as people may still contain a car and this
creates confusion both at training and at test time. The final effect is a cross-dataset
performance higher than the respective in-dataset one. This behavior becomes even
more evident when using DeCAF than with BOWsift.

Although the name the dataset experiment indicated almost no overall confusion
between E and M, the per-class results on car and cow show different trends. Learning
a car model from images of toys (E) or of real objects (M) does not seem so different
in terms of the final testing performance when using DeCAF. The diagonal matrix
values prominent with BOWsift are surrounded by high average precision results for
DeCAF. On the other hand, recognizing a living non-rigid object like a cow is more
challenging. An important factor that may influence these results is the high level
nature of the DeCAF representation: they are obtained as a byproduct of a training
process over 1000 object classes [128] which cover several vehicles and animal
categories. The class car is in this set, but cow is not. This intrinsically induces a
category-specific bias effect, which may augment the image collection differences.
Overall the DeCAF features provide a high performance inside each collection, but
the difference between the in-dataset and cross-dataset results remains large almost
as with BOWsift.

We also re-run the experiments on the class cow by using a fixed negative set
in the test always extracted from the training collection. The visible increase in the
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Table2.1 Binary cross-dataset generalization for two example categories, car and cow. Each matrix
contains the object classification performance (AP) when training on one dataset (rows) and testing
on another (columns). The diagonal elements correspond to the self results, i.e. training and testing
on the same dataset. We report in bold the CD values higher than 0.5. P,S,E,M stand respectively
for the datasets Pascal VOC07, SUN, ETH80, MSRCORID
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cross-dataset results indicates that the negative set bias maintains its effect regardless
of the used representation.

From the values of % Drop and C D we see that these two measures may have a
different behavior: for the class cow with BOWsift, the % Drop value for E (92.6) is
higher than the corresponding value for M (82.0), but the opposite happens for C D
(respectively 0.57 and 0.61). The reason is that C D integrates the information on the
in-dataset recognition which is higher and more reliable for M. Passing from BOWsift
to DeCAF the C D value increases in some cases indicating a more significant bias.

On the basis of the presented results we can state that the DeCAF features are not
fully solving the dataset bias. Although similar conclusions have been mentioned in
a previous publication [241], our more extensive analysis provides a reliable measure
to evaluate the bias and explicitly indicate some of the main causes of the observed
effect: (1) the capture bias appears class-dependent and may be influenced by the
original classes on which the CNN features have been trained; (2) the negative bias
persists regardless of the feature used to represent the data.

Undoing the Dataset Bias. We focus here on the method proposed in [268] to
overcome the dataset bias and verify its effect when using the DeCAF features.
The Unbias approach has a formulation similar to multi-task learning: the available
images of multiple datasets are kept separated as belonging to different tasks and a
max-margin model is learned from the information shared over all of them.
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Fig. 2.7 Percentage difference in average precision between the results of Unbias and the baseline
All over each target dataset. P,S,E,M,A,C1,C2,0F stand respectively for the datasets Pascal VOCO07,
SUN, ETH80, MSRCORID, AwA, Caltech101, Caltech256 and Office. O indicates the overall value,
i.e. the average of the percentage difference over all considered datasets (shown in black)

We run the experiments focusing on the classes car, cow, dog and chair and
reproducing a similar setup to what previously used in [268]. For the class car we
consider two settings with three and five datasets, while we use five datasets for cow
and chair and six datasets for dog. One of the datasets is left out in the round for
testing while all the others are used as sources of training samples.

We compare the obtained results against those produced by a linear SVM when
All the training images of the source datasets are considered together. We show the
percentage relative difference in terms of average precision for these two learning
strategies in Fig. 2.7. The results indicate that, in most cases when using BOWsift the
Unbias method improves over the plain A/l SVM, while the opposite happens when
using DeCAF7. As already suggested by the results of the cross-dataset generalization
test, the DeCAF features, by capturing the image details, may enhance the differences
among the same object category in different collections. As a consequence, the
amount of shared information among the collections decrease, together with the
effectiveness of the methods that leverage over it. On the other hand, removing the
dataset separation and considering all the images together provides a better coverage
of the object variability and allows for a higher cross-dataset performance.

