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Abstract. Managing one’s supply chain is a key task in the operational
risk management for any business. Human procurement officers can man-
age only a limited number of key suppliers directly, yet global companies
often have thousands of suppliers part of a wider ecosystem, which makes
overall risk exposure hard to track. To this end, we present an industrial
graph database application to account for direct and indirect (transi-
tive) supplier risk and importance, based on a weighted set of measures:
criticality, replaceability, centrality and distance. We describe an imple-
mentation of our graph-based model as an interactive and visual supply
chain risk and importance explorer. Using a supply network (comprised
of approximately 98, 000 companies and 220, 000 relations) induced from
textual data by applying text mining techniques to news stories, we inves-
tigate whether our scores may function as a proxy for actual supplier
importance, which is generally not known, as supply chain relationships
are typically closely guarded trade secrets. To our knowledge, this is
the largest-scale graph database and analysis on real supply relations
reported to date.

Keywords: Supply chain analysis · Graph analysis · Risk analysis ·
Vulnerability analysis · Linked data · Procurement

1 Introduction

A supply chain is a complex network of interconnected actors that continually
exchange goods, with the goal of producing value for all actors in the supply
chain. Though supply chains are growing ever more involved, and remain as
vital as ever to companies’ success, many companies operate with little insight
beyond their first tier suppliers and customers. This means that any disruption
occurring removed from a company’s immediate view risks to be met with little
preparedness, and without mitigation strategies in place. To alleviate such risks
of being unprepared it is in the interest of companies to increase visibility in
supply chains, identifying not only actors they directly interface and exchange
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goods with, but also those residing in subsequent tiers. In addition much of
the management of supply chains within companies are founded upon ad hoc
methods, relying heavily on human expert knowledge and intuition.

With our work we present a novel approach to investigating the structure
of a company’s supply chain, based on insights extracted from free text. We
represent relations between companies as a graph, where companies are repre-
sented as nodes and supply relations as directed edges, pointing from a supplier
to a customer (or consignee). Not only does this allow us to interpret relations
between companies in a formally defined manner, but it additionally provides
the opportunity to investigate links between companies beyond their first tier
suppliers and customers. More specifically, we use this graph to identify peers
of a company within its supply chain that are not only particularly relevant,
but that are also exposed to certain risks and thus increase the potential for
supply chain disruptions. Our graph-based model captures the connectedness of
the supplier-consignee supply chain ecosystem in conjunction with the strength
of the relationships and the risk exposure of each company entity, which transi-
tively affects potentially large parts of the graph. Specifically, we have developed
a solution that is comprised of two APIs, which together provide an aggregate
view of peers that are important suppliers to a company, while also being exposed
to certain risks. Peers of a company are extracted from a graph database. A pre-
specified number of neighbors, from within a pre-specified distance from the
node, are extracted and subsequently scored for their importance to the com-
pany and their risk. Such a graph model has the potential to serve as the basis
for numerous subsequent experiments, including exploring the resilience (see
literature review below).

The remainder of this paper is organized as follows. In Sect. 2 we discuss
related work at the intersection of two or more of the fields of interest to our
work. In Sect. 3 we describe our data sets as well as the construction of a graph
database to store and access it. The method of extracting suppliers from the
graph database and subsequently scoring their importance and risk is described
in Sect. 4. We describe the APIs through which the scoring methods are invoked,
as well as the system with which we represent the API output, in Sect. 5. We
present an empirical evaluation of the quality of the importance scores in Sect. 6,
before concluding the paper in Sect. 7.

2 Related Work

Our work spans a number of fields, touching upon risk and graph analysis, as well
as the more nascent area of scientific supply chain analysis, all of which we base
on content extracted from the web. Little research has considered the application
of both risk and graph analysis to supply chains and modeling. The work of
Wagner and Neshat [22], who investigate supply chain risk quantification and
mitigation based on graph theory, presents a notable exception. In the remainder
of this section we thus review work that resides at the intersection of at least two
of the areas we are concerned with. For more specific surveys of the individual
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fields refer, for example, to [1] for an overview of graph analysis, to [4] for research
on risk and to [20] for a summary of recent advances in supply chain management
and procurement.

