Chapter 1
Introduction

Abstract Modern cars have evolved from mechanical devices into distributed
cyber-physical systems which rely on software to function correctly. Starting from
the 1970s the amount of electronics and software used has gradually increased from
as little as one computer (Electronic Control Unit, ECU) to as much as 150 ECUs
in 2015. The trend in the architecture, however, changes as companies look for
ways to decrease the number of central computing nodes and connect them with
the increased number of I/O nodes. In this chapter we provide an overview of the
book and the conventions used in it and introduce the examples which we will
use throughout. We describe the history of the automotive software anchoring the
events in the evolution of the market of the electronics and software in modern cars.
Towards the end of the chapter we also describe which directions can be pursued to
deepen the knowledge of automotive software.

1.1 Software and Modern Cars

The introduction of software to cars opened up plenty of opportunities—from the
optimization of cars’ performance and to exciting infotainment features. Modern
cars are full of electronics and the consumers are looking for car platforms which
fully resemble software products. A good example of this kind of car is Tesla,
which is known for innovations driven by software. The manufacturer is known
for constantly pushing new versions of software to customers, providing them with
new, exciting features almost every day.

The software intensive systems in modern cars provide plenty of new oppor-
tunities, but they also require more careful design, implementation, verification
and validation before they can be released to users. And although the practices of
software engineering include methods and tools able to fulfill the needs for safety
and reliability of the automotive software, they must be applied in an automotive-
specific manner to address these needs.

We could see the clear development of the automotive industry into a field less
dominated by mechanical engineering but with a growing component of electronic
and software engineering. We have seen the evolution of software from simple
engine control algorithms of the 1970s to the advanced safety systems of the 2000s
and the advanced connectivity of the 2010s. We can observe that the trends of using

© Springer International Publishing AG 2017 1
M. Staron, Automotive Software Architectures,
DOI 10.1007/978-3-319-58610-6_1



2 1 Introduction

the software is not going to decrease, but will increase and the amount of software
used will continue to increase.

With the growing amount and importance of software in modern cars we
can observe the increased need for professional software engineering. Rigorous
processes of software engineering lead to higher quality software with complexity
not higher than necessary and assuring that the software does not contribute to
fatalities in the traffic conditions.

One of the practices of software engineering is the high-level design of software
systems, also referred to as software architecture. The architecture of the software
provides the designers with the possibility to prescribe how the software functions
are distributed to software components and how the components are to interact with
each other. Software architecting is usually done at the early stages of software
development and serves as the basis for the allocation of software modules to
components and the distribution (called systemization) of the functions to software
components.

1.2 History of Software in the Automotive Industry

Although today it is a given that there is a lot of software in our cars, it was not
like that at the beginning of the automotive industry. The first cars did not contain
any electronics, which only entered the automotive market during the 1970s with
the introduction of electronic fuel injection as a response to the demand for fuel
efficiency [CC11].

In the 1970s the software in the cars was usually embedded deeply in the
electronics in functions related to single domains—e.g., electronic fuel injection
in the powertrain, electronic ignition in the electrical system or central locking.
Since the use of electronics was scarce in that decade, the notion of functional
safety did not relate to software and it was relatively easy to embedded mechanisms
for controlling the safety of the functions. The architectures of the software were
usually monoliths which were not communicating with other parts of the software.

It was the 1980s that brought in such innovations as the central computers which
could display basic telemetry of the vehicles—such as current fuel consumption,
average fuel consumption and distance travelled. The ability to display the infor-
mation to the drivers opened up new possibilities. On the embedded software front,
software algorithms controlled new functions such as anti-lock brakes (ABS) and
even electronic gearboxes.

The 1990s introduced even more consumer-visible electronics. The most notable
innovation was in the infotainment domain and was the navigation system—or
as it is commonly called, the GPS. Visualizing the information online required
integration of important electronic components such as powertrain control com-
puter, the dedicated GPS receiver and the infotainment display. The same decade
introduced also more electronics and software in safety-critical areas such as ACC



1.2 History of Software in the Automotive Industry 3

SRR —
— : )

Fig. 1.1 Late 1990s JECS LH-Jetronic ECU for engine control

(Adaptive Cruise Control) which controlled the speed of a vehicle based on the
speed of the vehicles in front. The introduction of this kind of functionality raised the
important questions of liability for accidents caused by malfunctioning of software.
The automotive software architecture used in the 1990s was more distributed and
software became often recognized as important factor in innovation in the car
industry. An example computer system is presented in Fig. 1.1.!