In the last column of Fig.2.7 we present the results obtained with the class cow
together with the average precision per dataset when using DeCAF7. Specifically,
the table allows to compare the performance of training and testing on the same
dataset (Self) against the best result between Unbias and All (indicated as Other).
Despite the good performance obtained by directly learning on other datasets, the
obtained results are still lower than what can be expected having access to trained
samples of each collection. This suggests that an adaptation process from generic
to specific is still necessary to close the gap. Similar trends can be observed for the
other categories.
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Fig.2.9 Left Imagenetimages annotated as Caltech256 data with BOWsift but correctly recognized
with decaf7. Right Caltech256 images annotated as Imagenet by BOWsift but correctly recognized
with DeCAF7
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2.4 Studying the Dense Set

Dataset Recognition. The second group of experiments on the dense setup allows
us to analyze the differences among the datasets avoiding the negative set bias. We
run again the name the dataset test maintaining the balance among the 40 classes
shared by Caltech256, Bing, SUN and Imagenet. We consider a set of 5 samples per
object class in testing and an increasing amount of training samples per class from 1
to 15. The results in Fig. 2.8 indicate again the better performance of DeCAF7 over
DeCAF6 and BOWsift.

From the confusion matrices it is clear that the separation between object- (Bing,
Caltech256, Imagenet) and scene-centric (SUN) datasets is quite easy regardless of
the representation, while the differences among the object-centric collections become
more evident when passing from BOW to DeCAF. We can get a more concrete idea
of the DeCAF performance by looking at Fig.2.9. Here images on the left present
Imagenet images that have been assigned to Caltech256 with BOWsift but which are
correctly recognized with DeCAF7. Images on the right contain instead Caltech256
images wrongly annotated as Imagenet samples by BOWsift but correctly labeled
with DeCAF7. Considering the white background and standard pose that characterize
Caltech256 images, together with the less stereotypical content of Imagenet data,
the mistakes of BOWsift can be visually justified, nevertheless the DeCAF features
overcome them.
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Table 2.2 Multi-class cross-dataset generalization performance (recognition rate). The percentage
difference between the self results and the average of the other results per row correspond to the
value indicated in the column % Drop. CD is our newly proposed cross-dataset measure

BOWsift % Drop CD DeCAF7 % Drop CD
[(Z2l 2515 15.05 9.35 51.5 0.53 | cz5¢ 479 0.58
LG 14.50 17.85 9.0 34.0 0.52 [§ ™o 332 0.55
Y 7.70 8.00 13.55 42.1 0.51 | sunAEERFERE] 25.9 0.52

C256 IMG SUN C256 IMG SUN
test test

Since all the datasets contain the same object classes, we are in fact reproducing
a setup generally adopted for DA [164, 200]. By identifying each dataset with a
domain, we can interpret the results of this experiment as an indication of the domain
divergence [31] and deduce that a model trained on SUN will perform poorly on the
object-centric collections and vice versa. On the other hand, a better cross-dataset
generalization should be observed among Imagenet, Caltech256 and Bing. We verify
it in the following sections.

Cross-dataset generalization test. We consider the same setup used before with
15 samples per class from each collection in training and 5 samples per class in
test. However, now we train a one-vs-all multi-class SVM per dataset. Due to its
noisy nature we exclude Bing here and we dedicate more attention to it in the next
paragraph.

The average recognition rate results over 10 data splits are reported in Table 2.2.
By comparing the values of % Drop and C D we observe that they provide opposite
messages. The first suggests that we get a better generalization when passing from
BOWsift to DeCAF7. However, considering the higher Self result, C D evaluates
the dataset bias as more significant when using DeCAF7. The expectation indicated
before on the cross-dataset performance are confirmed here: the classification models
learned on Caltech256 and Imagenet have low recognition rate on SUN. Generaliz-
ing between Caltech256 and Imagenet, instead, appears easier and the results show
a particular behavior: although the classifier on Caltech256 tends to fail more on
Imagenet than on itself, when training on Imagenet the in-dataset and cross-dataset
performance are almost the same. Of course we have to remind that the DeCAF
features where defined over Imagenet samples and this can be part of the cause of
the observed asymmetric results.