Supply Graphs. Recent trends in the analysis of supply chains have high-
lighted the value of representing supply chains as graphs, or networks, rather
than as flat structures and relational databases. To this end, Borgatti and col-
leagues [6] provide an overview of social network analysis, geared towards sup-
ply chain research. In the same vein, Kim and colleagues [12] interpret supply
chains as networks and apply social network analysis metrics, such as closeness
or betweenness centrality, to evaluate the flow of materials through a supply
chains, as well as contractual relationships. Interpreting supply chains as graphs
produces wholly new opportunities to investigate structural characteristics and
transitive links of complex relations. This is not limited to risk or importance, the
focus of our work, but extends well beyond these metrics. For example, Tan and
colleagues [19] propose the use graphs to identify innovation potential through-
out a network of interlinked companies. Further exploiting graph capabilities, Xu
and colleagues [23] describe an evolutionary mechanism that dynamically grows
and alters supply networks, reflecting the dynamic nature of supply relations.

Risk and Importance in Supply Chains. Much of the development in assess-
ing risk in supply chains is based on qualitative studies, using expert opinion
and case studies. For example, Blome colleagues [5] investigate whether the 2008
financial crisis has had an impact on how risk is managed and, more specifi-
cally, whether any of the stages of risk analysis, risk mitigation and risk mon-
itoring have changed. Similarly, Hallikas and colleagues [8] conduct case stud-
ies on eleven companies, operating in either the electronics or metal industry,
to illustrate challenges that network co-operation brings to risk management.
Aqlan and colleagues [3] describe a risk assessment framework that produces risk
scores for suppliers, customers, manufacturers, transportation and commodities.
For each stakeholder, experts are consulted to identify the main risk factors.
This produces a quantification similar to what we describe in our work, joining
impact potential with the risk of this impact actually materializing. Ghadge and
colleagues [7] describe a framework comprised of an iterative process to identify,
assess and mitigate supply chain risks. They focus on risk assessment, which
is comprised of risk modeling and sensitivity analysis, using both a risk regis-
ter and data collected through interviews, company reports, etc. Harland and
colleagues [9] describe a network risk tool to address the same challenges. The
authors focus on risks arising from product and service complexity, outsourc-
ing, globalization and e-business. Based on a set of surveys and focus groups,
Juettner [11] seeks to identify and understand business requirements for SCRM
from the perspective of professionals working in the field. To structure overarch-
ing issues encountered in her analysis into these levels, Juettner first identifies
the extent to which organizations already manage risks in their supply chain
and then determines critical issues that arise as part of the implementation of
risk management. Simchi-Levi, Schmidt and Wei [17] present a dynamic graph
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model, which includes recovery time. Unlike our model, their data is obtained
from human questionnaires, not automatic text mining.

Risk and Importance in Graphs. The use of attack graphs represents one of
the more popular approaches to interpreting risk and adverse events in graphs.
Attack graphs, as well as attack trees are used to model all possible attacks, or
exploits, on a network. In an early proposal for the application of attack-graphs
to the identification of risks in physical networks Phillips and Swiler [15] coin
network-vulnerability analysis. In a more recent development, Alhomidi and Reed
[2] use a genetic algorithm (GA) [13] to model a large number of possible paths in
attack graphs, where each path connects the source of an attack on a network to
the target of the attack. In each path, nodes are assigned with a probability that
represents the likelihood of the node being exploited by an attacker, as well as an
expected loss, accrued when a node is indeed attacked. In an adoption of attack
graphs, Poolsappasit and colleagues [16] propose a framework for dynamically
managing security risks called Bayesian attack graphs (BAG). The overall risk
of each possible path in an attack graph is calculated as a product of the attack
success likelihoods and the value of the expected loss incurred. Based on data for
371 banks that failed during the 2008 financial crisis, Huang and colleagues [10]
study the systemic risk of financial systems. To do so they propose a cascading
failure model to describe the risk propagation process during crises. A bi-partite
banking network model is proposed, where one type of node represents banks
and another represents assets held by banks. The resulting graph is shocked by
decreasing the total market value of an asset, leading to a decrease in value for
every bank that holds the affected asset. Stergiopoulos and colleagues [18] extend
the notion of cascading failure models to include graph centrality measures to
help identify the nodes most critical in identifying and mitigating failures. Graph
centrality here is used as a proxy for identifying the most important nodes within
a graph so that any risk mitigation strategy can be based on both the importance
of nodes and their susceptibility to failure, in general. None of the work surveyed
above provides a larger-scale supply chain graph model, which can be used for
the analysis of and experimentation with supply relation scoring methods. Below
we present such a model, as well as its implementation.

