Tile Low Rank Cholesky Factorization
for Climate/Weather Modeling Applications
on Manycore Architectures

Kadir Akbudak, Hatem Ltaief®), Aleksandr Mikhalev, and David Keyes

Extreme Computing Research Center, Division of Computer,
Electrical, and Mathematical Sciences and Engineering,
King Abdullah University of Science and Technology,
Thuwal, Kingdom of Saudi Arabia
{Kadir .Akbudak,Hatem.Ltaief,Aleksandr.Mikhalev,David. Keyes}@kaust .edu.sa

Abstract. Covariance matrices are ubiquitous in computational science
and engineering. In particular, large covariance matrices arise from multi-
variate spatial data sets, for instance, in climate/weather modeling appli-
cations to improve prediction using statistical methods and spatial data.
One of the most time-consuming computational steps consists in calculat-
ing the Cholesky factorization of the symmetric, positive-definite covari-
ance matrix problem. The structure of such covariance matrices is also
often data-sparse, in other words, effectively of low rank, though formally
dense. While not typically globally of low rank, covariance matrices in
which correlation decays with distance are nearly always hierarchically
of low rank. While symmetry and positive definiteness should be, and
nearly always are, exploited for performance purposes, exploiting low
rank character in this context is very recent, and will be a key to solv-
ing these challenging problems at large-scale dimensions. The authors
design a new and flexible tile row rank Cholesky factorization and pro-
pose a high performance implementation using OpenMP task-based pro-
gramming model on various leading-edge manycore architectures. Perfor-
mance comparisons and memory footprint saving on up to 200K x 200K
covariance matrix size show a gain of more than an order of magni-
tude for both metrics, against state-of-the-art open-source and vendor
optimized numerical libraries, while preserving the numerical accuracy
fidelity of the original model. This research represents an important mile-
stone in enabling large-scale simulations for covariance-based scientific
applications.

1 Introduction

The march toward exascale computing is well, underway with today’s fastest sys-
tems capable of achieving near 100 PFlop/s in sustained peak performance on
million of cores [22]. Technology scaling with incremental hardware evolution will
most probably enable to cross the exascale barrier by 2021, as recently announced
by the US Department of Energy. However, the current hardware roadmap devel-
opment will not be able to get to exascale within a power budget of 20 MW that
© Springer International Publishing AG 2017

J.M. Kunkel et al. (Eds.): ISC High Performance 2017, LNCS 10266, pp. 22-40, 2017.
DOI: 10.1007/978-3-319-58667-0_-2

TLR Cholesky Factorization for Climate/Weather Modeling Applications 23

many hardware architects and research agencies consider as a practical upper
limit for such a system. Although, this power gap may be further reduced with
advanced energy-efficient devices (e.g., hardware accelerators), algorithmic nov-
elties around synchronization-reducing and communication-reducing concepts
are paramount not only to ultimately design an exascale system at reasonable
power levels, but also to ensure an efficient usage of the massively parallel under-
lying hardware.

Covariance matrices are ubiquitous in computational science and engineer-
ing. Large covariance matrices arise from multivariate spatial data sets, for
instance, in seismic inversion to obtain estimates of uncertainty [11], in com-
putational ground-based astronomy to enhance the observed image quality by
filtering out the noise coming from the adaptive optics instrumentation and the
atmospheric turbulence [21], or in climate/weather modeling to improve predic-
tion using geospatial statistics approaches [24]. All the aforementioned scientific
applications boil down to calculating the Cholesky factorization of a symmetric,
positive-definite matrix problem, which turns out to be the most time consum-
ing computational phase in their various respective simulations. The structure of
these covariance matrices is often data-sparse, in other words, effectively of low
rank, though apparently dense. The dense Cholesky allows to perform an exact
factorization up to the machine precision while the low rank variant produces
an approximation of the Cholesky factor up to a desired accuracy threshold.
While not necessarily globally of low rank, covariance matrices in which corre-
lation decays with distance are nearly always hierarchically of low rank. While
symmetry and positive definiteness should be, and nearly always are, exploited
for performance purposes, exploiting low rank character in this context is very
recent, and will be a key to solving these challenging problems. Because these
low rank approximations [14] operate on a lossy (but controllable) compressed
representation of the original dense data structure, this directly translates into
lower arithmetic complexities and memory footprint saving, which are key ele-
ments for reducing data movement and time to solution, while staying within
the future exascale system power envelope.

Fully dense linear algebra approaches encounter high (O(N?)) arithmetic
complexity and the overhead of a large (O(/N?)) memory footprint where N is
the number of objects to be correlated. This scaling is impractical when deal-
ing with large data sets which, today, could usefully translate into covariance
matrices with NV in the billions. To tackle such problems, we study the numer-
ical accuracy, the memory footprint and the performance of the tile low rank
Cholesky factorization (TLR Cholesky) in the context of climate/weather model-
ing applications [24], by exploiting the data sparsity in the covariance matrix and
relying on task-based programming model for asynchrony and dynamic load bal-
ancing. Experiments are conducted on Intel Xeon Haswell/Broadwell and Intel
Xeon Phi Knights Landing. Results reported indicate up to an order of magni-
tude of memory saving as well as time to solution reduction on 200K x 200K
covariance matrix size, compared to the native dense Cholesky factorization,
as implemented in the state-of-the-art high performance open-source and ven-
dor software libraries. This emerging family of low rank matrix computations

24 K. Akbudak et al.

represents a breakthrough for the statistical computing community, for which
the default use of high-level simulation software tool such as R [1] may often be
limited in dimension scaling by expensive dense linear algebra kernels.