This kind of development continued into the 2000s, when software started to
dominate innovation in the car industry. It was also during the 2000s that the
notion of advanced driver support systems was coined. The “advanced” referred to
functions which integrated multiple computers in the car and made more “difficult”
decisions for the driver. One of the most notable systems in this area was the City
Safety system introduced by Volvo in its XC60 model [Ern13]. The system could
stop the car from of speed under 50 kph when an obstacle appeared in front of it
and the driver had no time to react. It was these kinds of systems that required
more control over the complex interactions and prioritizations and therefore led to
more advanced software architectures. The AUTOSAR standard was introduced to
provide the possibility to communize solutions (where possible) and make it easy
to change hardware platform with limited effort to adopt the software, and to enable
easier sharing of the components between manufacturers and introduce a common
“operating system” for the car’s computers [Durl5, DSTH14].

' Author: RB30DE via Wikipedia https://en.wikipedia.org/wiki/JECS, under the Creative Com-
mons License: http://creativecommons.org/licenses/by-sa/3.0/.


https://en.wikipedia.org/wiki/JECS
http://creativecommons.org/licenses/by-sa/3.0/

4 1 Introduction

A

_P530im A I E'MtmFr. 07 K&

Fig. 1.2 2014 Audi TT infotainment unit

Finally, the 2010s introduced a completely new way of designing the electronics
in cars [SLO10, RSB 13]. Departing from the distributed network of computers
in a single car, this decade introduced the concepts of wireless cars, car-2-
car communication, car-2-infrastructure communication and autonomous driving
concepts. Many new actors appeared on the market where the car was no longer
a final product, but a platform where new functions could be deployed even post-
production. Examples of such cars are Tesla cars or Google’s self-driving vehicle
[Marl0]. It was also this decade that required more advanced control over the
execution of software coming from different vendors for the possibility of adding
new functionality to cars without the need for physically modifying the cars. An
example of a focus area—infotainment—is presented in Fig. 1.2.2

Another example is the infotainment unit of Volvo XC90 as presented in Fig. 1.3.

In today’s cars the size of the software grows to over 100 million lines of code
according to Viswanathan [Vis15].

2Author: Audi, available at https:/en.wikipedia.org/wiki/JECS, under the Creative Commons
License: http://creativecommons.org/licenses/by-sa/2.0/.


https://en.wikipedia.org/wiki/JECS
http://creativecommons.org/licenses/by-sa/2.0/

1.3 Trends Shaping Automotive Software Development 5

Tolered

e A

Tingstadybasse
- oy 3
. .
‘_\ }"1‘;'1 A s
Majornn

E 5 iteborg
ARngsla o o AHaden

Fig. 1.3 2016 Volvo XC90 infotainment unit

1.3 Trends Shaping Automotive Software Development

In 2007, Pretschner et al. [PBKSO07] outlined the major trends in software develop-
ment in automotive systems. This work has been a trendsetter since then and has
foreshadowed the large increase in the amount of automotive software—in 2007
measured in megabytes and in 2016 measured in gigabytes. The five trends of
automotive software systems presented by Pretscher et al. are:

* Heterogeneity of software—the software in modern cars realizes different func-
tions in different domains. These domains range from highly safety-critical (e.g.
active safety) to user experience-centered (e.g. infotainment). This means that
the ways of specifying, designing, implementing and verifying the software vary
among domains.

* Distribution of labor—the development of the software systems is often dis-
tributed between automotive OEMs (Original Equipment Manufacturers, like
Volvo, BMW, and Audi) and suppliers. Suppliers are also often given an option
to define their own way of working as long as they comply with the requirements
of and contracts with the OEMs.

* Distribution of software—the automotive software system comprises a number
of ECUs, and each of the computers has its own software which needs to
cooperate with other ECUs to fulfill its functions. This entails more difficulty
in coordination of the software and introduces more complexity.



6 1 Introduction

e Variants and configurations—the globalized and highly competitive automotive
market requires customizations of the same car based on the requirements of the
country and the user. This means that the software in modern cars needs to be able
to work in different countries without the need for recertification and, therefore
the software needs to handle variants in multiple ways—both in the source code
and also at runtime.

* Unit-based cost models—the competitive market means that the unit price of the
car cannot be too high compared to the competition and therefore it is often the
case that automotive OEMs optimize the hardware and software in such a way
that unit costs remains low while the development costs can be higher.