3 Building a Supply Graph

Our analysis of supply relations between companies is based on a graph database,
where the nodes represent companies and edges signify directed supply relations,
pointing from a supplier to a customer. Supplier/customer pairs are extracted
automatically from specifically news articles. Each node in the graph is assigned
a set of attributes, namely (i) their business sector, (ii) a credit risk score, (iii)
the company name and (iv) a closeness centrality score. We describe the data
extraction process, as well as the node attributes, in detail below, for two sep-
arate supply graphs. On the one hand we conduct experiments, as described in
Sect. 6, on the full graph (SPR+), with all its attributes. On the other hand,
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Table 1. Dataset: summary statistics.

Number of nodes 98,402

Number of vertices 217,188

Average path length 6.614

Average degree 4.414

Average closeness centrality 0.225

necessitated by the proprietary nature of this data, we make available a sec-
ond dataset (SPR−) for research purposes1; in it, company names and business
sectors are anonymized. Table 1 summarizes the main characteristics of the data.

3.1 Supply Relations Data

Both datasets, SPR+/− are comprised of supply relations between two compa-
nies, where each individual relation and the companies involved are automati-
cally extracted form text snippets. While we describe a static snapshot of the
dataset for our experiments, an underlying RDF triple store of supply relations
is continually updated, both to add new relations and to remove those consid-
ered out of date. A snippet corresponds to a sentence, extracted either from a
news article or a Security and Exchange Commission (SEC) filing. A logistic
regression model was trained on a set of 45, 000 snippets, while the test set was
comprised of 20, 000 snippets. The training and test data were aggregated using
the following procedure:

1. Identify companies in a document, using Calais2;
2. split documents into sentences;
3. choose candidate sentences that contain two companies, as well as one or

more of a pre-specified set of patterns; and
4. using Mechanical Turk, label companies in the candidate sentences as suppli-

ers, customers, or neither.

Patterns are based on a set of indicative n-grams, as well as variations of these
n-grams to catch terms such as powered by, contracts with, etc. Each candidate
sentence has been labeled by two separate Turkers and any disagreement was
addressed by presenting the instance to a third annotator. The regression model
has been tuned to yield high precision, focusing on the extraction of high quality
evidence sentences, while relying on the fact that eventually, highly indicative
sentences will be introduced into the dataset. The classifier produced an F1-
score F1 = 0.57 (with precision = 0.76 and recall = 0.46) on the test set
(note that a random baseline classifier would achieve an accuracy of 0.5). Data
is stored in an RDF triple store from which we can extract a subset or, to
1 see http://bit.ly/TRSupplyChainRisk.
2 http://www.opencalais.com/.

http://bit.ly/TRSupplyChainRisk
http://www.opencalais.com/
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populate our graph database, the entire set using Sparql queries. This triple
store is continually updated to add additional relations found in unseen text;
multiple patterns producing the same supplier-consignee pairs are aggregated to
a single triple. Each triple has a confidence score assigned, based on the classifier
output as well as the amount of examples found for a specific relation.

3.2 Company Attributes

To score a company according to its importance as a supplier to a customer, as
well as the risk it is exposed to, we assign a set of attributes to each company, in
addition to its name for identification purposes. The importance of a company
is then determined based on how a supplier’s attributes compares to those of
the customer, as well as both their position in the overall graph.

Business Sector. Each company in the supply graph is labeled with the busi-
ness sector it operates in. We use the Thomson Reuters Business Classifica-
tion (TRBC)3 scheme for this purpose, a widely used industry standard. The
TRBC scheme offers classification of companies at various levels of abstraction,
i.e. economic sectors, the most abstract level, business sectors, industry groups,
industries, and activities. To strike a compromise between informativeness and
the ability to group various companies we label companies with their business
sector, meaning that we distinguish between 28 different labels, such as Renew-
able Energy, Industrial goods, etc.

Credit Risk. To identify the risk companies are exposed to we score them
according to a credit risk measure. This score broadly signifies the likelihood of
a company defaulting on one or more of their debt obligations within a year. A
score between zero and 100 is used to signify the likelihood, where a lower score
represents a higher likelihood of default.