The remainder of the paper is organized as follows. Section2 details
related work. Section 3 highlights our contributions. Section4 describes the cli-
mate/weather modeling simulation based on a geospatial statistics approach
applied to the covariance matrix. We recall the state-of-the-art dense Cholesky
factorization in Sect. 5, which is the most time-consuming phase of the applica-
tion studied here. Section 6 outlines a new TLR Cholesky factorization, which
additionally exploits the data sparsity of the dense covariance matrix. Numerical
accuracy is provided in Sect. 7 and shows the flexible and robustness of the TLR
matrix approximation for Cholesky factorization. Section 8 gives implementation
details of the TLR Cholesky, which relies on the OpenMP task-based program-
ming model for performance purposes. Section 9 presents the performance results
and analysis and compares TLR Cholesky factorization against existing state-
of-the-art implementations. We conclude in Sect. 10.

2 Related Work

Low rank matrix approximations under the rubric of hierarchical matrices or
‘H-matrices [14,17] have been extensively studied in the literature since the
end of the 1990’s, mainly from a theoretical perspective, with critical bounds
derived on algorithmic complexities and memory footprint. Since then, many
new data compression formats for H-matrix approximation have emerged to
cover a wide range of scientific applications such as finite and boundary ele-
ment methods and Gaussian processes. These compression formats, e.g., hier-
archically semi-separable (HSS), H?-matrix, hierarchically off-diagonal low-rank
(HODLR), block low rank (BLR), are categorized depending on the data for-
mat structure (i.e., nested or non-nested basis) and the admissibility condition
(i.e., standard/strong or weak). The former impacts both aforementioned bounds
while the latter allows a fine-grained capture of the low rank structure of the
matrix off-diagonal blocks.

Low rank matrix approximation relying on nested bases (i.e., H?-matrix [9,
10,15,16] and HSS [23]) provides the best theoretical bounds for algorithmic
complexities and memory footprint for scientific problems which exhibit nested
row and column basis. The latter are challenging to implement efficiently on
manycore architectures due to synchronization points in the recursive tree.
Data compression formats based on non-nested bases (i.e., H-matrix [18,20],
HODLR (3,6] and BLR [4]) have higher bounds but they are often capable of
handling broader range of scientific applications than low rank data format with
nested basis. In particular, BLR is probably the most straightforward low rank
approximation format to implement because it does not rely on a recursive tree
and adopts a flattened data structure instead, at the expense of showing the high-
est algorithmic complexity. BLR is currently under investigation in MUMPS [5]
during the Schur complement involving frontal matrices [4].

TLR Cholesky Factorization for Climate/Weather Modeling Applications 25

This work presents the tile low rank (TLR) data format, which is similar
to BLR, although it takes root from the well-known tile algorithms, as imple-
mented in dense linear algebra libraries such as PLASMA [27]. Last but not
least, this work aims at filling in the software gap by providing high performance
TLR approximations for matrix operations, and therefore, minimizing the mem-
ory and complexity overhead of using dense matrix computations as the native
approach.

3 Contributions

The contributions of the paper are fourfold. The authors (1) design a new and
flexible tile low rank Cholesky factorization for dense covariance matrices, (2)
provide a performance assessment on various leading-edge hardware architec-
tures by looking at numerical accuracy, memory footprint and time to solution,
(3) compare TLR Cholesky factorization against state-of-the-art vendor and
open-source dense linear algebra libraries such as MKL [19] and PLASMA [27],
respectively and (4) leverage performance of emerging architectures for cli-
mate/weather modeling applications.

4 Climate/Weather Modeling Applications

Large covariance matrices arise from multivariate spatial data sets in cli-
mate/weather modeling simulations to improve prediction using statistical meth-
ods and spatial data [24]. The crux of the modeling effort is to estimate a max-
imum likelihood objective function based on observations, as follows:

10)=—5 27 571(6) Z ~ 3 log|5(0)], (1)

where @ is the vector of parameters to be tuned, Z a vector of observations, and
Y the covariance matrix, and where the vertical bars indicate a determinant.
These matrices are symmetric, positive-definite and are based on covariances of
presumed Gaussian processes. If we have only one Gaussian process, then the
corresponding covariance matrix is simply scalar. In N-dimensional case, with [N
being the number of geographical locations to be correlated, we have N Gaussian
processes, which leads to square N-by-N matrix. As is apparent from Eq. 1, the
computational bottleneck of the maximum likelihood estimation is the calcu-
lation of the Cholesky factorization of the dense covariance matrix X', which is
necessary to solve the linear system (i.e., forward and backward substitutions) as
well as getting the logarithm of the covariance matrix determinant (i.e., product
of the diagonal elements of the Cholesky factor). The dense Cholesky factor-
ization, for instance, as implemented in the state-of-the-art simulation software
R, requires O(N3) operations on O(N?) data. This is a prohibitive approach,
given that N may be in the order of billions in readily contemplated applica-
tions. Alternative less expensive approximation approaches exist such as element

26 K. Akbudak et al.

thresholding, subsampling and iterative methods, however, these methods sac-
rifice the fidelity of the underlying statistical model.

The main idea consists in exploiting the data sparsity of the formally dense
covariance matrix X(6). This represents a cheaper computational algorithmic
design, while still preserving the model fidelity up to a given accuracy. The
resulting matrix is hierarchically of low rank and can be compressed using the
tile low rank data format, which enables to better capture the low rankness
structure of the off-diagonal blocks, thanks to its strong admissibility condition,
as opposed to HODLR data format.

In this paper, we synthesize a set of covariance matrices as follows: given

an N-by-N uniform grid of particles in unit square with exponential interaction
lz—yl
flx,y) =€~ ca , we add random noise to coordinates of each particle and sort

them in Morton order. So, if we have set of N2 particles {Xi}i]\fl, each element
of the covariance matrix X' (#) can be defined as follows:

r(X;,X;)

Aij=e 77, (2)

where r(X;, X;) is a distance between particles X; and X, and § represents
a covariance parameter, which measures the correlation between the Gaussian
processes. Although the current kernel considered for the matrix generation is the
Gaussian kernel, Matérn kernels, for instance, among other Gaussian processes
kernels, can also be handled in the same manner. All in all, these kernels are
asymptotically smooth, which lead to the possibility of low-rank approximations
of different blocks of a matrix [25]. The ranks depend on how the clusterization
of the spatial particles occurs, given the relative distance from one cluster to
another. It is also noteworthy to mention that, in case of uniform distribution of
N spatial points with N power of 2, Morton order space-filling curve may nearly
be optimal.