A lot has happened since 2007 and the major trends in the automotive market
today can be complemented with such trends as’:

* Connectivity and cooperation [BWKC16]—the ability to use internet functions
through mobile networks enabled cars to connect to each other and/or to use
information from the infrastructure to make decisions. Research projects in
the area of intelligent transport systems explore such ideas as planning of the
speed of a bus to minimize the need for braking for “red” when approaching
intersections. The modern cars are expected to be able to connect to smartphones
via bluetooth and to use internet features such as web browsers or music services.

e Autonomous functions [LKM13]—the ability of the car to brake, steer and
autonomously take over from drivers entails a large amount of complexity in
safety-critical systems, but is seen as “the next big thing” in the automotive sector.
This also means that the verification and validation methods for software in cars
will become even more stringent and even more advanced.

Autonomous driving scenarios are challenging because of the need to have an
accurate and exact model of the physical surroundings of the car. This demand
for the accuracy requires more sophisticated measurement equipment and therefore
more data to process, more decision points, and in turn more complex algorithms.
One piece of such measurement equipment which is used in autonomous driving is
LIDAR, shown in Fig. 1.4.#

Figure 1.4 shows a LIDAR mounted on the roof of an autonomous car. The device
provides a 360-degree view of the surroundings and allows the car’s software to find
objects in the vicinity of the car. A LIDAR is often a complement to a RADAR,
which is usually placed in the front of the vehicle. Figure 1.5 shows the picture of
the radar ECU of a Volvo FH16 truck.

The production cars, however, do not have LIDARs yet, but take advantage of
cameras placed in covered places. In Fig. 1.6 we can see the front camera of a Volvo
XC90.

3Based on author’s own observations.

4Author: Steve Jurvetson; available at flickr.com, under the Creative Commons License: http://
creativecommons.org/licenses/by/2.0/.


http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

1.3 Trends Shaping Automotive Software Development 7

Fig. 1.5 Radar ECU in Volvo FH16 truck

It is interesting to observe the automotive software market today, and therefore
we believe that this book will be of use to anyone who is interested in starting to get
into automotive software engineering.



8 1 Introduction

Fig. 1.6 Front camera in Volvo XC90

1.4 Organization of Automotive Software Systems

Over the years each car manufacturer (often referred to as an OEM, Original
Equipment Manufacturer) developed its own way of organizing software systems
with the diversity in pair of the diversity of car brands today. However, many of the
car manufacturers design the software in a similar way—they use the V development
model and a similar organization of the electrical (and software) systems into
domains and subsystems. We can depict it in the model presented in Fig. 1.7.

In this view we can see that the electrical system is organized into domains,
such as infotainment and powertrain. Each of these domains has a specific set of
properties—some are safety-critical and some not, some are very user oriented and
some are realtime and embedded. Each of these domains, however, is organized into
subsystems which group a specific functionality (some OEMs call these subsystems
simply “systems”) such as active safety, and advanced driver support and similar.
These systems group a number of logical elements and realize the functionality,
which is often grouped into functions. The functions are often called end-to-end
functions, as they realize user functionality such as Adaptive Cruise Control, Line
Departure Warning and Navigation from A to B.

The functions are realized by subsystems of the electrical system and they are
orthogonal to the organization of subsystems, components and modules. Therefore
we often see the concept of “functional architecture (view)’—describing the
dependencies among functions.

Each subsystem contains a number of components which include smaller parts
of software elements that realize parts of the functionality (e.g. such a part



1.5 Architecting as a Discipline 9

0 " =) — -

= Electrical system| i E Domain i & Function
] 1

14 i
R “Realizations
H Subsystem H Component
1.x

L

K

y 1.*

E Module H Logical software component|

Fig. 1.7 Conceptual view of the organization of the software system

could be a message broker for an infotainment system). These components are
organized into software modules, which are often source code files with a set of
classes, methods and programming language functions. The groupings of these
programming language functions or software classes are referred to as logical
software components.

The term software architecture can be used in almost all levels of this hierarchy
(except for the lowest one). We can talk about the EE architecture (Electrical
System architecture) which describes the organization of software and hardware
for the entire car. We can talk about an ECU architecture which describes the
logical organization of software subsystems, components and modules in the ECU.
Depending on the size and role of the ECU we could have modules, components or
subsystems in the ECU [DNSH13].