Closeness Centrality. One of the aims of our importance scoring is to incorpo-
rate both attributes of individual companies and those formalizing a company’s
role within a larger graph of companies. To this end we have chosen to score
each node in the graph according to its closeness centrality. Closeness centrality
measures a node’s centrality in a graph as the sum of the length of the shortest
paths between the node and all other nodes in the graph. This sum is usually
normalized by division with the total node count N (minus one so as not to
count the node itself) to represent the average length of the shortest paths, or
distance d(y, x), giving

C(x) =
N − 1

∑
y d(y, x)

, (1)

3.3 Database

The data described above is initially extracted from the RDF store and repre-
sented as separate node and edge tables, which are, in turn, used to populate a
3 http://financial.thomsonreuters.com/en/products/data-analytics/market-data/

indices/trbc-indices.html.

http://financial.thomsonreuters.com/en/products/data-analytics/market-data/indices/trbc-indices.html
http://financial.thomsonreuters.com/en/products/data-analytics/market-data/indices/trbc-indices.html
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graph database, implemented using Neo4j. While the original dataset described
here contains proprietary data and can hence not be published, we make avail-
able an anonymized version of the node and edge tables. To interact with the
database we use Cypher, the graph query language developed as part of Neo4j.
To load the node table we call the following command

1 USING PERIODIC COMMIT

2 LOAD CSV WITH HEADERS FROM ’file :/// file_path/nodes.csv ’ as line

3 WITH line MERGE (ID:permID {name: TOINT(line.permID)})
4 SET ID.trbc = line.TRBC, ID.centrality = line.centrality,

5 ID.company_name = line.company_name,

6 ID.ccgr = line.CCGR;

and, to load the edge table, we call

1 USING PERIODIC COMMIT

2 LOAD CSV WITH HEADERS FROM ’file :/// file_path/rels.csv ’ as line_b

3 MATCH (sup:permID {name: TOINT(line_b.supplier)})
4 WITH sup, line_b MATCH (cus:permID {name: TOINT(line_b.customer)})
5 MERGE (sup)-[:supplies]->(cus)

This populates a previously initialized Neo4j instance, which can then be
queried. In our case we want to evaluate the importance and risk of a pre-defined
number of suppliers to a specific customer. To do so, we need to identify a single
node within the database, i.e. the customer, and query for neighbours whose
directionality points towards that node, i.e. the company’s suppliers. Depending
on the setting of the query we may do this recursively to not only retrieve direct
suppliers, but suppliers of suppliers, also. We generally refer to direct suppliers
as first-tier suppliers, to suppliers of suppliers as second-tier suppliers, and so
forth. The below retrieves up to 1, 000 first- and second-tier suppliers of the node
0123456789.

1 MATCH (n:permID {name: 0123456789}),
2 p=shortestPath((x)-[:supplies*1..2]->(n))

3 WITH LENGTH(p) AS lp, x LIMIT 1001

4 RETURN

5 x.name, x.trbc, x.ccgr, x.centrality, x.company_name, lp;

Note that we set the limit to 1, 001 because the node we are searching for
is included in the limit, as well. While we have used Neo4j as the database of
choice we opted to run graph analyses using Gephi4. On the one hand we have
used Gephi to calculate closeness centrality scores for nodes in the graph, as
described above. On the other hand Gephi provided a natural interface to run
initial analyses on the graph to determine its overall structure. This includes
calculating the measures reported in Table 1.

4 https://gephi.org.

https://gephi.org
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3.4 World Input-Output Database (WIOD)

The World Input-Output Database (WIOD) [21] provides data on the distribu-
tion of supply activities between business sectors.5 We use this data as part of
our importance calculation, where we compare the business sector the supplier
operates in with the business sector the customer resides in. The WIOD allows
us to deduce whether these two industries have a strong relation, in terms of rela-
tive volume exchanged between the business sectors, compared to other business
sector combinations. The WIOD is comprised of supply data between a total of
43 countries and compares business sectors based on the International Standard
Industrial Classification (ISIC). Data is collected for the period between 2000
and 2014. Since for our work we have assigned TRBC codes to the companies
that comprise the supply graph we use a mapping between TRBC and ISIC
codes that has been created internally to align the WIOD with our data.

4 Scoring Method

The graph database described in the previous section facilitates the analysis
of supply relations between companies within the context of a larger network.
In this section we describe how we use the graph database to identify relevant
suppliers of a customer through multiple tiers of the supply graph and score them
according to two metrics, (1) importance and (2) risk. Importance, described
in detail in Sect. 4.1, scores suppliers of a company based on a combination of
metrics, incorporating both the structure of the graph and the supplier’s position
in it, and attributes of the supplier itself. With it we aim to quantify the adverse
impact that a disruption to the supply from a specific supplier would have on
a specific customer, where a high importance, i.e. a score close to 1, reflects a
high potential adverse impact. Risk, described in detail in Sect. 4.2, is scored
according the credit risk scores assigned to each company in the graph.

