
Chapter 2
Mathematical Methods in Quantum
Mechanics

Abstract The mathematical methods used in quantum mechanics are developed,
with emphasis on linear algebra and complex variables. Dirac notation for vectors
in Hilbert space is introduced. The representation of coordinates and momenta in
quantum mechanics is analyzed and applied to the Heisenberg uncertainty principle.
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2.1 Vector Analysis

From a geometric point of view, any point P in the Cartesian x-y plane can be
associated with a vector

−→
OP, from the origin O to the point P. The corresponding

algebraic interpretation of a vector is an ordered pair of real numbers (the coordinates
of P). We will write either v = (v1, v2) or

−→v = (v1, v2). Both the boldface and the
arrow notation are extensively used in the literature and we will use whichever one
looks better in a formula. The origin O is the vector (0, 0). The space of all these
vectors is denoted by R

2. The superscript 2 reminds us that two coordinates are
sufficient to determine v. Once we adopt the convention that all our vectors start
from the origin, the terms vectors and points are equivalent. The generalization from
two to three dimension is straightforward: a vector

−→
OP in three-dimensional space is

specified by three real numbers. The origin O is now (0, 0, 0). This space, containing
all sets of ordered triples of real numbers, is denoted by R

3. A vector in 3-space is
shown in Fig. 2.1.

Vectors in classical physics are used to represent forces, velocities, etc. What is
the mathematical counterpart of the physical concept of doubling or tripling a force?
It is easy to see that this is equivalent to doubling or tripling the coordinates of
the endpoint P. Therefore 2v has the same direction of v, but is twice as long. Its
coordinates are (2v1, 2v2). More generally, for any real number a, we can define:

av = (av1, av2). (2.1)
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Fig. 2.1 A three-dimensional vector OP
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Fig. 2.2 Vectors u = (u1, u2), v = (v1, v2) and their sum, using the parallegram rule

From elementary physics, we know also that forces can be added by means of the
parallelogram rule (see Fig. 2.2). Given two vectors u = (u1, u2), v = (v1, v2), what
are the coordinates of the sum u + v? It is easy to see that the following definition:

u + v = (u1 + u2, v1 + v2), (2.2)

is in agreement with the parallelogram rule.
We have shown, both from geometric and algebraic points of view, the two fun-

damental operations of the vector space R
2: multiplication by a real number, and

summation of two vectors. Following are some properties implied by the fundamen-
tal operations of a real vector space (a, b denote real numbers, while 0 = (0, 0) is
the null vector):
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u + v = v + u, (2.3)

u + 0 = u, (2.4)

a(u + v) = au + av, (2.5)

(a + b)u = au + bu. (2.6)

Let us now introduce the very important concept of linear combination of vectors.
Given two vectors u and v and two real numbers a and b the vector

w = au + bv (2.7)

a u + b v
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v

Fig. 2.3 Linear combinations of the fixed two-dimensional vectors u, v generate the whole plane
R
2 by running over all the coefficients a, b
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Fig. 2.4 Linear combinations of the three-dimensional vectors u, v generate the planeπ , by varying
the coefficients a, b
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is called a linear combination of u and v, with coefficients a and b. It is evident
that, except for the particular case in which u and v are parallel, two vectors with
varying coefficients a, b can cover the entire plane R

2 (see Fig. 2.3). Since u and v
generate, with their linear combinations, the entire plane R

2, we say that u and v
form a basis in R

2. Vectors of the form
−→
OS = cos θ u + sin θ v are a particular case

of (2.7), representing vectors of unit length (unit vectors). If the two vectors u, v live
in a space of larger dimension, such as R

3 (ordinary 3D physical space), the linear
combination (2.7) still belongs to the plane containing u and v, and the set generated
by u and v is the plane π , shown in Fig. 2.4. The construction of Fig. 2.3 is still
valid, and the plane π still contains the two basis vectors u and v. Furthermore when
a = b = 0 we get w = (0, 0, 0), the null vector sitting at the origin. Therefore π

must contain the origin O. The plane π is an example of linear subspace of R
3 since

it is both a subset of R
3 and it is itself a linear space (indeed, if two vectors belong to

π , their sum also belongs to π , etc.). Linear subspaces will play an important role in
QM. The only nontrivial linear subspaces of R

2 are straight lines through the origin
O.

We have seen that in the fundamental postulate of QM the distance of a point
S from the origin O (the length of the vector

−→
OS) plays an important role. For an

arbitrary vector v = (v1, v2) we know by the Pythagorean theorem that its length
(which we denote by |v| or v) is given by:

v = |v| =
√
v21 + v22 (2.8)

If v = (v1, v2, v3) is a vector belonging to the space R
3, its length being given by a

simple generalization of Eq. (2.8):

v = |v| =
√
v21 + v22 + v23 (2.9)

The angle between two vectors is also important. If φ denotes the angle between the
vectors u = (u1, u2) and v = (v1, v2) of the plane, the following relation holds:

u v cosφ = u1v1 + u2v2 (2.10)

In three-dimensional space, a similar formula holds: denoting by u = (u1, u2, u3),
v = (v1, v2, v3) two vectors of R

3, and with the same meaning of the angle φ, it is
possible to prove that:

u v cosφ = u1v1 + u2v2 + u3v3 (2.11)

The reader will note that the expressions (2.10), (2.11) are quite similar. Indeed these
expressions are more fundamental than the concept of “angle between two vectors,”
which cannot be visualized in dimension higher then three. These expressions define
the scalar product u · v of two vectors. Thus in R

2 we have u · v = u1v1 + u2v2, in
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R
3 we have u · v = u1v1 + u2v2 + u3v3, etc. When writing the scalar product, the

two vectors u, v can be represented by the symbols ||u1, u2||,
∣∣∣∣
∣∣∣∣
v1
v2

∣∣∣∣
∣∣∣∣, called a row

vector and a column vector, respectively. When a row vector is placed in front of a
column vector, you can perform vector multiplication using a “row times column”
sum, as follows:

||u1, u2||
∣∣∣∣
∣∣∣∣
v1
v2

∣∣∣∣
∣∣∣∣ = u · v = u1v1 + u2v2 (2.12)

The scalar product has the following properties:

1. The scalar product of a vector v with itself is equal to the square of its length:

v · v = v21 + v22 = |v|2 = v2. (2.13)

2. The commutative property:
u · v = v · u. (2.14)

3. The distributive property:

u · (v + w) = u · v + u · w. (2.15)

4. Multiplying u or v by a real number a, gives the same multiple of the scalar
product u · v:

(au) · v = u · (av) = a u · v (2.16)

The scalar product is related to the projection of a vector onto a straight line. Consider
a vector v in the planeR

2 and a straight line r through the origin O. Denote by u a unit
vector (whose length is equal to 1) directed along r . The scalar product u · v is equal
to u v cosφ, where φ is the angle between v, u (for simplicity we assume cosφ ≥ 0).
Therefore u · v is equal to the length of the vector v′ obtained by projecting v onto r
(see Fig. 2.5). Clearly then:

v′ = (u · v)u. (2.17)

Equations (2.13)–(2.17) can readily be generalized to a higher dimensional space.
For example, in the four-dimensional space R

4, which is the set of ordered quadru-
ples of real numbers, the scalar product of two vectors u = (u1, u2, u3, u4),
v = (v1, v2, v3, v4) is given by:

u · v = u1v1 + u2v2 + u3v3 + u4v4 (2.18)

Setting u = v we obtain the square of the length of u:

|u|2 = u21 + u22 + u23 + u24. (2.19)
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Fig. 2.5 Projection v′ of vector v on the straight line r

Let us return to the simple case of the plane R
2, and consider two orthogonal

non-null vectors u, v; from Eq. (2.10) we have:

u · v = u v cosφ = 0 (2.20)

since the cosine of a right angle vanishes. The same happens in dimension 3. When
the dimension of the vector space is greater than 3, Eq. (2.20) can be regarded as
the definition of orthogonality of two vectors. Finally, we consider the important
concept for the spaces R