5 State-of-the-Art Dense Cholesky Factorization

This section recalls the algorithmic evolution of the dense Cholesky factorization.
The Cholesky factorization of an IV x N real symmetric, positive-definite matrix
A has the form A = LLT, where L is an N x N real lower triangular matrix
with positive diagonal elements.

5.1 Block Algorithms

Block algorithms, as implemented in LAPACK [7], emerged with cache-friendly
hardware architectures in the late 1990’s. The matrix computation is decom-
posed in two successive phases. The panel factorization consists in applying
Level 2 BLAS transformations within a panel of the matrix only, followed by
the update of the trailing submatrix, which accumulates all transformations
from the current panel and applies them by means of Level 3 BLAS on the
unreduced part of the matrix, as depicted in Fig. 1(a). The matrix computation

TLR Cholesky Factorization for Climate/Weather Modeling Applications 27

algorithms proceed then on a smaller subset of the overall matrix as in Fig. 1(b),
until the matrix is completely transformed, as seen in Fig.1(c). Parallel per-
formance is only exploited during the update of the trailing submatrix, during
calls to compute-intensive multithreaded Level 3 BLAS, as provided for instance
by vendor optimized BLAS implementations (e.g., Intel MKL [19]). Artifactual
synchronization points in-between computational phases impede parallel perfor-
mance, especially in presence of multicore architectures [2].

| .-
—— a m
A~ 5 . E
Ay
g
(a) First step. (b) Second step. (c) Third step.

Fig. 1. Block algorithms: LAPACK/MKL.

5.2 Tile Algorithms

Tile algorithms emerged with multicore architectures a decade ago. The dense
matrix is broken into tiles, as seen in Fig.2, where elements are contiguous
in memory within each tile. Tile algorithms weaken the synchronization points
revealed in block algorithms by bringing the parallelism in multithreaded BLAS
to the fore. They create opportunities for asynchronous execution with potentials
for look-ahead optimizations. The whole algorithm may be then represented as
a directed acyclic graph, where nodes are computational tasks and edges define
data dependencies between them. A dynamic runtime system is employed to
schedule tasks across processing units, while ensuring data dependencies are not
violated. PLASMA [27] and FLAME [13] represent the two state-of-the-art dense
linear algebra libraries, which rely on tile algorithmic formulation.

Fig. 2. Tile algorithms: PLASMA /FLAME.

28 K. Akbudak et al.

6 The Tile Low Rank Cholesky Factorization

This section presents the tile low rank (TLR) approximation and Cholesky
factorization.

The first phase is to create an approximation of each off-diagonal tile, typi-
cally by performing a singular value decomposition (SVD) and by keeping only
the most significant singular values and their corresponding singular vectors,
depending on the selected accuracy. The latter is a parameter, which is often
application-specific. The diagonal tiles are typically full rank and cannot be
approximated. The obtained off-diagonal data structure is no more a dense
tile of contiguous elements but an outer product of two rectangular matrices
Ui; x V;; of size nb x k, with nb the tile size and k the matrix rank (i.e., the &
most significative singular values/vectors), as shown in Fig. 3. Our current TLR
approximation offers two variants. Fixed ranks can be used to apply truncation
across all off-diagonal tiles, independently of the data, at the cost of obtaining
lower or higher accuracy across the tiles (see Fig. 3(a)). Though seemingly brute
force, this may be the most cost-effective and per-iteration performant form
of preconditioning for iterative solvers. The fixed accuracy variant permits to
smoothly approximate the off-diagonal tiles depending on the accuracy needed
by the application. This engenders variable ranks per tiles, as seen in Fig. 3(b),
with an arbitrary illustration for six ranks (k1 to kg).

Dy }nb D1y }ub
Var bk ﬂm
& Dy J Dy
[7o Vs Vie | V2 }A,
C v [% Vis o e[e[e e
z 3 Z Dy j j j Dy
L Vor _ Vs _ Vsa Vsa ﬂ‘lﬁ)“ﬁ]"“ ks Vis }M
Vi1 Voo Vos Vor | Vos e[e[e e[e)L! Vs };.
(a) Fixed rank. (b) Fixed accuracy.

Fig. 3. Tile low rank matrix representation.

Once the dense matrix is approximated by means of tile low rank, a new
family of linear algebra algorithms needs to be implemented to take into consid-
eration the new compressed data layout. For the TLR Cholesky factorization,

TLR Cholesky Factorization for Climate/Weather Modeling Applications 29

we reuse some of the ideas developed in the PLASMA library [27], although new
monolithic kernels have to be designed. When using fixed rank k, all off-diagonal
tiles of size nb are represented by a data structure of identical size, i.e., nb x k.
With fixed accuracy, the rank obtained may differ from one tile to another to
maintain the expected accuracy threshold. Therefore, load imbalance issues may
increase idle time and it is then paramount to rely on dynamic runtime systems
in order to mitigate this overhead by ensuring all resources stay busy throughout
the matrix computations.

7 Numerical Accuracy

This section aims at highlighting the robustness of the TLR compression and
Cholesky factorization. We look first at synthetic covariance matrices and then at
real geospatial covariance matrices from climate/weather modeling applications
based on Gaussian processes.

7.1 Synthetic Matrices

Synthetic matrices are important to demonstrate the numerical robustness for
new matrix algebra software. We create a template diagonal matrix S with three
specific singular value decay rates (named as base 2, base 3, base 4), as depicted
in Fig.4. The singular values or diagonal elements of S in descending order
follow these decay rates and reach close to machine precision in double precision
arithmetic (1e — 16) for the first 53,33 and 26 singular values for base 2, base 3,
and base 4, respectively. This matrix S is then multiplied on the left and right
sides by orthogonal matrices to generate each data-sparse off-diagonal tiles.