4.1 Scoring Supply Chain Importance

We calculate importance scores I = (i0, ..., in) for suppliers S = (s0, ..., sn),
each represented by a node in a graph, retrieved from the graph database. The
nodes are retrieved in relation to node c, representing a customer, representing
the n companies closest to c. Each importance score im is an aggregate of four
measures:

a. Criticality : The proportion of goods the business sector of q receives from the
business sector of im (based on WIOD data, see Sect. 3.4);

a =
Criticality

m
; (2)

where m is a normalization constant m = 34.27. The constant represents the
strongest tie between any two industries in the WIOD dataset.

5 http://www.wiod.org/home.

http://www.wiod.org/home
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b. Replaceability : The sum of how many s operate in the same business sector
as sm (based on TRBC codes):

b = 1 −
(

Replaceability

n − 1

)

; (3)

c. Centrality : a metric of the importance of sm to the overall graph (we can use
closeness centrality, for instance);

c = Centrality (4)

d. Distance: the (step-)distance between sm and c.

d =
n − Distance

n − 1
(5)

We then aggregate im as follows:

im =

(
a+b+c+d

4

)

max ∈ I
(6)

The above operations normalize all individual scores to a value in the range
[0; 1]. The scores are also normalized so that a value closer to one reflects a higher
importance. We also normalize im by dividing its result by the maximum score
of all i, so that the most important node always has a score of one and all other
nodes are scored in relation to it. We catch the fringe case that yields division by
zero programmatically (where n = 1), in which case we can simply set i0 ← 1.

4.2 Scoring Supply Chain Risk

The second metric according to which we score the suppliers is credit risk. Akin to
importance we calculate risk scores R = (r0, ..., rn) for suppliers S = (s0, ..., sn)
of customer c. Each risk score rm is based on a single attribute of a node,
namely one of two scores, (1) Credit Combined Global Rank or (2) Private Com-
pany SmartRatios Global Rank. Score (1) is assigned to public companies, while
score (2) is used for private companies. Both scores are extracted from propri-
etary Thomson Reuters solutions. The coverage of risk scores for companies that
comprise the supply chain agreement dataset is roughly 26%. To cover the gaps
we heuristically determined risk scores for companies without a risk score. In
a first step we grouped companies based on their business sector, using TRBC
codes, and calculated the average risk for each business sector, using the avail-
able scores. Companies with missing risk scores were then assigned the average
risk score according to their TRBC code. Once each node in the graph had a
risk score assigned we normalized the score so that its range is between zero and
one, and a higher score represents a higher risk.
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5 System Description

The implementation of our scoring methodology is comprised of two components.
On the one hand we have implemented two APIs to expose scoring algorithms, one
each to execute the importance and risk scoring for the suppliers retrieved form
the graph database and returning the results as json files. On the other hand we
set up a profile for an existing interface to dynamically visualize the results.

5.1 Application Programming Interfaces

The scoring algorithms described in the previous section are accessed through
separate Application Programming Interfaces (APIs), each of which accept as
arguments the following three parameters; company ID, node count and depth
count. In the original dataset we use permIDs6 as company IDs, which have been
replaced by random ten-digit IDs in the public dataset.

The node count determines how many neighbours of the node representing
the company ID are retrieved from the graph, while the depth count determines
from how many tiers we retrieve neighbours. The system accepts two API calls,
one to score supply chain importance and another to score risk. Each of the two
APIs returns a json file with the following format:

1 {
2 "dimensionName": "Supply chain importance",
3 "peers":[
4 {
5 "eid": "0022446688",
6 "name": "c",
7 "score": 1,
8 "baseEntity": true
9 },{

10 "eid": "8800224466",
11 "name": "s0",
12 "score": i0,
13 "baseEntity": false
14 },{
15 "eid": "6688002244",
16 "name": "s1",
17 "score": i1,
18 "baseEntity": false
19 },...{
20 "eid": "4466880022",
21 "name": "sn",
22 "score": in,
23 "baseEntity": false
24 }]
25 }
6 https://permid.org/.

https://permid.org/
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The output JSON file is comprised of the header and two types of blocks.
The header identifies which dimension the scores in the JSON file represent. In
the example this is the importance score. The first block following the header
represents the input entity, i.e. the customer passed to the API. The baseEntity
label is set to true to represent this and the score is set to a placeholder value
of one. Each subsequent block represents a supplier of the baseEntity, which
may be a supplier at any tier, depending on the parameter settings. Each block
is comprised of the ID (eid), uniquely identifying the company, the company’s
name, its importance score and the baseEntity flag set to false. The output of
the risk scoring API produces the same structure, the only difference being the
dimension name in the header.