The methods and techniques presented in this book can be applied at any of these
levels.

1.5 Architecting as a Discipline

Software architecture is a kind of artifact in software development, but architecting
is a full-fledged discipline with its own activities and tasks. It is quite often the case
that software architects are perceived as more experienced than senior designers and
are given a larger mandate to make decisions than software designers. In order to
prevent confusion, let us briefly discuss the role of software architects in contrast to
the designers and project managers. These two roles can be perceived as overlapping
to some extent and therefore this comparison gets interesting.



10 1 Introduction
1.5.1 Architecting vs. Project Management

Being a software architect means being in a role of a kind of technology leadership.
The architects are the persons who lay the ground for the development of the entire
system—in terms of general architectural styles, but also in terms of principles
which guide the development of the system. Those principles form the boundaries
within which the designers can make their choices. It is the role of the architect to
ensure that these principles are followed during the entire lifecycle of the software
system.

In some sense, setting the frames for the system design is a technical corre-
spondent to setting the frames for the cost and scope of the project that develops
the system. However, it is the responsibility of the project manager to set and
monitor this project scope, schedule and cost. Therefore we contrast architecting
as a technical correspondent to project management in Table 1.1.

Since the discipline of architecting is practices by technical experts, it is technical
principles that are applied—how to create objects, send messages, deploy compo-
nents onto ECUs. This means that the technologies and their characteristics are in
focus. For example, the architects need to balance different quality characteristics
with each other—performance vs. safety, maintainability vs. portability and others.
Therefore the architects also focus on the quality and functionality—addressing
such challenges as “how to enable video feeds over the Flexray network without
adding new cables”. Finally the architects focus on the functionality and make sure
that the electrical system of the car can realize the functionality given the constraints
(e.g. weight of the cables, number of ECUs). All of these aspects make software
architecting seem as technical product management.

In contrast to the technical management, we have project management, where the
project leaders apply organizational theories to determine whether to work Agile
or waterfall, or how to negotiate contracts, or how to measure the progress of
the project. When applying the managerial and organizational theories the project
leaders focus on the scope of the project—addressing the questions of whether a
given functionality can be developed given the budget constraints of the project.
The focus of the project leaders is on resources, on balancing cost and resources
with the schedule of the project. All of these aspects can be seen as management of
the project rather than management of the product.

Table 1.1 Architecting vs.

g Architecting Project management
project management

Done by technical experts Done by management experts

Technology in focus Scope in focus

Focus on quality Focus on cost

Focus on requirements Focus on work products
Focus on solution Focus on resources

Maximize functionality Minimize cost



1.5 Architecting as a Discipline 11

Table 1.2 Architecting vs. designing

Architecting Designing

Making rules and decisions Following rules and decisions

High level structures Low-level structures

Holistic understanding Specialistic understanding

Systems thinking Software thinking

Documentation-oriented Code and executable/detailed model-oriented
Modelling and analysis Execution and testing

Both technical and project management need to work with one another as they
develop the one and the same product! Humphrey [Hum96] in his book ‘“Managing
Technical People: Innovation, Teamwork and the Technical process” provides a
number of useful guidelines on how to combine these two.

1.5.2 Architecting vs. Design

Similarly to contrasting the discipline of architecting to the discipline of project
management, we can also contrast architecting to designing. We could observe from
the previous contrast that technical product management is about setting principles
for the work. The discipline of designing is all about following these principles
in order to arrive at final software product. We present some of the differences in
Table 1.2.

Software architecting, being the technical management of the system, sets
the boundaries for the design in terms of principles, rules and decisions about
how to design the system. An example of such a decision is the choice of the
communication protocol between the ECUs and the number of ECUs in the system.
It’s also about which standards to follow and why. Architecting, as we will see in this
book, is a discipline operating at a high abstraction level—considering components
(e.g. groups of software classes) and execution nodes. This requires a holistic
understanding of the system—both the software and the underlying hardware used
to execute the software or provide the software with data. This kind of a “systems
thinking” makes the architects the core part of any software team because they
understand the background of “why” things happen rather than just do things.?

The discipline of architecting is also very documentation-oriented—as the
decisions, rules and principles need to be communicated, they also need to be
explained and documented to lead to consistency and enforcement of rules. This
happens often as a process of analysis and modelling of the system.

3Sinek in his book “Starting with Why: How Great Leaders Inspire Everyone to Action” [Sin11]
presents a set of examples of how this works in practice.