10°

Different functions to generate diagonal values of S
- T T T . T T -

102
1041
2
g
3 10
<
g
S, 10°
8
£
S 100t
2
S
Z 102}
— 27(x)
10— 37(-x)
— 47(-x)

1016 T L L L H L i L i
0 5 10 15 20 25 30 35 40 45 50 55
xth diagonal element

Fig. 4. Singular values decay rates and distribution of the template diagonal matrix.

Once all off-diagonal tiles have been generated, they can be compressed using
an SVD. Extensive numerical experiments have been conducted on synthetic

30 K. Akbudak et al.

covariance matrices to validate our TLR approach. The heat map Fig. 5 reports
the accuracy obtained for various fixed ranks and tile sizes (Fig.5(a)) using
base 2 decay rate and the corresponding digit difference with the full dense
Cholesky factorization (Fig.5(b)). The heat map Fig.6 reports the accuracy
obtained for various fixed ranks and tile sizes (Fig.6(a)) using base 3 decay rate
and the corresponding digit difference with the full dense Cholesky factorization
(Fig.6(b)). The heat map Fig. 7 reports the accuracy obtained for various fixed
ranks and tile sizes (Fig.7(a)) using base 4 decay rate and the corresponding
digit difference with the full dense Cholesky factorization (Fig.7(b)). Indeed,
one can notice that double precision arithmetic (1071¢) is achieved from rank
truncations starting from 53,33 and 26 singular values for base 2, base 3, and
base 4, respectively.

8 20e-15 g 0
8 20e-15 8 0
s 1.00 ¥
g 1815 20e-15 g 0 0 N
2 18615 18e-15 20e-15 g 0 0 0 s
2 24e-15 20e-15 18e-15 18e-15 075 8 0 0 0 0 7
zg 45015 23e-15 18e-15 20e-15 zg 0 0 0 0 .
s 92012 46e-12 23012 11e-12 54e-13 58 3 3 3 3 2 s
0m
@ 29010 15e-10 7.3e-11 36e-11 17e-11 @ 5 4 .
@ | A | 2 D | Eeh @ ENENENENEN |
. 60007 30007 15007 75008 37008 18008 || a2 - HEDEEEEEEEEE .
=) 19e-05 96e-06 4.8e-06 24e-06 12e-06 57e-07 =) 10 9 9 9
e = ENEEENENENEN
- BRI s scoos | 10005 S = [T I
0.00 0
6w e w om m B % e ow o s
Block size (nb) Block size (nb)
(a) Fixed rank. (b) Digit difference.
Fig. 5. Singular value distribution base 2.
107
8 18e-15 15 g 0
g 18e-15 g 0
E 8 .
8 20e-15 1.8e-15 g 0 0
12 8
8 20e-15 20e-15 18e-15 g 0 0 0
2 53e-15 20e-15 20e-15 18e-15 8 0 0 0 0 7
e 53615 22615 20615 18e-15 09 ze 0 0 0 0 6
s 40015 53e-15 22015 20e-15 18e-15 58 0 0 0 0 0 5
] 12e-14 58e-15 29e-15 20e-15 18e-15 0.6 Q 1 0 0 0 0 4
5] 28e-12 14e-12 7.0e-13 35e-13 17e-13 i) 3 3 2 2 2 3
. 14008 68010 S4010 1760 Baet 4101t || o PN | s | s | s | | ,
2 2 | 070 | G T | A | BT = INEEEEEAEAEN
- N RG] 2005 1005 soeco 2400 ool o R
00 0
6w e w m m 6w e ow o s
Block size (nb) Block size (nb)
(a) Fixed rank. (b) Digit difference.

Fig. 6. Singular value distribution base 3.

Figure 8 shows fixed accuracy instead, using base 3 decay rate, and reveals the
resulting rank with the following obvious rule: the higher the accuracy needed,
the higher the rank. Last but not least, the tile size nb parameter does not really
matter for these synthetic matrices in terms of numerical accuracy because the
template diagonal tile S is the same one used during data-sparse off-diagonal
tile generation. In fact, for the dense Cholesky factorization, the parameter nb

TLR Cholesky Factorization for Climate/Weather Modeling Applications 31

has an impact only on performance as it trades-off concurrency with sequential
kernel performance. For tile low rank Cholesky factorization, nb has, in addition,
a direct impact on the overall algorithmic complexity. For instance, for a given
matrix size N, a large tile size nb would engender small memory footprint as well
as number of floating-point operations at the price of a lower concurrency. On
the contrary, if the large tile size nb would have been further decomposed into
smaller ones, this would engender larger memory footprint as well as number of
floating-point operations at the price of a higher concurrency.

10
1.6e-15

g g o
=) B 9

g 1.8e-15 32 g [
g 20e-15 1.8e-15 8 0 0 8
g 31e-15 20e-15 16e-15 g 0 0 0 7
8 29e-15 31e-15 20e-15 18e-15 24 8 4 0 0 0 s

<g 29e-15 31e-15 20e-15 16e-15 =g 0 0 0 0
H £ s

EE 37e-15 29e-15 31e-15 20e-15 16e-15 6 &s 0 0 0 0 0
9 37e-15 29e-15 31e-15 20e-15 16e-15 2 0 0 0 0 0 N
] 90e-15 4515 31e-15 20e-15 18e-15 8 0 0 0 0 0 3
e 18e-11 92612 46e-12 23012 1de12 5de-13 08 e 3 3 3 2 2

o PRI 96006 48006 24006 12006 57007 - K 9 9 9 9
® » o w8 s st ® » o 8 % 512 1024
Block size (nb) Block size (nb)
(a) Fixed rank. (b) Digit difference.

Fig. 7. Singular value distribution base 4.

® E o 18 26 512 104
Block size (nb)

Fig. 8. Fixed accuracy for base 3.