2, R
3, . . . of an orthonormal basis. Recall that the vectors−→

ΨA = (1, 0) and
−→
ΨB = (0, 1) in our toy Hilbert space also were both of unit length

and mutually orthogonal (see Fig. 1.28), therefore:

−→
ΨA · −→

ΨA = |−→ΨA|2 = 1; −→
ΨB · −→

ΨB = |−→ΨB |2 = 1; −→
ΨA · −→

ΨB = 0. (2.21)

The same property holds for the vectors
−→
Ψ1 and

−→
Ψ2, which were also of unit length

and orthogonal. Since any vector v = (v1, v2) of R
2 can be written as a linear

combination of
−→
ΨA and

−→
ΨB , for example, v = v1

−→
ΨA + v2

−→
ΨB , we can say that they

form a basis. In R
3, the vectors i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) form an

orthonormal basis, since they are of unit length, pairwise orthogonal, and any vector
v = (v1, v2, v3) can be written as the linear combination of i, j, k:

v = v1i + v2j + v3k (2.22)

In general, in an n-dimensional space R
n (the set of all n-tuples of real numbers),

n orthonormal vectors are required to form a basis; it is then possible to write any
vector of the space as a linear combination of basis vectors.

http://dx.doi.org/10.1007/978-3-319-58732-5_1
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2.2 Matrices in Quantum Mechanics

The earliest formulation of QM, developed around 1925 by Heisenberg, Born and
Jordan, was calledmatrix mechanics. Classical observables, such as the position q or
momentum p of a particle, were represented, in this theory, not by simple numbers,
but rather by arrays Q and P containing an infinite number of rows and columns.
The numbers appearing in an array might, for example, be related to the frequencies
of radiation observed in a transition between two energy levels of an atom. Indeed
the dimension of the array is equal to the number of these levels, and for a complete
theory of even a simple system, such as the hydrogen atom, this number is infinite.
The theory of infinite matrices is not at all simple, and this is a part of the reason that
matrix mechanics is the less popular formulation of QM. Let us consider a simple
situation, inwhich a quantum system has just two levels, which corresponds perfectly
to our toy Hilbert space; it will be instructive to see how physical observables are
represented in this model. All the formulas we have already encountered will turn
out to have counterparts in the general case, almost without modification.

Consider the following 2 × 2 array of real numbers:

∥∥∥∥
A11 A12

A21 A22

∥∥∥∥ , (2.23)

which is called a 2×2matrix. The numbers A11, A12, . . . are calledmatrix elements.
In the following, unless otherwise specified, we refer to objects such as the array
(2.23) as a matrix of dimension 2 × 2.

We can also think of this matrix as an “operator,” since it determines a trans-
formation among the vectors of R

2. Let us see how this happens. Given a vector
v = (v1, v2), we can produce a new vector w = (w1,w2) using the formulas:

w1 = A11v1 + A12v2, w2 = A21v1 + A22v2. (2.24)

A useful mnemonic for Eq. (2.24) is to consider the first row of the matrix as the row
vector A1 = ||A11, A12||, and the second row as the row vector A2 = ||A21, A22||;
then Eq. (2.24) can be written using the row times column products:

w1 = ||A11, A12||
∣∣∣∣
∣∣∣∣
v1
v2

∣∣∣∣
∣∣∣∣ = A1 · v, w2 = ||A21, A22||

∣∣∣∣
∣∣∣∣
v1
v2

∣∣∣∣
∣∣∣∣ = A2 · v. (2.25)

Equation (2.24) can be written symbolically as:

w = Av (2.26)

We say that the vector w is the image of v under the mapping A. Physicists use
the term operator to denote the mapping A and, for them, the terms “matrix” and
“operator” are used interchangeably (of course physicists are less meticulous than
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mathematicians). As an elementary example, let A =
∥∥∥∥
3 5
7 2

∥∥∥∥ and v = (6, 4). Then

w = (3 × 6 + 5 × 4, 7 × 6 + 2 × 4) = (38, 50).
A simple, but essential, matrix is the following:

I =
∥∥∥∥
1 0
0 1

∥∥∥∥ (2.27)

It has the property that it maps any vector into itself: Iv = v. It is called the
identity matrix or simply the identity. The matrix with all elements vanishing is
called the null matrix. We will use the same symbol (in capital letters) for a matrix
and the corresponding mapping. An important class of matrices represent rotations.
For example, let R denote the matrix:

R =
∥∥∥∥
cos θ − sin θ

sin θ cos θ

∥∥∥∥ (2.28)

Equation (2.24) becomes:

w1 = cos θ v1 − sin θ v2
w2 = sin θ v1 + cos θ v2

(2.29)

It is easy to verify that for any vector v the vector w = Rv is obtained by a coun-
terclockwise rotation through an angle θ . Indeed, if α denotes the angle between v
and the x axis of the Cartesian plane, we have: v1 = |v| cosα, v2 = |v| sin α, and
substituting in Eq. (2.29) we have: w1 = |v| cos(α + θ),w2 = |v| sin(α + θ) (see
Fig. 2.6). It is simple to verify that multiplying the matrix (2.28), which corresponds
to a rotation through an angle θ , by an analogous matrix with θ replaced by α, gives
another rotation matrix with the angle θ + α, in agreement with the interpretation of
successive applications of the two rotations.

v = (v , v )
1 2

21
w = (w , w )

α
θ

O

Fig. 2.6 The vector w is obtained from the vector v by rotation by an angle θ
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A characteristic property of the mapping defined by Eq. (2.24) is linearity. This
means that sums of vectors are sent into sums of images (geometrically, parallelo-
grams are sent into parallelograms), linear combinations are sent into linear combi-
nations, and so forth. In formulas, for all vectors u, v and all real numbers c:

A(u + v) = Au + Av, A(cv) = c(Av). (2.30)

These algebraic properties are essential in QM, consistent with the notion that matri-
ces constitute a generalization of real numbers. Mathematicians tell us that, given a
suitable definition of addition and multiplication, matrices form a ring, as do the real
and complex numbers1; thus it is not entirely surprising that physical quantities can
be represented by matrices.

We define the sum C of two matrices A, B, written C = A + B. if the matrix
elements of C are sums of the corresponding matrix elements of A, B:

Cik = Aik + Bik, (i, k = 1, 2). (2.31)

We can multiply a matrix A by a real number c:

(cA)ik = cAik, (i, k = 1, 2). (2.32)

The simple rules of algebra also apply to matrices, for example:

(A + B)v = Av + Bv, (cA)v = c(Av). (2.33)

Let us now define the product of two matrices. The idea is that the product of the
two successive linear mappings A, B, on a vector, can be done by first applying B,
then A:

(AB)v = A(Bv) for any vector v. (2.34)

In Fig. 2.7, we see that if the mapping B sends u in v, and the mapping A sends v
in w, then C = AB sends u directly into w; these are pictorial representations of
the operations: v = Bu, w = Av, and w = Cu. In terms of matrix elements, the
corresponding matrix products are given by

C11 = A11B11 + A12B21, C12 = A11B12 + A12B22,

C21 = A21B11 + A22B21, C22 = A21B12 + A22B22.
(2.35)

Again themultiplication rule “rows times columns” applies.WritingA1=||A11, A12||,
A2 = ||A21, A22||, two row vectors, and B1 =

∣∣∣∣
∣∣∣∣
B11

B21

∣∣∣∣
∣∣∣∣, B2 =

∣∣∣∣
∣∣∣∣
B12

B22

∣∣∣∣
∣∣∣∣, two column

vectors, Eq. (2.35) can be written as:

1A field is a ring in which multiplication is commutative and every nonzero element has a multi-
plicative inverse. Thus real and complex numbers are also fields, while matrices are just rings.
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Fig. 2.7 The mapping C = AB is obtained by successive applications of the mappings B, then A

C11 = A1 · B1, C12 = A1 · B2,

C21 = A2 · B1, C22 = A2 · B2.
(2.36)