12 1 Introduction

In contrast, the discipline of designing is focused on realizing the principles,
decisions and rules of the architecture in software code or an executable model. The
high-level structure discussed in the architecture is now developed using lower-level
structures—components using classes and blocks, ECUs using execution processes.
This requires specialized knowledge and competence in the particular domain in
question (e.g. the infotainment or powertrain). The design is focused on the software
entities and their interaction with the underlying hardware, where the hardware
is often given (or at least the specification of the hardware is given during the
design of the software). This means that designing is focused on the code and
executable/detailed models rather than on abstract analysis and modelling. It is also
therefore the design that is the first activity where we discuss testing and execution,
whereas in the architecture we talk about assessments and evaluations (a topic which
we will return to in Chap. 6).

Similarly to the collaboration between the architects and the project managers,
the architects need to collaborate closely with the designers in order to develop and
deliver a software system which fulfills all the requirements and quality constraints.

1.6 Content of This Book

This book addresses one of the most fundamental aspects of engineering of
software systems—software architectures. The architecture is a high-level design of
a software system which enables the architects to distribute the functionality of the
software system to multiple interacting components. The components are usually
grouped into subsystems and domains which address a set of functional and non-
functional requirements of the software system.

In this book we explore the concept of software architecture for modern cars
which is intended for both novice and advanced software designers. This book
is intended for two groups of audience—professionals working with automotive
software who need to understand concepts related to automotive architectures, and
students of software engineering or related programs who need to understand the
specifics of automotive software to be able to construct cars or their components.

The idea to support the professionals came from the author’s observations that
the automotive industry requires an individual software engineer to be able to
understand a variety of disciplines. Individuals working with the construction of
car software or hardware need to understand their counterparts in order to be able to
design safe, reliable and long-term solutions for the car industry. Software engineers
need to understand how their software is to be integrated with other software from
other vendors in order to be able to develop user functions, e.g. collision avoidance
by braking.

The idea to support the students came from the observation that many of the
graduates from software engineering programs require further education in order
to understand such advanced concepts as software and systems safety, working
with suppliers and distribution of software. During the author’s years of working



1.6 Content of This Book 13

with students it became evident that it is difficult to provide education in software
engineering in general and also focus on specific aspects such as automotive
software. This book addresses this challenge and is aimed at being both a reference
book and a potential course book for software engineering programs.

This book is structured into independent chapters which can be read separately,
although we recommend reading them in sequence. Reading the chapters in
sequence allows us to follow the motivating example throughout the book and to
gradually build up knowledge about automotive software architectures.

1.6.1 Chapter 2: Software Architectures

In this chapter we present the basics of software architecture in general as a recap
for readers who are not familiar with architecting as a discipline, and towards the
end of the chapter we describe the specificity of automotive software architectures.

In the beginning of the chapter we review the definitions of software architec-
tures, define the types of view used in automotive software design and relate them
to the architectural views in software engineering in general—the 4+1 architecture
view model.

We gradually progress in the chapter to introduce elements important for auto-
motive architectures, e.g., ECUs (Electronic Control Units), logical and physical
components, functional architectures, and topologies for automotive architectures
(physical and logical). We delve into the peculiarities of automotive software—
embedded systems with large focus on safety and dependability.

1.6.2 Chapter 3: Automotive Software Development

In this chapter we describe and elaborate on software development processes in the
automotive industry. We introduce the V-model for the entire vehicle development
and we continue to introduce modern agile software development methods for
describing the ways of working of software development teams. We also provide an
overview of a tool which is used to keep the design data consistent—SystemWeaver
by Systemlte.

In this chapter we discuss the specifics of automotive software development
such as variant management, different integration stages, testing strategies and the
methods used for these. We review methods used in practice and explain how they
should be used.



14 1 Introduction
1.6.3 Chapter 4: AUTOSAR Reference Model

In this chapter we continue on the topic of standardization and we discuss the current
standardization efforts. We describe and discuss the AUTOSAR standard, which
gets the most attention today in Europe and worldwide.

In the AUTOSAR standard we describe the main building blocks like software
components and communication buses. We also describe the evolution of the
standard from the perspective of the main concepts and their influence on the car
industry.

Towards the end of the chapter we present the AUTOSAR reference architecture
as described in the standard and discuss its evolution.