To visualize the effect of the dataset-bias per class we present the separate recog-
nition rate in Fig.2.10. Specifically we consider the case of training on Caltech256.
From the top plot we can see that motorcycle, aeroplane and car are the objects better
recognized when testing on Caltech256 with BOWsift and they are also the classes
that mostly contribute to the recognition drop when testing on ImageNet and SUN.
On the other hand, the classes steering-wheel, windmill, bathtub, lighthouse and



52 T. Tommasi et al.

BOWsift DeCAF7

1 T T T T T T
——€) C256-C256|
C256-IMG QX
—FE] C256-SUN

—€) C256-C256|
C256-IMG
—] C256-SUN

°
&
Recognition Rate

°
>

°
=

Recognition Rate

°

°

c256-C256

ssigned assigned

Fig. 2.10 Recognition rate per class from the multi-class cross-dataset generalization test. C256,
IMG and SUN stand respectively for Caltech256, ImageNet and SUN datasets. We indicate with
“train-test” the pair of datasets used in training and testing

skyscraper are better recognized on SUN and/or Imagenet than on Caltech256. All
these last objects occupy most part of the image in all the collections and present less
dataset-specific characteristics. When looking at the results with DeCAF7, motor-
cycle and car are still among the classes with the highest cross-dataset recognition
difference, together with people, spoon, umbrella, basketball-hoop and laptop.

As already indicated by the binary experiments, even these results confirm that the
dataset bias is in fact class dependent and that using DeCAF does not automatically
solve the problem. A further remark can be done here about Imagenet. Although
often considered as one of the less biased collections it actually presents a specific
characteristic: the images are annotated with a single label but in fact may contain
more than one visual category. In particular, its images often depict people even when
they are labeled with a different class name. As a demonstration we report at the bot-
tom of Fig.2.10 a sub-part of the confusion matrix when training on Caltech256 and
testing both on itself and on Imagenet. The results show that people are recognized
in the class umbrella and laptop with relevant influence on the overall annotation
eITorS.

Noisy Source Data and Domain Adaptation. Until now we have discussed and
demonstrated empirically that the difference among two data collections can actu-
ally originate from multiple and often co-occurring causes. However the standard
assumption is that the label assigned to each image is correct. In some practical cases
this condition does not hold, as in learning from web data [66]. Some DA strategies
seem perfectly suited for this task (see Fig.2.11 top part) and we use them here to
evaluate the cross-dataset generalization performance when training on Bing (noisy
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images that are more relevant for the target test data and

train a model only on them.

The reshape approach [238] identifies latent sub-
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Fig. 2.11 Top schematic description of the used DA methods. Botfom Results of the Bing-
Caltech256 and Bing-SUN experiments with DeCAF7. We report the performance of different
DA methods (big plots) together with the recognition rate obtained in 10 subsequent steps of the
self-labeling procedure (small plots). For the last ones we show the performance obtained both with
DeCAF7 and with BOWsift when having originally 10 samples per class from Bing

object-centric source domain) and testing on Caltech256 and SUN (respectively an
object-centric and a scene-centric target domain). We consider an increasing number
of training images per class from 10 to 50 and we test on 30 images per class on
Caltech256 and 20 images per class on SUN. The experiments are repeated for 10
random data splits.