In general, an m × n matrix is a rectangular array of numbers with m rows and n
columns. For example, if m = 2 and n = 3 we have the matrix A:

A =
∣∣∣∣
∣∣∣∣
A11 A12 A13

A21 A22 A23

∣∣∣∣
∣∣∣∣ . (2.37)

We denote by Ai j the matrix element in the i th row and the j th column. Given a
second matrix B, the matrix product AB requires that the number n of columns of A
must match the number of rows of B; thus B must be a n× l matrix, l being arbitrary.
In the general case, the matrix elements (AB)ik are given by:

(AB)ik =
n∑
j=1

Ai j B jk, i = 1, 2, . . . ,m, k = 1, 2, . . . , l (2.38)

For example, if A is the matrix (2.37) and B is the 3 × 2 matrix:

B =
∣∣∣∣∣∣

∣∣∣∣∣∣
B11 B12

B21 B22

B31 B32

∣∣∣∣∣∣

∣∣∣∣∣∣
, (2.39)

the matrix multiplication row times columns thus gives:

AB =
∣∣∣∣
∣∣∣∣
A11B11 + A12B21 + A13B31 A11B12 + A12B22 + A13B32

A21B11 + A22B21 + A23B31 A21B12 + A22B22 + A23B32

∣∣∣∣
∣∣∣∣ , (2.40)

so that AB is a 2 × 2 square matrix. The geometrical meaning of the “operators”
A, B and AB is the following: B maps vectors belonging to R

2 into R
3, while A

maps vectors of R
3 into R

2; therefore AB maps vectors of R
2 into vectors of R

2.
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The application of a square matrix m × m to a vector in R
m is a particular case of

Eq. (2.38); for example, setting n = m = 2, B11 = v1, B21 = v2, we obtain:

(AB)11 = A11v1 + A12v2,
(AB)21 = A21v1 + A22v2.

(2.41)

Thus:

AB =
∥∥∥∥
A11 A12

A21 A22

∥∥∥∥
∥∥∥∥
v1
v2

∥∥∥∥ =
∥∥∥∥
A11v1 + A12v2
A21v1 + A22v2

∥∥∥∥ . (2.42)

Many of the familiar formulas of elementary algebra still apply; for example,
the associative property C(AB) = (CA)B; the distributive property (A + B)C =
AC + BC , etc., but a new feature appears: the commutative property does not hold!
It is not true, in general, that AB = BA, as in elementary arithmetic. This fact has
profound consequences in QM. (It is, in fact, the root of the uncertainty principle.)
Let us give an example of two non-commuting matrices:

A =
∥∥∥∥
0 1
0 0

∥∥∥∥ , B =
∥∥∥∥
0 0
1 0

∥∥∥∥ . (2.43)

Their products are then given by:

AB =
∥∥∥∥
1 0
0 0

∥∥∥∥ , BA =
∥∥∥∥
0 0
0 1

∥∥∥∥ . (2.44)

Since matrices represent operations, it is not unexpected that they sometimes do
not commute. In everyday life, we can experience situations in which the order of
operations is important: such as writing a letter and sealing it in an envelope. The
result in elementary mathematics, that multiplying first by a and then by b, gives the
same result as multiplying first by b and then by a, turns out to be rather exceptional
in higher mathematics. The commutator of two matrices is defined by

[
A, B

] = AB − BA. (2.45)

If the commutator equals 0, then the matrices A and B commute: AB = BA.
The inverse A−1 of a matrix A is defined by the following property:

AA−1 = A−1A = I. (2.46)

where I denotes the identity matrix; A−1 corresponds to the inverse transformation.
For example, the inverse of a rotationmatrix through an angle θ in a counterclockwise
sense, is a rotation matrix through the same angle in a clockwise sense; in order to
obtain R−1 it suffices to substitute−θ in the place of θ into Eq. (2.28). For the case of
real numbers, the inverse (here, meaning the reciprocal) always exists except for the
number zero. For 2 × 2 matrices, the inverse exists unless the following expression
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Fig. 2.8 There are an infinite number of vectors v whose projection on the x axis is equal to v ′

vanishes: D = A11A22 − A12A21. The geometric meaning of D (which is a 2 × 2
determinant) is the ratio of the area of the parallelogram of two images Av, Au to
the area of the parallelogram of v, u. It is a scale dilatation of the space R

2 under the
action of the operator A. It is necessary that D �= 0 for the inverse of A to exist.

An important class of operators (or matrices) that usually do not admit an inverse2

are projection operators. The simplest projection operator can be represented by the
matrix:

P =
∥∥∥∥
1 0
0 0

∥∥∥∥ . (2.47)

If v = (v1, v2) is an arbitrary vector, the image Pv = (v1, 0) is the vector v ′ obtained
by projecting v onto the x axis, as shown in Fig. 2.8. The reason P does not admit
an inverse is that there exist an infinite number of vectors v ′′ whose images Pv ′′
coincide with v ′. These vectors v ′′ have their free end on a straight line parallel to
the y axis. Mathematicians say that the mapping P is not injective. The inverse P−1

does not exist since it is ill-defined: which vector do we choose? v ′, v ′′, . . . ? Even
in the simple space R

2 there are many projection operators. Given any straight line
r through the origin, let us denote by Pr the projection operator onto the line r, as
shown in Fig. 2.9. The matrix corresponding to Pr is easily found: Let u = (c, s) be
a unit vector directed along the line r; since |u| = 1, c2 + s2 = 1. Therefore:

Pr =
∥∥∥∥
c2 cs
cs s2

∥∥∥∥ . (2.48)

An example of a projection operator in R
3 is PL , defined as follows: given a vector

v = (v1, v2, v3) belonging to R
3, and a plane L through the origin O, PLv is the

vector obtained taking the orthogonal projection of v on the plane L , as shown in
Fig. 2.10.

2Only the identity I is a projection operator that admits an inverse.
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Fig. 2.9 The action of the projection operator Pr in two dimensions
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Fig. 2.10 The action of the projection operator PL in three dimensions

Some matrices can be associated with physical observables. Apart from some
subtle points that we will discuss later, only matrices A such that A12 = A21 are
possible candidates. (We are still limiting ourselves to realmatrices.) These matrices
are symmetric matrices, for example,

∥∥∥∥
a b
b c

∥∥∥∥ , (2.49)

which is the most general 2 × 2 symmetric matrix. Of course, the matrix R of
Eq. (2.28) is not symmetric, since R12 = − sin θ , while R21 = sin θ .
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We have noted above that matrices can be regarded as generalizations of numbers
(which can be considered 1× 1 matrices). But in some cases, a matrix A can behave
like a number in another way. This happens when it operates on particular vectors,
called eigenvectors. For these vectors, the application of A is equivalent to the multi-
plication by a real number λ. More precisely, we shall say that a vector v = (v1, v2)
(excluding (0, 0)) is an eigenvector of the matrix A corresponding to the eigenvalue
λ, if the following relation holds:

Av = λv. (2.50)

For example, if λ = 3, the image vector Av is three times longer than v, if λ = 1
2 , Av

is half of v, and so forth. The important point is that the direction of the eigenvector
remains unchanged. Equation (2.50) for a symmetric matrix A is equivalent to the
two scalar equations:

A11v1 + A12v2 = λv1,
A12v1 + A22v2 = λv2.

(2.51)

Symmetric matrices have the remarkable property (which is at the root of their utility
in QM) of admitting an orthonormal basis of eigenvectors. In our toy space, for any
symmetric matrix A there exist two vectors

−→
Ψ1,

−→
Ψ2 such that:

A
−→
Ψ1 = λ1

−→
Ψ1, A

−→
Ψ2 = λ2

−→
Ψ2. (2.52)

Since these equations do not imply any restriction on their lengths,
−→
Ψ1 and

−→
Ψ2 can

be chosen with unit lengths. Furthermore it can be shown that if λ1 is different from
λ2,

−→
Ψ1 and

−→
Ψ2 are orthogonal to each other.