1.6.4 Chapter 5: Detailed Design of Automotive Software

In this chapter we continue to delve into the technical aspects of automotive
software architectures and we describe ways of working when designing software
within particular software components. We present the methods for modelling the
functions using Simulink modelling and we show how these methods are used in
the automotive industry.

Towards the end of the chapter we introduce the need for quality assessment
of software architectures and the challenges related to assessment of the sub-
characteristics of quality (the so-called “-ilities™).

1.6.5 Chapter 6: Evaluation of Automotive Software
Architectures

In this chapter we introduce methods for assessing the quality of software architec-
tures and we discuss ATAM. We discuss the non-functional properties of automotive
software and we review the methods used to assess such properties as dependability,
robustness and reliability. We follow the ISO/IEC 25000 series of standards when
discussing these properties.

In this chapter we also address the challenges related to the integration of
hardware and software and the impact of this integration. We review the differences
with stand-alone desktop applications and discuss examples of these differences.

Towards the end of the chapter we discuss the need to measure these properties
and introduce the need for software measurement.



1.6 Content of This Book 15

1.6.6 Chapter 7: Metrics for Software Design
and Architectures

In this chapter we describe the most commonly used metrics in software engineering
in general and in automotive software engineering, e.g. lines of code, model size,
complexity, and architectural stability or coupling [SHFMHNH13]. In particular we
present these metrics and their interpretation (what should be done, and why, based
on the values of metrics). We discuss the use of metrics based on the international
standard ISO/IEC 15939.

1.6.7 Chapter 8: Functional Safety of Automotive
Software

In this chapter we elaborate on one of the most important issues related to software
in modern cars—functional safety. We explore the safety-related concepts described
in the international standard ISO/IEC 26262 and we describe how this standard is
used in modern software development processes.

We explore such elements as verification and validation techniques mentioned in
the standard and link them to the ASIL levels and efficiency of their applications.

In the chapter we describe how the standard is to be applied on the examples of
the simple function.

1.6.8 Chapter 9: Current Trends in Automotive Software
Development

We conclude the book with the outlook on the current trends in automotive software
development and we introduce the emerging, disruptive technologies on the market
that have the potential to change the automotive industry to become more software-
oriented than it traditionally has been.

1.6.9 Motivating Examples in the Book

In this book we illustrate the concepts introduced in each chapter with a set of
examples. Each chapter has its own examples which are dedicated to extrapolating
the concepts described, and therefore:

* Chapter 2 contains a set of examples from different domains, e.g. infotainment,
powertrain and active safety.



16 1 Introduction

* Chapter 3 includes examples of requirements from AUTOSAR and requirements
for opening the car from the chassi domain.

* Chapter 4 contains examples of the AUTOSAR models and their realization for
communication between two ECUs.

e Chapter 5 includes examples of digitalization of an analog signal and the
designing of the heating of a car’s chassi from the Chassi domain.

* Chapter 6 contains examples of the parking assistance camera from the active
safety domain.

* Chapter 7 contains examples of a real software (obfuscated) published as open
source.

e Chapter 8 includes the example of a simple microcontroller demonstrating the
different ASIL levels and architectural choices used to achieve these levels.

These examples do not constitute an entire software system of a car, as these
systems are huge. As a reference, BMW in its talks at conferences showed the size
of the electrical system to be about 200 ECUs, which includes all variants of its
electrical system (meaning that there is no car with all 200 ECUs.%)

1.7 Knowledge Prerequisites

In order to understand the book one needs to understand how programming works.
We do not require any specific programming skills, but it is good to know the basics
of programming in C/C++ or Java/C#. It is also good to have the basic knowledge
of the UML notation, especially the class diagrams.

We introduce topics from the automotive domain and we require no prior
understanding of the domain nor any knowledge of software architecture.

For each chapter we provide pointers where the interested reader can find more
information or where the necessary prerequisites can be obtained.

1.8 Where to Go Next

After reading this book you will be able to understand how to architect a software
system for a modern car. You will also be prepared to understand the design
principles guiding the development of software in modern cars and be able to
understand the non-functional principles behind the design.

The next natural step is to follow your interest in the design of software
systems. We recommend focusing on the principles of continuous integration and
deployment, virtual verification and validation as well as advanced functional safety.

SPresentation from BMW at Elektronik i Fordon, Gothenburg, May 2016.



References 17

References

BWKCI6. Robert Bertini, Haizhong Wang, Tony Knudson, and Kevin Carstens. Preparing a
roadmap for connected vehicle/cooperative systems deployment scenarios: Case
study of the state of oregon, usa. Transportation Research Procedia, 15:447-458,

2016.