5.2 Interface

The importance and risk calculations, exposed through the APIs described
above, are queried, and results visualized, using an internal application called
Jersey. Jersey provides an interface with functionalities to search for an entity,
here companies, and retrieve and visualize the entity’s peers. Once a user sub-
mits a query, Jersey requests data through our APIs and renders the returned
json files as shown in Fig. 1 or 2. Figure 1 shows importance as a single slider,
aggregated as described in Sect. 4.1. Figure 2, on the other hand, returns the
components of our importance score individually. In both cases the user can
use the sliders to adjust the weighting of the individual scores, depending on
individual preferences, with the second view allowing more granular weighting.
Additionally Jersey offers options to use different weighting mechanisms and
render more or fewer results.

Fig. 1. Our application’s web interface.
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Fig. 2. Importance scores can be broken down into components.

6 Experiments

The risk score we have used is an industry standard measure of credit risk and
we have thus focused our evaluation on determining whether the importance
score, which we have developed as part of our work, produces a representative
measure of the actual importance of a supplier to its customer. As described in
Sect. 3.1, the supply chain agreements between two companies that comprise the
graph are extracted from natural language text. To evaluate the veracity of how
we score these relations on the importance we use the snippets from which the
relations have been extracted. To build an evaluation dataset we have done the
following:

1. Select 200 snippets that contain correctly classified supply relations.
2. Identify the corresponding supply agreement and score their importance using

our application.
3. Select the 20 highest scoring, as well as the 20 lowest scoring snippets
4. Randomly match a high scoring snippet with a low scoring snippet to create

a set of 200 pairs of snippets

Two annotators were then asked to the snippet in a pair that described a more
important supply relation. To determine the veracity of the generated importance
scores we then measured correlation between the scores and human judgments.
The annotations produced rather low inter-annotator agreement, with a Cohen’s
kappa of κ = 0.2499. As expected, then, a Pearson correlation coefficient pro-
duces a similarly low score of p = 0.1451.

Discussion. Considering the low kappa score it appears that deciding the impor-
tance based solely on comparing snippets may not be a viable approach to judg-
ing the veracity of our importance score. The random matching of snippets
without pre-selection may have also hurt our evaluation. Note, however, that we
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do not calculate importance based on judging the snippets and thus low corre-
lation need not mean that our importance scores do not reflect reality. What
we can conclude, based on the low kappa value, is that human judgement of
importance based on short snippets does not seem viable and, based on the
low p value, that we cannot confirm the veracity of our importance scores. A
further limitation of our approach is that, because no fine-grained data at the
level of each Other challenges that may have hurt performance are the data gaps
described in Sect. 4.2 and the simple, equal weighting that produces the aggre-
gate importance score, as described in Sect. 4.1 individual transaction between a
supplier and consignee was available for this study, we had to estimate the con-
nections, somewhat crudely, taking sector-to-sector flows as proxies. This will no
doubt have had adversarial effects, and it is hard to quantify them. Nevertheless,
we believe that having a quantitative model is valuable, and if and when more
granular data becomes available, more refined models can be compared to our
model to demonstrate their merit.

7 Summary, Conclusions and Future Work

With this paper we have presented a novel approach to evaluating suppliers of
companies according to their importance and risk. We have developed a dataset
comprised of roughly 98, 000 companies and 220, 000 supply relations, which we
represent as a directed graph. Using a combination of a company’s attributes
and their position within the graph we determine their importance as suppliers
to a specific company. This has allowed us not only to develop a principled
representation of a supply graph, it also allows us to investigate supply beyond
the first tier suppliers of a company.

One of the main shortcomings of our work is the limited insight we can gain
from the evaluation. In future work we will need to identify new ways of eval-
uating the importance scores, based on which we can develop new weighting
algorithms. Beyond this immediate concern the following three main avenues for
further research present themselves. First, extending the scope of risks we mea-
sure will add to the informativeness of the overall scoring. For example, we may
include evidence from text-mining based risk analysis approaches as described
in [14]. Secondly, an extension of our approach to languages other than English
will vastly expand the solution’s usefulness from a practical application point of
view. Whether such an extension ought to be based on machine translation or
purpose built models for each language in scope remains to be seen. Finally, we
believe that developing a mechanism by which we can either learn the weights
of the individual importance scores or determine them through a grid search,
rather than simply weighting them equally, may further enhance the quality of
the importance scores assigned to companies.
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