Matrices, such as the 2 × 2 with A12 = A21 = 0, are called diagonal. They have
the nice property that the eigenvectors are directed along the coordinate axis. We
will denote them by

−→
ΨA,

−→
ΨB , in agreement with our notation in toy Hilbert space. As

an example, let Q be the matrix:

Q =
∥∥∥∥
3 0
0 2

∥∥∥∥ . (2.53)

We can easily verify that

Q
−→
ΨA = 3

−→
ΨA, Q

−→
ΨB = 2

−→
ΨB, (2.54)

where
−→
ΨA = (1, 0) and

−→
ΨB = (0, 1). Two diagonal matrices always commute. As

an example, consider the matrix:

R =
∥∥∥∥
5 0
0 7

∥∥∥∥ (2.55)
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and compute the commutator QR − RQ; one finds a matrix with all elements equal
to zero, namely, the null matrix, which we denote by 0. Therefore QR− RQ = 0. Of
course, R admits as eigenvectors the same eigenvectors as Q, so that the vectors

−→
ΨA

and
−→
ΨB are the same; only the eigenvalues of Q and R are different. This is a general

rule: if two symmetric matrices commute, they possess a common set of orthonormal
eigenvectors.

Returning to Eq. (2.51) for a symmetric matrix, we can now find the eigenvalues
λ. Assuming, for simplicity, that v2 is not equal to zero, we can divide both equations
by v2. Denoting by r the quotient v1/v2, we get:

A11r + A12 = λr,
A12r + A22 = λ.

(2.56)

Solving for r in the second equation and substituting in the first, we obtain an equation
determining the eigenvalues:

(A11 − λ)(A22 − λ) − A2
12 = 0, (2.57)

which is a simple quadratic equation in the variable λ. In the most general case, it has
two solutions λ1, λ2, and for each solution, the relation A12r + A22 = λ determines
a possible value of r, which gives the direction of the corresponding eigenvector.
(For simplicity, we neglect here the possibility of degeneracy, when more than one
eigenvector corresponds to the same eigenvalue.) As an example, if all the matrix
elements Aik are equal to 1, the matrix A is simply:

A =
∥∥∥∥
1 1
1 1

∥∥∥∥ . (2.58)

and the eigenvalue Eq. (2.57) reduces to (1−λ)2 = 1, so that (1−λ) = ±1, and the
eigenvalues have the values 0 and 2. For λ = 0 we get r = −1, thus the eigenvector
is

−→
Ψ1 = (1,−1), and for λ = 2 we get r = 1 and the eigenvector

−→
Ψ2 = (1, 1).

Note that
−→
Ψ1 and

−→
Ψ2 are orthogonal, as they should be. However, their lengths are

not equal to 1 (actually to
√
2). Normalizing the eigenvectors by dividing

−→
Ψ1 and

−→
Ψ2

by
√
2, we obtain two orthonormal eigenvectors (which we still denote by

−→
Ψ1,

−→
Ψ2,

since they also obey Eq. (2.52) and no confusion need arise):

−→
Ψ1 =

(
1√
2
,− 1√

2

)
,

−→
Ψ2 =

(
1√
2
,

1√
2

)
. (2.59)

Let us compute the commutator QA − AQ of the matrices (2.53), (2.58). We find,
using Eq. (2.35):

QA =
∥∥∥∥
3 0
0 2

∥∥∥∥
∥∥∥∥
1 1
1 1

∥∥∥∥ =
∥∥∥∥
3 3
2 2

∥∥∥∥ , (2.60)
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AQ =
∥∥∥∥
1 1
1 1

∥∥∥∥
∥∥∥∥
3 0
0 2

∥∥∥∥ =
∥∥∥∥
3 2
3 2

∥∥∥∥ . (2.61)

Evidently, QA and AQ have rows and columns interchanged, so the commutator
QA − AQ does not vanish. The noncommutativity of Q, A and the differing eigen-
vectors of Q and A are, in fact, related. Indeed, we can state the following theorem:

Theorem 2.1 Two symmetric matrices admit a common basis of orthonormal eigen-
vectors if and only if they commute.

2.3 Quantum Mechanics in Toy Hilbert Space

In Sect. 1.3, we introduced a “toy Hilbert space,” an extremely simplified representa-
tion for a two-state quantum system, whereby quantum states can be represented by
unit vectors in the 2D Cartesian plane, with coordinates x, y. Physical observables
are correspondingly represented by real symmetric 2 × 2 matrices. The theorem at
the end of the last section is relevant to a fundamental interpretative postulate of QM:

Postulate 1: To any possible state of a physical system there corresponds a vector
−→
OS of

length 1. To any physical quantity F there corresponds a symmetric matrix (also denoted
by F). The possible results of a measurement of F on any state are the eigenvalues of the

matrix F . If
−→
Ψ is a normalized eigenvector of F corresponding to the eigenvalue λ, so that

F
−→
Ψ = λ

−→
Ψ , (2.62)

then |−→Ψ · −→
OS|2 is the probability that the result of a measurement of F is λ.

To this we add:

Postulate 2: After the measurement of F , if the result is λ, the state vector
−→
OS coincides

with the eigenvector
−→
Ψ , thus verifying Eq. (2.62).

In order to explain the motivation for Postulate 2, we quote from Dirac (Dirac 1958):

From physical continuity, if we make a second measurement immediately after the first, the
result of the second measurement must be the same as that of the first. Thus after the first
measurement has been made, there is no indeterminacy in the result of the second …This
conclusion must still hold if the second measurement is not actually made.

Physical quantities like F are called observables by physicists. They correspond to
symmetric matrices (more precisely, Hermitian matrices, see Sect. 2.6). Likewise,
the corresponding physical states are represented by state vectors.

Suppose now that the matrices Q and A correspond to position q and velocity v,
respectively. Thematrix Q has the eigenvectors

−→
ΨA,

−→
ΨB , while A has the eigenvectors−→

Ψ1 and
−→
Ψ2. In our toy Hilbert space, the possible results of a measurement of q are

3 and 2 (the eigenvalues of Q), while the possible results of a measurement of v are
0 and 2 (the eigenvalues of A). Furthermore, the expression |−→Ψ1 · −→OS|2 is the square

http://dx.doi.org/10.1007/978-3-319-58732-5_1
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of the projection of
−→
OS on the straight line determined by

−→
Ψ1, etc. The pair of “axis”−→

Ψ1,
−→
Ψ2 is “rotated” with respect to the “axes”

−→
ΨA,

−→
ΨB by virtue of the fact that the

commutator QA−AQ does not vanish. ByPostulate 2, ifwefirstmeasure Q, the state
vector

−→
OS will “jump” to either

−→
ΨA or

−→
ΨB . In either case, a subsequent measurement

of Awill be uncertain. Physicists say that the observables Q and A are not compatible.
When physicists realized that the matrices corresponding to very simple observables
such as q and p (position and momentum of a particle) do not commute, it is not
surprising that this possibility was initially regarded with skepticism. Actually, the
matrices representing q and p are of infinite dimension, but the geometry of our toy
Hilbert space is still a valid analogy. As a consequence of the mathematical structure
of the theory, q and p do not admit common eigenvectors, similar to the situation we
found for thematrices Q, A above. No state vector exists such that we can obtain with
certainty (probability 1) a value of q and a value of p. The conclusion follows that
the observables q and p cannot be simultaneously measured. An analogous result
applies for any pair of non-commuting observables; and, since symmetric matrices
do not, in general, commute, indeterminacy relations are quite commonplace, rather
than an exception. Other than position and velocity, some well-known cases of non-
commuting observables include two different components of angular momentum, as
well as operators representing time and energy.

An important quantity in QM is the average or expectation value of an observable
in a given state. Suppose the observable F is represented by the simple diagonal
matrix:

F =
∥∥∥∥
FA 0
0 FB

∥∥∥∥ . (2.63)

We consider a completely general state vector
−→
OS = (x, y), requiring only the

normalization condition x2 + y2 = 1, such that S lies on a circle of radius 1 centered
at the origin. As always, we suppose, that

−→
OS represents the state of the system.