7.2 Geospatial Statistics

The typical accuracy required for the studied climate/weather modeling applica-
tion is 1079, Given this accuracy, Fig.9 highlights the rank distributions for for
16384 x 16384 covariance matrix generated by Eq. 2 with 8 = 0.1 for nb = 64, 128
and 256: the whiter the picture is, the greater its data sparsity. The diagonal
tiles are full ranks, regardless of the tile size, while the off-diagonal tiles are
mostly data-sparse and can be approximated accordingly. In fact, perhaps the
most striking feedback about this figure is that the majority of off-diagonal tiles
can be dramatically approximated, while the initial matrix is completely dense.

32 K. Akbudak et al.

Block size 64x64 Block size 128x128 Block size 256x256
64 5 128 256

-

6 . 13 14

Fig. 9. Rank distributions for 16384 x 16384 covariance matrix using various tile sizes.

Figure 10 reveals the heat map of the rank and singular value distributions
for 16384 x 16384 covariance matrix using nb = 1024. In particular, Fig. 10(a)
shows the rank for each tile after using the application-specific accuracy of 107°.
If dense linear algebra approaches were used, the bottom left tile of rank 17 with
U =1024 x 17 and V = 1024 x 17 would have been considered full rank and
of size 1024 x 1024, instead. And this phenomenon is further exacerbated when
looking at Fig. 10(b), which portrays the singular value distributions of selected
off-diagonal tiles. While the singular values of the diagonal tiles are all significant,
the singular values of off-diagonal tiles are actually characterized by an expo-
nential decay, which has to be exploited for performance and storage purposes.
Such characteristic may not be captured by weak admissible data compression
formats, such as HODLR and HSS, due to nested dissection which operates only
for diagonal blocks. The off-diagonal blocks may then necessitate larger rank to
get compressed, which may have a non-negligible impact on performance and
memory footprint.

ho24 175 174 77 42 28 37 28 42 37 28 28 30 26 26 17

1751024 78 174 174 42 76 38 37 42 28 29 37 31 28 25

174 78 1024173 37 27 42 27 173 76 42 37 37 28 30 24

77 174 1731024 77 37 173 42 77 174 37 42 76 38 37 31

42 174 37 77 1024174 173 77 30 37 26 27 42 37 28 28

28 42 27 37 1741024 78 175 25 30 23 26 37 42 28 29

103 4

37 76 42 173 173 78 1024174 37 77 30 37 174 77 42 38

o
28 3 27 42 77 1751741024 26 38 20 30 78 175 % 43 2 100 Ag
>
37 4 76 174 37 30 77 38 1741024 77 175 174 42 76 38 3 — (1/2;1/2)
2 28 2 3 2 2324 17 77 0178 3 28 42 20 £ 1076 (3/8;5/8)
e R Lr LI — (14;3/4)
o 10794 — (0
w 2 2 wfe]e e e o s e 3 (0;1)
s
% 31 2 B 3 a2 7 15 2 42 28 37 1751024 77 178 2107124
o
2 3 % 3w 3 e m v 7w i 7 o
g 10-15 4
0 200 400 600 800 1000
index of singular value
(a) Rank distributions. (b) Singular values decay of marked tiles in Fig. 10(a).

Fig. 10. Rank and singular value distributions for a 16384 x 16384 covariance matrix
using nb = 1024 with an accuracy threshold set to 107°.

TLR Cholesky Factorization for Climate/Weather Modeling Applications 33

8 High Performance Implementations

This section describes the high performance implementation of the TLR
Cholesky factorization.

8.1 Numerical Kernels

The sequential TLR Cholesky algorithm can be expressed with the following
four computational kernels:

HCORE_DPOTREF: The kernel performs the Cholesky factorization of a diag-
onal (lower triangular) tile. It is similar to LAPACK DPOTRF since the
diagonal tiles are dense and full rank.

HCORE_DTRSM: The operation applies an update to an off-diagonal low-
rank tile of the input matrix, resulting from factorization of the diagonal
tile above it and overrides it with the final elements of the output matrix:
Vi) = Viak) X D(*k%k). The operation is a triangular solve.

HCORE_DSYRK: The kernel applies updates to a diagonal (lower triangular)
tile of the input matrix, resulting from factorization of the low-rank tiles to
the left of it: D(; ;) = Dyj jy— (Ugj,k) ¥ V(?,k)) X (Ui X V&k))T. The operation
is a symmetric rank-k update.

HCORE_DGEMM: The operation applies updates to an off-diagonal low-rank
tile of the input matrix, resulting from factorization of the low-rank tiles to
the left of it. The operation involves two QR factorizations, one reduced SVD
(with a rank truncation depending on the fixed rank and/or the fixed accuracy
operation modes) and two matrix-matrix multiplications.

The most called computational kernel is HCORE_DGEMM and it also represents
the one with highest arithmetic intensity. Once the sequential version of the
code based on nested loops has been designed, we need to schedule the four
aforementioned computational tasks on the underlying processing units.

8.2 Task-Based Programming Model

Task-based programming models have become methods of choice when target-
ing efficient parallel implementation, as they permit asynchronous thread exe-
cutions after exposing fine-grained computational tasks. Static scheduling may
be suboptimal here, especially in fixed accuracy mode, as this may result in load
imbalance between tasks. Therefore, dynamic runtime systems are crucial to cope
with the various tasks’ workloads, besides handling dynamic frequency scaling
of processors at runtime. Many dynamic runtime systems such as QUARK [26],
StarPU [8], and OmpSs [12] exist for shared-memory systems. We use the task-
based programming model and the dynamic runtime system, as implemented in
OpenMP, for easy portability across hardware platforms. The TLR matrix gen-
eration and compression consist in generating the TLR matrix after performing
an SVD using DGESVD on all off-diagonal tiles in an embarrassingly parallel