The obtained results are shown in Fig.2.11—bottom part, go in the same direc-
tion of what observed previously with the Unbias method. Despite the presence
of noisy data, selecting them (landmark) or grouping the samples (reshape+SA,
reshape+DAM) do not seem to work better than just using all the source data at
once. On the other hand, keeping all the source data together and augmenting them
with target samples by self-labeling [486] consistently improves the original results
with a significant gain in performance especially when only a reduced set of train-
ing images per class is available. One well known drawback of this strategy is that
progressively accumulated errors in the target annotations may lead to significant
drift from the correct solution. However, when working with DeCAF features this
risk appears highly reduced: this can be appreciated by looking at the recognition
rate obtained over ten iterations of the target selection procedure, considering in par-
ticular the comparison against the corresponding performance obtained when using
BOWsift (see the small plots in Fig.2.11).
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Fine-Tuning. As indicated in Sect. 2.2.2 the CNN features used for our analysis were
obtained from pre-trained network whose parameters remain untouched. Previous
work showed that modifying the network by fine-tuning before using it for recog-
nition on a new task can be useful [349, 573]. We clarify here that this standard
fine-tuning process does not fit in the dataset bias setting used for our study.

A network pre-trained on a dataset D is generally fine-tuned on a new dataset
D’ when the final task is also tested on D’. Thus the scheme (train,fine-tune,test)
is (D, D', D'). In our analysis we have instead a different condition: (D, D', D")
where D’ consists in a reduced amount of labeled data, while D” is the test set
extracted from a collection different from D’. It has been demonstrated that fine-
tuning on a small amount of samples provides bad results [241] and it makes the
features dataset-specific [66], which can only increase the bias. By using the Caffe
CNN implementation we fine-tuned the Imagenet pre-trained network on the dense
set, specifically on Caltech256 (5046 train images, 40 classes) and SUN (3015
train images, 40 classes), reserving respectively 1500 and 1300 images from these
two datasets as test data. The in-dataset and cross-dataset experimental results are:
(Imagenet, Caltech256, Caltech256) = 86.4%; (Imagenet, SUN, SUN) =
41.1%. (Imagenet, SUN, Caltech256) = 37.5%; (Imagenet, Caltech256,
SUN) = 25.7%. Compared with what presented in Table 2.2 these results show the
advantage of the fine-tuning in terms of overall recognition rate. However they also
confirm that the fine-tuning process does not remove the bias (86.4 > 25.7%; 41.1 >
37.5%) and that using the wrong dataset to refine the network can be detrimental
(86.4 > 37.5%; 41.1 > 25.7%).

2.5 Conclusion

In this paper we attempted at positioning the dataset bias problem in the CNN-based
features arena with an extensive experimental evaluation. At the same time, we
pushed the envelope in terms of the scale and complexity of the evaluation protocol,
so to be able to analyze all the different nuances of the problem. We proposed a
large-scale cross-dataset testbed defined over 12 existing datasets organized into two
setups, and we focused on DeCAF features for the impressive results obtained so far
in several visual recognition domains.

A first main result of our analysis is that DeCAF not only does not solve the dataset
bias problem in general, but in some cases (both class- and dataset-dependent) they
capture specific information that, although otherwise useful, induce a low perfor-
mance in the cross-dataset object categorization task. The high level nature of the
CNN features adds a further hidden bias that needs to be considered when comparing
the experimental results against standard hand-crafted representations. Moreover, the
negative bias remains, as it cannot intrinsically be removed (or alleviated) by chang-
ing feature representation. A second result concerns the effectiveness of learning
methods applied over the chosen features: nor a method specifically designed to
undo the dataset bias, neither algorithms successfully used in the domain adaptation
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setting seem to work when applied over DeCAF features. It appears as if the highly
descriptive power of the features, that determined much of their successes so far, in
the particular dataset-bias setting backfires, as it makes the task of learning how to
extract general information across different data collection more difficult. Interest-
ingly, a simple selection procedure based on target self-labeling leads to a significant
increase in performance. This questions whether methods effectively used in DA
should be considered automatically as suitable for dataset bias, and vice versa.

How to leverage over the power of deep learning methods to attack this problem in
all its complexity, well represented by our proposed experimental setup, is open for
research in future work. We consider this work as the first step of a wider project (the
official webpage https://sites.google.com/site/crossdataset/): we already calculated
and released new versions of the CNN features obtained with different architectures
and by using different pre-training datasets on which we are planning an even larger
experimental evaluation.


https://sites.google.com/site/crossdataset/
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