Let us perform a measurement of F . We already know that the eigenvalues of F
are the numbers FA, FB , and therefore the probability of finding the value FA is
x2, and the probability of finding the value FB is y2. Then the average F of the
results of a measurement of F can be computed by the standard formula of statistics,
F = ∑

i Fi Pi , and we can write:

F = FAx
2 + FB y

2. (2.64)

Alternatively, by taking the scalar product of the vectors
−→
OS and F

−→
OS, we get the

same result. In fact, the vector obtained applying the operator F to
−→
OS is simply

(FAx, FB y); taking the scalar product of this vector with
−→
OS = (x, y) we obtain the

right-hand side of Eq. (2.64), whereby

F = −→
OS · F−→

OS. (2.65)
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The last formula, which has been obtained in a very particular case, is actually a
completely general and very elegant result.

Postulate 1 does not say anything about the time evolution of the state vector.
Actually, the motion in the Hilbert space of vector

−→
OS is determined by the time-

dependent Schrödinger equation. In our toy space, the path of point S is simply the
circumference of a circle of radius 1. Clearly, in spaces of higher dimension, this
path is more complicated. We must imagine a point S moving continuously (without
sudden jumps), maintaining its unit distance from the origin, just like a mass point
constrained to the circumference of a circle. In the original formulation of QM,
sudden jumps might occur when a measurement is made (see Postulate 2). We will
come back to this subtle (and controversial) point later, exemplified by the question:
“Are there quantum jumps?”.

In the work we have done thus far, observables F have been independent of time
(as have both the eigenvectors and the eigenvalues), while the vector state

−→
OS carries

all the dependence on time. This is known as the Schrödinger picture. It is not difficult
to formulate an alternative interpretation in Hilbert space, which corresponds to the
same physical situation, but uses a fixed state vector but time-dependent operators.
The idea is to rotate the eigenvectors of F back in such a way that their relative
position with

−→
OS (which now is fixed) is the same as in the Schrödinger picture. We

need first the following result:

Lemma 2.1 If R is a rotation matrix, and A, B are arbitrary vectors, the scalar
product of A with RB is equal to the scalar product of B with R−1A.

An algebraic proof is elementary. The matrix of R−1 is obtained from the matrix R
simply by changing the sign of θ in Eq. (2.28). The following intuitive argument is
perhaps more direct: consider the angle φ between the vectors A, B (see Fig. 2.11).
Rotating B in a counterclockwise sense through an angle θ , we obtain the vector
RB, while the angle between A and RB becomes θ + φ. And if we keep B fixed and
rotate the vector A back in a clockwise sense (by applying R−1) through an angle θ ,
the angle between B and R−1A remains equal to φ + θ . From Eq. (2.10), we see that
the scalar product of two vectors depends on the lengths of the vectors and the angle
between them. But rotations do not change lengths, and since the angle is θ + φ in
both cases, the Lemma is proved.

Let us denote by
−→
Ψ (t) the state vector

−→
OS as a function of time t . Suppose, for

simplicity, that at t = 0 the state vector coincides with the x axis,
−→
Ψ (0) = (1, 0),

and at time t = T, the state vector
−→
Ψ (T) makes an angle θ(T) with the x axis; in

other words, during the time from t = 0 and t = T the state vector is rotated through
an angle θ . Therefore the mapping from

−→
Ψ (0) to

−→
Ψ (T) can be obtained by means

of the rotation matrix (2.28) and we have:

−→
Ψ (T) = R(T)

−→
Ψ (0). (2.66)

In the last equation,we havewritten R(T) to emphasize the dependence of the rotation
R on time T. In the more general situation, the analog of Eq. (2.66) provides the
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B

Aθ

θ

ϕ

O

R    A−1

RB

Fig. 2.11 The scalar products 〈RB|A〉 and 〈B|R−1A〉 are equal

solution of the time-dependent Schrödinger equation, once the initial wave function−→
Ψ (0) is specified. Substituting (2.66) in place of

−→
OS into Eq. (2.65) we get:

F = R(T )
−→
Ψ (0) · FR(T )

−→
Ψ (0). (2.67)

Let us apply Lemma1 with A = F R(T )
−→
Ψ (0) and B = −→

Ψ (0). This allows us to
move the rotation operator R(T ) to the other side of the scalar product, then replacing
R by R−1. We obtain:

F = −→
Ψ (0) · R(T )−1F R(T )

−→
Ψ (0). (2.68)

We call the time-dependent operator F(T ) = R(T )−1F R(T ) operator F in the
Heisenberg picture, and we write:

F = −→
Ψ (0) · F(T )

−→
Ψ (0). (2.69)

Of course, the state vector in the Heisenberg picture is
−→
Ψ (0). We see from formulas

(2.69), (2.65) that the expression for F is the same in the two pictures. However,
in the Heisenberg picture, the time dependence has been entirely transferred to the
operator representing the observable. This is quite analogous to the picture in classical
mechanics, in which we seek the changes in observables with time, as described by
equations of motion.

A final topic we want to introduce for our toy Hilbert space is the density matrix.
For any matrix Ai j , the sum of the elements of the main diagonal is called the trace
of A, denoted by Tr A. Therefore:
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Tr A = A11 + A22. (2.70)

Given a unit vector
−→
OS = (x, y), the projection operator P on the line determined

by
−→
OS is given, using Eq. (2.48) and setting c = x , s = y:

P =
∥∥∥∥
x2 xy
xy y2

∥∥∥∥ . (2.71)

Given the operator F , the trace of the product P F is given by:

Tr(P F) = Tr

∥∥∥∥
x2F11 + xyF12 x2F12 + xyF22

xyF11 + y2F12 xyF12 + y2F22

∥∥∥∥ = x2F11 + 2xyF12 + y2F22.

(2.72)
Let us prove that the last expression constitutes a generalization of Eq. (2.64) when
F is not diagonal. First compute (2.65): the coordinates of the vector F

−→
OS are

(F11x + F12y, F12x + F22y); then take the scalar product of this vector with
−→
OS =

(x, y), giving precisely the expression (2.72). Therefore:

Tr(P F) = 〈−→OS|F −→
OS〉 = F . (2.73)

Note that if F equals the identity I , Eq. (2.27) reduces to

Tr(P I ) = Tr P = x2 + y2 = 1. (2.74)

Consider now two orthogonal states
−→
Ψ1,

−→
Ψ2 and suppose that there is a probability

p1 that the state vector
−→
OS of a physical system coincides with

−→
Ψ1, and a probability

p2 that it coincides with
−→
Ψ2. Note that in the actual case the probabilities p1 and p2

are not the fundamental probabilities of QM (which Heaven only knows!). Here, p1
and p2 might represent classical probabilities of distinct physical situations, as we
encounter, in classical statistical mechanics. In any event, wemust have p1+ p2 = 1.
In order to obtain the average value of an observable F , we compute a double average:
first we find the two quantum averages 〈−→Ψ1|F −→

Ψ1〉, 〈−→Ψ2|F −→
Ψ2〉, and then we average

these results, making use of the probabilities p1, p2; at the end of this procedure we
get:

F = p1〈−→Ψ1|F −→
Ψ1〉 + p2〈−→Ψ2|F −→

Ψ2〉. (2.75)

Now let P1, P2 be the projection operators onto the straight lines determined by
−→
Ψ1,−→

Ψ2. Using Eq. (2.73) we have 〈−→Ψ1|F−→
Ψ1〉 = Tr(P1F), and 〈−→Ψ2|F−→

Ψ2〉 = Tr(P2F).
Therefore, introducing the density matrix ρ = p1P1 + p2P2 and using the fact that
taking the trace is a linear operation, we can write:

F = p1Tr(P1F) + p2Tr(P2F) = Tr [ (p1P1 + p2P2)F ] = Tr(ρF). (2.76)
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Equation (2.76) constitutes a generalization of Eq. (2.73); knowledge of the density
matrix ρ allows us to compute averages of any observable F ; therefore ρ determines
the state of the system in way analogous to the state vector

−→
OS. When p1 = 1 and

p2 = 0, or p1 = 0 and p2 = 1, this reduces to the previous case; we say that the
system is in a pure state. The more general state defined by ρ = p1P1 + p2P2 is
called a mixed state. Let us verify that p1, p2 are the eigenvalues of ρ, and

−→
Ψ1,

−→
Ψ2,

its eigenvectors. Denoting by 0 the null vector, we have:

P1
−→
Ψ1 = −→

Ψ1, P2
−→
Ψ1 = −→

0 , (2.77)

and therefore:

ρ
−→
Ψ1 = (p1P1 + p2P2)

−→
Ψ1 = p1

−→
Ψ1 + p2

−→
0 = p1

−→
Ψ1. (2.78)

In the same way we can prove that ρ
−→
Ψ2 = p2

−→
Ψ2. Since there is no restriction on the

pair of orthogonal vectors
−→
Ψ1,

−→
Ψ2, we see that the most general density matrix is a

symmetric matrix whose eigenvalues are positive numbers p1, p2 less than or equal
to 1, and such that p1 + p2 = 1. Using the relation x2 + y2 = 1, it can be verified
that the projection operator P , given by Eq. (2.71), is idempotent, meaning that it
obeys the relation P2 = P . This condition is, in fact, a defining characteristic of a
pure state.

2.4 The Hilbert Space of Real Wavefunctions

We have now acquired an understanding of the toy model, but it may still not be
entirely clear whywave functions representing “clouds of probability” have anything
to do with vectors of the plane R

2. The answer of a mathematician might again run:
“Both R

2 and the set of wave functions of a physical system are vector spaces
endowed with a scalar product.” However, to show that wave functions do indeed
belong in a Hilbert space, we will follow a more elementary, less abstract, line of
development: we will exhibit an “analogy” between the vectors of R

2, R
3, . . . , and

the set C(a, b) of continuous wavefunctions defined on an interval [a, b] of the real
axis. Actually, physical wave functions ψ(x, y, z) are defined on points (x, y, z) of
three-dimensional space; indeed |ψ(x, y, z)|2 is actually the probability density in
the clouds drawn in Chap. 1. To simplify the mathematics, we can imagine that our
physical system to be one-dimensional, so that the wavefunctions depend on just a
single variable x , on a line segment [a, b].

Two of the fundamental operations of a vector space, given in Eqs. (2.1) and (2.2),
have obvious analogs for our set of functions: given two continuous functions f (x),
g(x), their sum is the function f (x)+g(x), as shown in Fig. 2.12. Also, just as we can
multiply the coordinates of a vector; by a real number λ, to obtain a new vector λf in
the same direction as the original, we can likewise multiply a function f (x), to give
the analogous scaled function λ f (x). The operations of addition and multiplication

http://dx.doi.org/10.1007/978-3-319-58732-5_1
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a b

g

f + g

f

Fig. 2.12 Sum of two functions f , g

by a real number suggests the terminology linear combination of two functions f (x),
g(x), with real coefficients a, b, namely, the function a f (x)+bg(x). The set of such
linear combinations can be thought of as a three-dimensional subspace of C(a, b),
provided f (x), g(x) do not have the same “direction,” meaning that f (x) is not
simply a multiple of g(x). This two-dimensional subspace can be thought of as a
plane through the origin. What is the origin? The object analogous to the null vector
(0, 0) of R

2 is a function which equals zero everywhere: f (x) = 0 for all x .
A more challenging question is: what constitutes the coordinates of a function,

which are somehow the analogs of the components of a vector? Later we will give
a more rigorous answer to this question; for the moment, we tentatively settle for
a more heuristic approach, which will enable us to understand the meaning of the
scalar product of twowavefunctions. Let f be a continuous function defined on [a,b];
see Fig. 2.13, where the graph of f (x) is shown. We choose n equally spaced points
x1, x2, . . . , xn in the interval (so that x1 = a and xn = b), and we compute the values
of the functions f (x1), f (x2), . . . , f (xn). We can then imagine these numbers to be

f(x   )1 f(x   )2 f(x   )3 f(x   )n

a = x1 b = xn

f

x

y

Δ

Ο

Fig. 2.13 A function f (x) is approximated by a vector in R
n , f = ( f (x1), f (x2), . . . , f (xn))
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the coordinates of a vector belonging to R
n . For example, let us take a = 0, b = 3,

n = 4 and consider the simple function f (x) = x2. Then x1 = 0, x2 = 1, x3 = 2,
x4 = 3, and f (x1) = 0, f (x2) = 1, f (x3) = 4, f (x4) = 9. We have obtained the
vector (0, 1, 4, 9) of R

4. You may ask: How do we choose the number n? Indeed
this number is arbitrary, since given a function on an interval, we can compute it
at as many points as we want. This is an inherent weakness in the identification of
the values f (x1), f (x2), . . . , f (xn) as “coordinates of f .” However, let us boldly
proceed nonetheless, and try to find a tentative definition of the scalar product of two
functions which is analogous to the definitions (2.10), (2.11) of the scalar product of
two vectors?

Given two functions f and g, both continuous on the interval [a,b], let us compute
these functions on the equally spaced points x1 = a, x2, . . ., xn = b, as above. We
will obtain, in this way, two vectors f , g belonging to R

n:

f = ( f (x1), f (x2), . . . , f (xn)),
g = (g(x1), g(x2), . . . , g(xn)),

(2.79)

whose scalar product is given by (see the analog in R
4, Eq. (2.18)):

f (x1)g(x1) + f (x2)g(x2) + · · · + f (xn)g(xn). (2.80)

However this expression depends on the number n, which is arbitrary. Since our
knowledge of a function becomesmore precise whenwe knowmore andmore values
f (xi ) (think, for example, of these values as data in an experiment), we can take the
limit of Eq. (2.80) as n approaches infinity. Even for the elementary case of two
constant functions, say f (x) = 2 and g(x) = 3, this limit is not finite. On the other
hand, there exists an expression which is similar to Eq. (2.80) that admits a finite limit
when n → ∞, and will provide us with a more rigorous definition. Denoting by Δn

the distance between two consecutive points, we haveΔn = x2−x1 = x3−x2, . . . =
(b−a)

(n−1) . It is easy to see that the limit:

lim
n→∞ Δn [ f (x1)g(x1) + f (x2)g(x2) + · · · + f (xn)g(xn)] (2.81)

exists and corresponds to the definition of a Riemann integral:

∫ b

a
f (x)g(x) dx . (2.82)

Thus the expression (2.82) provides us with a consistent definition of scalar product
of two real functions f (x), g(x). To emphasize the analogy with vectors, we can
write:

f · g =
∫ b

a
f (x)g(x) dx . (2.83)
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The importance of this definition of scalar product can hardly be overestimated. It
allows us to continue using a geometric language in the space of wavefunctions, and
suggests an intuitive picture of physical states, even when we are referring, not to
physical space, but to an abstract function space. We continue to define the norm or
length of the vector f using the expression:

|f| = √
f · f =

√∫ b

a
dx f (x)2. (2.84)

As an example, let us evaluate the scalar product of the functions x and 1 + x2 on
the interval [ 0, 1]. We must perform the integration:

∫ 1

0
(1 + x2)x =

[
x2

2
+ x4

4

]1

0

dx = 3

4
. (2.85)

Table2.1 shows the analogies between vectors in R
n and the corresponding func-

tional relations. On the left of the table, we show expressions involving the vectors
v, w, . . .; on the right are the analogs, in terms of the functions f (x), g(x) or
f , g, . . .. Such correspondences will be particularly useful in Dirac’s bra/ket formu-
lation of QM.