34 K. Akbudak et al.

Algorithm 1. HICMA _DPOTRF(HicmaLower, D, U, V, N, nb, rank, acc)
p=N/nb
for k =1 to p do
#pragma omp task depend(inout:D(k,k))
hcore_dpotrf(HicmaLower, D(k k), rank, acc)
for i = k+1 to p do
#pragma omp task depend(in:D(k,k)) depend(inout:U(ik))
heore_dtrsm(V(i,k), D(k,k), rank, acc)
end for
for j = k+1 to p do
#pragma omp task depend(in:U(j,k)) depend(in:V(j,k)) depend(inout:D(j,j))
hcore_dsyrk(D(j,j), U(j,k), V(j,k), rank, acc)
for i = j+1 top do
#pragma omp task
depend(in:U(i,k)) depend(in:V(i,k))
depend(in:U(j,k)) depend(in:V(j,k))
depend(inout:U(i,j)) depend(inout:V(i,j))
hcore_dgemm(U(i,k), V(i,k), U(j,k), V(j,k), U(i,j), V(i,j), rank, acc)
end for
end for
end for

fashion using the parallel for loops from OpenMP. The QR-based DGESVD is
slower than the divide-and-conquer DGESDD but requires much less memory.
Other SVD variants (e.g., randomized SVD) may directly generate the TLR
data format without going to the dense representation. These variants may also
overcome these performance issues but this is beyond the scope of this paper.
Algorithm 1 shows the pseudo-code of the TLR Cholesky factorization for the
lower triangular case. Each kernel call is annotated by pragmas describing the
data directions from which the compiler is capable of tracking the data depen-
dencies. Each kernel’s API has extra parameters related to fixed rank and/or
fixed accuracy, allowing an algorithmic flexibility for end-users. The TLR com-
pression and Cholesky factorization is currently being packaged into the Hier-
archical Computations on Manycore Architectures (HICMA) library and will be
released during 2017.

9 Performance Results and Analysis

This section presents the performance results and analysis of the TLR compres-
sion and Cholesky factorization in the context of a climate/weather modeling
application based on geospatial statistics.

9.1 Environment Systems

We have ported our OpenMP-based TLR compression and Cholesky factor-
ization to three systems. We have considered three systems representative of

TLR Cholesky Factorization for Climate/Weather Modeling Applications 35

the current manycore-based hardware trends. The first system is composed of
dual-socket 18-core Intel(R) Xeon(R) Haswell CPU E5-2699 v3 @ 2.3 GHz with
256 GB of main memory. The second system hosts the latest Intel commodity
chip with dual-socket 14-core Intel(R) Xeon(R) Broadwell CPU E5-2680 v4 @
2.4 GHz with 128 GB of main memory. The third system has the latest Intel(R)
Xeon Phi(TM) Knights Landing manycore 7210 chips with 64 cores @ 1.30 GHz
with 128 GB of main memory, operating in quadrant/cache modes. For simplic-
ity, each system is named after its chip codename. Our TLR implementations
have been compiled with Intel C compiler v16 and linked against sequential
Intel MKL v11.3.1. We have run ten times each test configuration and report
the average time as the consistent metric.

9.2 Memory Footprint Assessment

Theoretical Memory Footprint for Fixed Rank. For native dense Cholesky
factorization, the memory footprint of the input matrix is simply NTQ For
TLR Cholesky factorization, assuming fixed rank, the memory footprint can
be calculated as follows. The numbers of diagonal and off-diagonal tiles are
ndt = % and nodt = WM, respectively. Therefore, assuming dou-
ble precision and given a rank k, the required memory footprint for TLR is

8*(ndt*%+2*nodt*nb*k)z4*ndt*nb2+16*nodt*nb*k.

Actual Memory Footprint for Fixed Accuracy. Figurell(a) shows the
memory footprint for dense and TLR Cholesky factorization up to 200K x 200K
covariance matrix size. The fixed accuracy of 1079 is used, as required by the
application. As seen in the figure, the TLR-based compression scheme exhibits
more than an order of magnitude memory footprint saving with respect to naive
dense Cholesky factorization.

Actual Operation Count for Fixed Accuracy. Figurell(b) shows the
operation count performed by dense and TLR Cholesky factorization up to
200K x 200K covariance matrix size. Similarly, the fixed accuracy of 1079 is
used. As seen in the figure, the TLR Cholesky requires significantly less number
of operations with respect to naive dense Cholesky factorization.

In both Figs. 11(a) and (b), the data points for matrix size of 73984 = 162x172
are below the general trend for TLR-based scheme. This finding can be attributed
to the better compression effect of the global Morton ordering for matrix sizes
that are multiple of power of 2, as explained at the end of Sect. 4.

9.3 Performance of TLR Compression

Although the compression phase is important, it is performed only once, while
generating the covariance matrix on the fly. Figure 12 reports the performance
and scalability of TLR compression on the Haswell system for various tile sizes.
We benchmark both DGESVD and DGESDD as MKL SVD implementations.
DGESDD is faster thanks to its efficient divide-and-conquer at the expense of

36 K. Akbudak et al.

|_JERE | Full rank o = Full rarik :
100,9 * TR v i TLR A

*,
n

"

10°

Memory (GB)_

Operations (Gflops)
n

10° / .
/

g
0} 10?
% %, S5 g D Lo 43, Y6 X0 e R % S5 Do B Y00 43046 205
s, & Lo, s, o, 55 L3965°952 s, & e, 5 Vg, V5 L396509550,
% %, LI SN ONCONIENTY % % 6y Ooy "9 V5 L5e 295 06,5556
% o R Org g R0y %6, 506 9555, % Qo e Oy N0y 85 %08
Matrix size Matrix size

(a) Memory footprint (GB). (b) Number of operations (Gflops).

Fig. 11. Memory footprint and number of flops (accuracy is set to le — 9).