CCI1. Andrew YH Chong and Chee Seong Chua. Driving Asia: As Automotive
Electronic Transforms a Region. Infineon Technologies Asia Pacific Pte Limited,
2011.

DNSH13. Darko Durisic, Martin Nilsson, Miroslaw Staron, and Jorgen Hansson. Measuring

the impact of changes to the complexity and coupling properties of automotive
software systems. Journal of Systems and Software, 86(5):1275-1293, 2013.

DSTH14. D. Durisic, M. Staron, M. Tichy, and J. Hansson. Evolution of Long-Term
Industrial Meta-Models - A Case Study of AUTOSAR. In Euromicro Conference
on Software Engineering and Advanced Applications, pages 141-148, 2014.

Durl5s. D. Durisic. Measuring the Evolution of Automotive Software Models and Meta-
Models to Support Faster Adoption of New Architectural Features. Gothenburg
University, 2015.

Ernl3. Tomas Ernberg. Volvo’s vision 2020-‘no death, no serious injury in a volvo car’.
Auto Tech Review, 2(5):12-13, 2013.

Hum96. Watts S Humphrey. Managing technical people: innovation, teamwork, and the
software process. Addison-Wesley Longman Publishing Co., Inc., 1996.

LKMI13. Jerome M Lutin, Alain L Kornhauser, and Eva Lerner-Lam MASCE. The

revolutionary development of self-driving vehicles and implications for the
transportation engineering profession. Institute of Transportation Engineers. ITE
Journal, 83(7):28, 2013.

MarlO. John Markoff. Google cars drive themselves, in traffic. The New York Times,
10(A1):9, 2010.
PBKSO07. Alexander Pretschner, Manfred Broy, Ingolf H Kruger, and Thomas Stauner.

Software engineering for automotive systems: A roadmap. In 2007 Future of
Software Engineering, pages 55-71. IEEE Computer Society, 2007.

RSBTt13. Rakesh Rana, Miroslaw Staron, Christian Berger, Jorgen Hansson, Martin Nils-
son, and Fredrik Torner. Increasing efficiency of iso 26262 verification and
validation by combining fault injection and mutation testing with model based
development. In ICSOFT, pages 251-257, 2013.

SHFMHNH13. Staron, M., Hansson, J., Feldt, R., Meding, W., Henriksson, A., Nilsson, S. and
Hoglund, C., 2013, October. Measuring and visualizing code stability—a case
study at three companies. In The International Conference on Software Process
and Product Measurement, (pp. 191-200). IEEE.

Sinll1. Simon Sinek. Start with why: How great leaders inspire everyone to take action.
Penguin UK, 2011.
SLO10. Margaret V String, Nancy G Leveson, and Brandon D Owens. Safety-driven

design for software-intensive aerospace and automotive systems. Proceedings
of the IEEE, 98(4):515-525, 2010.

Visl5. Balaji Viswanathan. Driving into the future of automotive technology at genivi
annual members meeting. OpenSource Delivers, online, 2015.



2 Springer
http://www.springer.com/978-3-319-58609-0

Automotive Software Architectures

An Introduction

Staron, M,

2017, XX, 237 p. 150 illus., 107 illus. in color.,
Hardcover

[SBM: 878-3-319-586089-0



	1 Introduction
	1.1 Software and Modern Cars
	1.2 History of Software in the Automotive Industry
	1.3 Trends Shaping Automotive Software Development
	1.4 Organization of Automotive Software Systems
	1.5 Architecting as a Discipline
	1.5.1 Architecting vs. Project Management
	1.5.2 Architecting vs. Design

	1.6 Content of This Book
	1.6.1 Chapter 2: Software Architectures
	1.6.2 Chapter 3: Automotive Software Development
	1.6.3 Chapter 4: AUTOSAR Reference Model
	1.6.4 Chapter 5: Detailed Design of Automotive Software
	1.6.5 Chapter 6: Evaluation of Automotive Software Architectures
	1.6.6 Chapter 7: Metrics for Software Design and Architectures
	1.6.7 Chapter 8: Functional Safety of AutomotiveSoftware
	1.6.8 Chapter 9: Current Trends in Automotive Software Development
	1.6.9 Motivating Examples in the Book

	1.7 Knowledge Prerequisites
	1.8 Where to Go Next
	References