Table 2.1 Analogies between vectors and functions

Vectors Functions

Components of a vector v = (v1, v2, . . . , vn) Values of a function
f (x1), f (x2), . . . , f (xn)

Sum of two vectors v + w Sum of two functions f (x) + g(x)

Linear combination of two vectors c1v + c2w Linear combination of two functions
c1 f (x) + c2g(x)

Scalar product of two vectors
v · w = v1w1 + v2w2 + · · · + vnwn

Scalar product of two functions
f · g = ∫ b

a f (x)g(x) dx

Norm of a vector |v| = √
v · v =√

v21 + v22 + · · · + v2n

Norm of a function |f | = √
f · f =√∫ b

a dx f (x)2

Linearity of the scalar product
〈c v|w〉 = c 〈v|w〉
〈v|w1 + w2〉 = 〈v|w1〉 + 〈v|w2〉

Linearity of the scalar product
〈c f |g〉 = c 〈f|g〉
〈f|g1 + g2〉 = 〈f |g1〉 + 〈f|g2〉

Distance between two vectors
d = |v − w| = √〈v − w|v − w〉 =[
(v1 − w1)

2 + (v2 − w2)
2 + · · · + (vn − wn)

2
] 1
2

Distance between two functions
d = |f − g| = √〈f − g|f − g〉 =[∫ b

a dx ( f (x) − g(x))2
] 1

2
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The proof of the relations: 〈cf |g〉 = c〈f |g〉, and 〈f |g1 + g2〉 = 〈f |g1〉 + 〈f |g2〉 is
elementary also in the case of functions, since

∫ b

a

[
c f (x)

]
g(x) dx = c

∫ b

a
f (x)g(x) dx, (2.86)

and

∫ b

a
f (x)

[
g1(x) + g2(x)

]
dx =

∫ b

a
f (x)g1(x) dx +

∫ b

a
f (x)g2(x) dx . (2.87)

The analogy between the distance between vectors and the “distance” between func-
tions deserves a word of comment: if distance d is very small the coordinates of the
vectors v, w are almost equal, since the sum of the positive numbers (v1 − w1)

2,
(v2 − w2)

2, . . . , cannot be small unless every one of these contributions is small.
In an analogous way, for functions, a very small value of d means, by and large,
that the graphs of the functions f (x), g(x) are very close together. (There might be
exceptions, in which the difference of the functions is large in small intervals on the
x-axis.)

Another case to be considered is the existence of functions that do not have finite
norm. A simple example is the function f (x) = 1√

x
, defined on the open interval

(0, 1), that is, the interval excluding the endpoints 0, 1. In fact,
∫ 1
0 f (x)2 dx =∫ 1

0
1
x dx = ∞ or, better, limε→0

∫ 1
ε

1
x dx = ∞, since the function x−1 becomes very

large for small x . Such behavior is excluded from our formalism, since we have
restricted functions to be continuous and well defined in the whole interval [a, b] ( 1x
is not defined for x = 0). However, in physics, the interval [a, b] is often the entire
x axis, so that our integration

∫ b
a becomes

∫ +∞
−∞ . Therefore, even some very simple

functions such as x2, x4, etc., must be excluded since their integrals diverge to ∞.
However, since a wave function f (x) gives the probability amplitude of finding a
particle at point x , it is reasonable to assume that this amplitude goes to zero when x
becomes very large (for example, an electron bound to an atom has practically zero
probability of being found on the Moon). Coming back to the purely mathematical
aspects of the theory (while leaving aside certain mathematical subtleties), we will
define as a Hilbert space, denoted by L2(a, b), the set of functions f (x) such that

∫ b

a
[ f (x)]2 dx < ∞, (2.88)

meaning that the integral must be finite. Therefore, 1
x , for example, does not belong

to L2(0, 1). In many physical applications, we will have a = −∞, b = +∞, with
the corresponding Hilbert space denoted by L2(−∞,+∞).

We usually assume that functions belonging to the Hilbert space correspond to
vectors of finite length. The scalar product must then also be finite. As an example,
the wave function:
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Table 2.2 Vector products and integrals of functions

Two vectors v,w are are orthogonal if
v · w = 0, so that
v1w1 + v2w2 + · · · + vnwn = 0

Two functions f, g orthogonal if f · g = 0, so
that

∫ b
a f (x)g(x) dx = 0

A vector v is normalized if
|v|2 = v21 + v22 + · · · + v2n = 1

A function f (x) is normalized if
|f|2 = ∫ b

a f (x)2 dx = 1

A basis of n orthonormal vectors in R
n is a set

of n vectors v (1), v (2), . . . , v (n) such that

v (i).v ( j) =
{
1 if i = j

0 if i �= j

A basis of orthonormal functions in L2 is a
sequence of (∞) functions
f1(x), f2(x), . . . , fn(x) . . . such that

f i .f j = ∫ b
a fi (x) f j (x) dx =

{
1 if i = j

0 if i �= j

Expansion of a vector in an orthonormal basis:
v = ∑n

i=1 vie
(i) vi = e (i) · v

Expansion of a function in an orthonormal
basis: f (x) = ∑∞

i=1 ci fi (x)

ci = f i · f = ∫ b
a fi (x) f (x)dx

1
4
√

π
e−(x−a)2/2 (2.89)

has norm equal to one and represents a “cloud” of probability localized around
the point x = a, decreasing rapidly as |x − a| becomes large. To complete our
analogy between vectors and functions, there is no problem in extending the concept
of orthogonality to functions; by the definition of scalar product, we can say that
two functions f (x), g(x) are orthogonal in L2(a, b) if 〈f |g〉 = ∫ b

a f (x)g(x) dx =
0. With this definition in mind, we define an orthonormal set of functions f1(x),
f2(x),…, fn(x), such that all functions have “length” 1 and are orthogonal to one
other, as in the simple example of the vectors (1, 0), (0, 1) in the plane R

2 or the
vectors i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) in the space R

3. We know
(see Eq. (2.22)) that any vector v = (v1, v2, v2) ∈ R

3 can be written as the linear
combination v = v1i+ v2j+ v3k. Furthermore, the components v1, v2, v3 satisfy the
relations:

v · i = v1, v · j = v2, v · k = v3, (2.90)

which can be generalized to any orthonormal basis of n vectors inR
n . In other words,

the scalar product of any vector v with the i th basis vector, gives the magnitude of
the i th “coordinate” of v with respect to the i th “axis.” This result suggests other
analogous definitions and formulas, which we summarize in Table2.2.

According to the last row of the table, for the case of vectors in R
n , the equality

v = ∑n
i=1 vie

(i) has an obvious meaning. It implies that n orthonormal vectors do
form a basis on which we can expand any vector; we know that in order to have
such a basis we need two vectors in R

2 or three vectors in R
3, etc. What happens in

the Hilbert space L2(a, b)? There must then exist sequences of an infinite number
of orthonormal functions. For example, if we take a = 0 and b = 2π , the following
functions:
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f1(x) = 1√
2π

, f2(x) = cos x√
π

, f3(x) = sin x√
π

,

f4(x) = cos 2x√
π

, f5(x) = sin 2x√
π

, . . . , (2.91)

do form an orthonormal system in L2(0, 2π). The function f (x) is now represented
by an infinite sum over these basis functions (this might be recognized as a Fourier
series):

f (x) =
∞∑
i=1

ci fi (x). (2.92)

There remain questions of convergence and such, but we will not worry about
these. If, indeed, Eq. (2.92) does hold for some orthonormal system of functions,
such as the sequence (2.91), this set of functions is called complete and thereby
provides a basis for expanding any admissible function in the Hilbert space. Given
a function f (x), the coefficients ci (for i = 1, 2, 3 . . .) are the best candidates to
be designated “coordinates” of the vector f ; this interpretation has a more rigor-
ous foundation than the one we have introduced earlier, when we cited the values
f (x1), f (x2), . . . , f (xn). In Dirac’s formalism, the two interpretation can be unified
in an elegant (but not entirely rigorous) way, which is beyond the scope of our cov-
erage. The limit implied by the infinite summation appearing in Eq. (2.92) must be
understood in the following sense: the Hilbert space distance |f − fn| between the
function fn(x) = ∑n

i=1 ci fi (x) and the function f (x) tends to zero when n → ∞.
Now that we have a better understanding of what the Hilbert space is, we can

further extend our analogy between vectors and functions, and ask: what are the
“matrices” or better the linear operators relevant to QM which act in the Hilbert
space L2(−∞,+∞), analogous to theway 2×2matrices act on vectors in the plane?
Let us give two key examples of operators defined in this Hilbert space (leaving aside
mathematical subtleties, that are treated, for example, in Fano 1971):

1. The operator that multiplies any function ψ(x) by the variable x . This operator
is the famous q operator of QM, which represents the position of a particle. The
result of the application of q to ψ is the function xψ(x), as follows:

(qψ)(x) = xψ(x), (2.93)

where (qψ)(x) is the image function qψ computed at the point x . For example,
q maps xn into xn+1, sin x into x sin x , etc.