3 threads 6 threads 12 threads 18 threads
250 —— T 120 —— T 70 —— T 45 —— T
40} 4
60 4
200 | 4 100 1 35|]
L) S : I : F) S : 4
150 |- 4 40+ 1 25t 4
9 Bopt : A 20
2 100fi-d : 4 30+ i
s L 4 L 4
g a0 20} 4w
% 50 1 1 20 10 b
g 5 : 1 10} 1 sk 4
s 0 i H il BN i i il IS rl i il HE H H
£ 16K 25K 36K 50K 65K 16K 25K 36K 50K 65K 16K 25K 36K 50K 65K 16K 25K 36K 50K 65K
o 24 threads 30 threads 36 threads
s 35 T T T 35 T T T 40 T T T
®
< ES
S -
° pryn Block Size
v i
g 20l 512x512
= — 256x256
15
2 — 128x128
10 — 64x64
sl

0 i ! ! L 0 1 ! ! L 0 1 I ! L
16K 25K 36K 50K 65K 16K 25K 36K 50K 65K 16K 25K 36K 50K 65K

Fig.12. Time to solution to approximate all tiles of a TLR matrix by DGESDD on
various numbers of threads and block sizes.

requiring eight times more memory allocation than DGESVD. This explains
the increase in time of approximation routine, when increasing the number of
threads. TLR matrices with larger tiles tend to use more memory per tile and
may saturate the memory bus bandwidth on the system due to the memory-
bound character of the approximation phase. The scalability may be further
improved through cross approximation techniques or randomized SVD kernel
instead of ordinary dense SVD.

TLR Cholesky Factorization for Climate/Weather Modeling Applications 37

9.4 Performance of TLR Cholesky Factorization
on Climate/Weather Modeling Applications

Figure 13 depicts the time to solution of the TLR Cholesky factorization (referred
to as TLR-HiCMA _dpotrf) on various hardware architectures using an accuracy
of 1072, as required by the application. In this figure, the time for compression
has not been included, since this initial phase may only be done once before

2000 2000

hennas = Full rank - PLASMA mnnns =+ Full rank - PLASMA -
1099 | TR M. Full_-rank - MKL 1099 | TR M. Full_-rank - MKL _‘\
500 TLR - HICMA_dpotrf & 560 TLR - HICMA_dpotgf <

o e / o /
50 ¢ 50
gw li’. /. g w
[=EY) & [=EEY
20 & B /
& 4 /
’ / /
19 & 19
B WL / /. s Vo
5 Ty
M e :
4% 4
i IR : /
. // Ny
kA b T Sa Do O os 200 YerlorD A b T Sa Do O on 200 YerlonD
G N % % ‘%003‘9)6‘675:“’555)6 G N % % ‘%003‘9)6‘675:3555)6
Matrix size Matrix size
(a) Intel Haswell. (b) Intel Broadwell.
2000
Hunnnn = Full rank - PLASMA
1099 M. Full:rank - MKL

29| e TLR - HICMA_dpotrf

% S, Do, o5 Vg, U505 %00 652950

% 9, 6, 6, o 65 3 299 26535556
% % Yo g S N0, 056,96,

Matrix size

(c) Intel KNL.

Fig. 13. Time to solution for TLR Cholesky factorization using an accuracy of 1079,

38 K. Akbudak et al.

the matrix computation starts. Optimal tile sizes nb have been selected from
empirical experiments for each Cholesky factorization variant, depending on the
matrix size (e.g., for TLR Cholesky, nb = 1156 turns out to be the most effec-
tive). The naive interface of PLASMA_dpotrf call requires an out-of-place data
translation, which doubles the memory footprint and prevents PLASMA from
further scaling up. For all experiments in this section, we used almost the whole
systems’ resources as described in Sect. 9.1, except one or two cores, which are
left to ensure that basic tasks of the operation system do not interfere with our
experiments. As seen in Fig. 13, there is more than an order of magnitude time
difference between TLR and dense Cholesky factorizations across all architec-
tures. Some data points are missing for the dense approaches due to physical
memory capacity. It is noteworthy to mention that the ranks after TLR com-
pression have slightly grown after TLR Cholesky factorization, especially the
off-diagonal tiles located at the bottom right. These tiles are the most manip-
ulated tiles and receive updates throughout the TLR Cholesky factorization.
Regarding the three architectures, the elapsed times of the full dense Cholesky
factorization, as implemented in MKL and PLASMA on KNL, are considerably
lower than those obtained for Haswell and Broadwell systems, thus showing
the compute capability of KNL. However, the elapsed time of TLR Cholesky is
slightly higher on KNL than those obtained on the other two architectures, due
to the low arithmetic intensity of the sequential kernels. Moreover, we rely on the
OpenMP dynamic runtime system to schedule the tasks on the different systems.
While this shows decent performance on the commodity Intel CPU architectures
with two sockets for which all cores share the same L3 cache, it does suffer from
performance loss on KNL, for which only two cores share the same L2 cache. The
overhead of moving data becomes a bottleneck, while performing work stealing
across the higher core count KNL chip. A more regular static scheduling with
data locality may perform better for such architecture. One can also notice that
the time to solution of TLR Cholesky for the matrix size of 73984 = 172162 is
relatively less with respect to the problem size growth. The reason is that the
obtained rank after compression and total number of operations for this matrix
size are less, as previously seen in Figs. 11(a) and (b).

10 Conclusion and Future Work

We have presented the tile low rank (TLR) Cholesky factorization in the con-
text of climate/weather modeling application based on geospatial statistics on
a Gaussian covariance matrix of size up to 200K x 200K. Our TLR Cholesky
factorization achieves more than an order of magnitude in memory footprint
saving and time to solution compared to native dense Cholesky factorization, as
implemented in vendor optimized Intel MKL [19] and open-source PLASMA [27]
libraries. Although TLR does not exhibit the best theoretical bounds for H-
matrix computations, it can still leverage, with a better user-productivity, a
wide number of covariance-based applications toward much challenging hard-
ware machines such as distributed-memory systems equipped with hardware

TLR Cholesky Factorization for Climate/Weather Modeling Applications 39

accelerators so that larger-scale problem dimensions can be covered. This will
lead to new scientific research opportunities, especially for simulation workloads
relying on the mainstream R software project. Moving forward, we would like
to investigate batch algorithms by redesigning the current TLR Cholesky fac-
torization from a tile-centric to a kernel-centric representation. This will help
in compensating the kernel launch overhead due to the low arithmetic intensity,
while increasing the hardware occupancy.

Acknowledgment. We would like to thank R. Kriemann from Max Planck Insti-
tute for Mathematics in the Sciences and M. Genton, A. Litvinenko, Y. Sun, and G.
Turkiyyah from KAUST for fruitful discussions. We would like also to thank A. Hei-
necke from Intel for helping us tuning the codes on KNL. This work has been partially
funded by the Intel Parallel Computing Center Award.

References

1. The R Project for Statistical Computing (2016). r-project.org

2. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the
PLASMA and MAGMA projects. J. Phys: Conf. Ser. 180, 012037 (2009)

3. Ambikasaran, S., Darve, E.: An O(N log N) fast direct solver for partial hierarchi-
cally semiseparable matrices. J. Sci. Comput. 57(3), 477-501 (2013)

4. Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L'Excellent, J.Y., Weisbecker,
C.: Improving multifrontal methods by means of block low-rank representations.
SIAM J. Sci. Comput. 37(3), A1451-A1474 (2015)

5. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed sym-
metric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2), 501
520 (2000)

6. Aminfar, A., Darve, E.: A fast sparse solver for finite-element matrices.
arXiv:1403.5337 [cs.NA], pp. 1-25 (2014)

7. Anderson, E., Bai, Z., Bischof, C.H., Blackford, L.S., Demmel, J.W., Dongarra,
J.J., Croz, J.J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.:
LAPACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999)

8. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187-198 (2011)

9. Borm, S.: H2Lib 2.0. Max-Planck-Institut, Leipzig (1999-2012)

10. Bérm, S.: Efficient numerical methods for non-local operators: H2-Matrix com-
pression, algorithms and analysis. EMS Tracts in Mathematics, vol. 14. European
Mathematical Society, Ziirich (2010)

11. Duputel, Z., Rivera, L., Fukahata, Y., Kanamori, H.: Uncertainty estimations for
seismic source inversions. Int. Geophys. J. 190(2), 1243-1256 (2012)

12. Duran, A., Ferrer, R., Ayguadé, E., Badia, R.M., Labarta, J.: A proposal to extend
the OpenMP tasking model with dependent tasks. Int. J. Parallel Prog. 37(3), 292—
305 (2009)

13. The FLAME project, April2010. http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage

14. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part i: introduc-
tion to H-matrices. Computing 62(2), 89-108 (1999)

https://www.r-project.org/
http://arxiv.org/abs/1403.5337
http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage

40

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

K. Akbudak et al.

Hackbusch, W., Bérm, S.: Data-sparse approximation by adaptive H?-matrices.
Computing 69(1), 1-35 (2002)

Hackbusch, W., Khoromskij, B., Sauter, S.: On H?-Matrices. In: Bungartz, H.J.,
Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9-29. Springer,
Heidelberg (2000)

Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, vol. 49. Springer,
Heidelberg (2015)

Hackbusch, W., Bérm, S., Grasedyck, L.: HLib 1.4. Max-Planck-Institut, Leipzig
(1999-2012)

Intel: Math Kernel Library (2016). software.intel.com/en-us/intel-mkl

Kriemann, R.: H-LU factorization on many-core systems. Comput. Vis. Sci. 16(3),
105-117 (2013)

Ltaief, H., Gratadour, D., Charara, A., Gendron, E.: Adaptive optics simulation
for the world’s largest telescope on multicore architectures with multiple GPUs.
In: Proceedings of the Platform for Advanced Scientific Computing Conference,
PASC 2016. pp. 9:1-9:12. ACM, New York (2016)

Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: The Top500 List, November
2016. http://www.top500.org

Rouet, F.H., Li, X.S., Ghysels, P., Napov, A.: A distributed-memory package
for dense hierarchically semi-separable matrix computations using randomization.
ACM Trans. Math. Softw. 42(4), 27:1-27:35 (2016)

Sun, Y., Stein, M.L.: Statistically and computationally efficient estimating equa-
tions for large spatial datasets. J. Comput. Graph. Stat. 25(1), 187-208 (2016)
Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1), 47-57 (1996)
YarKhan, A., Kurzak, J., Dongarra, J.: QUARK users’ guide: QUeueing and run-
time for kernels. Technical report ICL-UT-11-02, University of Tennessee Innova-
tive Computing Laboratory (2011)

YarKhan, A., Kurzak, J., Luszczek, P., Dongarra, J.: Porting the PLASMA numer-
ical library to the OpenMP standard. Int. J. Parallel Program. 45(3), 612-633
(2017). doi:10.1007/s10766-016-0441-6

https://software.intel.com/en-us/intel-mkl
http://www.top500.org
http://dx.doi.org/10.1007/s10766-016-0441-6

2 Springer
http://www.springer.com/978-3-319-58666-3

High Performance Computing

32nd International Conference, ISC High Performance
2017, Frankfurt, Germany, June 18-22, 2017,
Proceedings

Kunkel, |.; Yokota, R.; Balaji, P.; Keyes, D. (Eds.)

2017, XV, 432 p. 174 illus., Softcover

ISBM: 978-3-319-58666-3

	Tile Low Rank Cholesky Factorization for Climate/Weather Modeling Applications on Manycore Architectures
	1 Introduction
	2 Related Work
	3 Contributions
	4 Climate/Weather Modeling Applications
	5 State-of-the-Art Dense Cholesky Factorization
	5.1 Block Algorithms
	5.2 Tile Algorithms

	6 The Tile Low Rank Cholesky Factorization
	7 Numerical Accuracy
	7.1 Synthetic Matrices
	7.2 Geospatial Statistics

	8 High Performance Implementations
	8.1 Numerical Kernels
	8.2 Task-Based Programming Model

	9 Performance Results and Analysis
	9.1 Environment Systems
	9.2 Memory Footprint Assessment
	9.3 Performance of TLR Compression
	9.4 Performance of TLR Cholesky Factorization on Climate/Weather Modeling Applications

	10 Conclusion and Future Work
	References