2. The operator that takes the derivative of a function ψ(x). Denoting this operator
by d

dx , we write:
d

dx
ψ(x) = dψ(x)

dx
. (2.94)

This means that d
dx maps xn into nxn−1, sin x into cos x , etc.
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Clearly, the operators q and d
dx are linear. They satisfy the analog of Eq. (2.30).

Thus for d
dx , since the derivative of the sum of two functions is the sum of the

derivatives, we have, for example,

d

dx
( f + g) = d

dx
f + d

dx
g. (2.95)

The operators q and d
dx are of primary importance inQM, since the first represents the

position of a particle, and the second is proportional to its momentum. An important
fact about these two operators, is that they do not commute. Let us denote by D the
operator d

dx . For “any” function ψ(x)3 we have:

q Dψ = q d
dx ψ = x dψ

dx ,

D qψ = d
dx qψ = d

dx (xψ) = ψ + x dψ

dx .

(2.96)

Subtracting the two equations, we obtain, for “any” ψ , Dqψ − qDψ = ψ , or:

Dq − qD = I. (2.97)

Powers of the operators q and D are easy to compute. For example, the functions
q2 ψ and D2 ψ are:

q2ψ = x(xψ) = x2ψ,

D2ψ = d
dx

d
dx ψ = d2

d2x ψ.

(2.98)

2.5 Complex Variables

To extend our repertoire of mathematical proficiency, this section will review some
aspects of complex numbers and complex functions. (Our apologies to readers
already well versed in this subject.) Mathematicians define an algebraic structure
called a field as a set of (usually) numbers, along with two operations, which can be
identified with addition and multiplication (subtraction and division are implicitly
included), and satisfies the associative and distributive laws. The most commonly
encountered fields are the real numbers, the rational numbers and, the subject of
this section, the complex numbers. Complex analysis turns out to be mandatory for
understanding the full mathematical structure of quantummechanics. It is not strictly
necessary for classical mechanics or electrodynamics, although complex variables
can provide very useful enhancements to their mathematical formulation.

3The quotation marks refer to some mathematical conditions that the function ψ(x) must fulfill: in
essence, ψ must be differentiable almost everywhere and Dψ must remain in the Hilbert space.
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Fig. 2.14 The circle Γ and the straight line Σ do not intersect; therefore their equations admit no
simultaneous solution in the field of real numbers

To begin, consider a circle Γ in the Cartesian plane and a straight line Σ lying
outside Γ (see Fig. 2.14), for example, the circle with center at the origin and radius
1, represented by the equation

x2 + y2 = 1, (2.99)

and the straight line represented by the equation:

x + y = 2. (2.100)

The simultaneous equations for the circle Γ and the line Σ , Eqs. (2.99) and
(2.100), therefore do not have any real simultaneous solutions. Let us nevertheless
solve (2.100) for y, to get y = 2 − x , and substitute this into (2.99). We obtain
x2 + (2 − x)2 = 1; therefore:

2x2 − 4x + 3 = 0. (2.101)

The solutions of the quadratic equation ax2 + bx + c = 0 are:

x = −b ± √
b2 − 4ac

2a
. (2.102)

In our case a = 2, b = −4, and c = 3. Thus

x = 4 ± √
16 − 24

4
= 2 ± √−2

2
. (2.103)

The square root of a negative number appears. This appears contradictory: since the
square of a real number is always positive (for example (+2) × (+2) = +4 and
(−2) × (−2) = +4), the argument of a square root should always be a positive
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number. For many centuries, it was believed that roots of negative numbers have
no meaning, consistent with the nonexistence of points common to a circle and a
nonintersecting straight line. But in 1572, Rafael Bombelli in his book L’Algebra,
gave meaning to the expression

√−1.
We will denote

√−1 by the usual symbol i and call it the imaginary unit. Thus,
by definition i2 = −1, and (2.103) becomes x = 2±√

2 i
2 We are now dealing with a

new kind of numbers, which we call complex numbers. If z = a + ib, with a and b
real; a is called the real part and b the imaginary part of z. (In the above case a = 1
and b = ±

√
2
2 ). Complex numbers have the following properties:

(1) a + ib = c + id if and only if a = c and b = d.
(2) (a + ib) + (c + id) = (a + c) + i(b + d).
(3) (a + ib)(c + id) = ac − bd + i(ad + bc).

The multiplication law (3) is consistent with the usual properties of real numbers
with the addition of a new rule: i2 = −1. Furthermore, Items (1) and (2) suggest a
representation of the complex number x + iy by the vector (x, y) in the Cartesian
plane R2. The x-axis now serves as the real axis, while the y-axis is the imaginary
axis, since it consists of points of type (0, y). The x-y plane is now called the
complex plane or an Argand diagram. Figure2.15 shows the vector corresponding to
the complex number z = a + ib, while Fig. 2.16 shows the vector corresponding to
the complex number −z = −a − ib. Item (2) above implies that the parallelogram
rule applies to the sum of two complex numbers (see Fig. 2.17).

A suggestive property is the following: if we multiply the complex number a+ ib
times the imaginary unit i , the corresponding vector is rotated by π

2 (90 degrees).
Indeed the complex number i(a + ib) = −b+ ia corresponds to the vector (−b, a)

which is rotated by π
2 with respect to (a, b) (see Fig. 2.18). The “vectors” i , i2 = −1,

i3 = −i , i4 = +1 are related by successive rotations by π
2 (see Fig. 2.19). The

complex conjugate z∗ (alternatively written z in many texts) of the number z = a+ib

Fig. 2.15 Identification of the complex number a + ib with the point (a, b) in the Cartesian plane
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Fig. 2.16 Identification of the complex number −z = −a − ib with the point (−a,−b) of the
Cartesian plane

Fig. 2.17 The parallelogram’s rule holds for the sum of two complex numbers a + ib and c + id

Fig. 2.18 The complex number i(a + ib) = −b + ia corresponds to the vector (−b, a) which is
rotated by 90 degrees with respect to (a, b)

is defined as z∗ = a − ib. Notice that a + ib and a − ib are symmetric with respect
to reflection in the real axis (see Fig. 2.20). Clearly, (a − ib)∗ = a + ib, so that
(z∗)∗ = z. If we multiply a + ib times its complex conjugate a − ib, we obtain the
square of the length of the vector (a, b); indeed,

(a + ib)(a − ib) = a2 − iab + iab + b2 = a2 + b2. (2.104)

Themodulus r of the complex number a+ ib is defined as its length, r = √
a2 + b2.

If θ denotes the angle measured counterclockwise from the real axis to (a, b), we
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Fig. 2.19 The complex numbers i , i2, i3, i4, correspond, respectively, to the points (0, 1), (−1, 0),
(0,−1), (1, 0). This is a simple example of a cyclic group (designated Z4)

Fig. 2.20 The complex conjugate a − ib of a + ib can be obtained by reflection through the real
axis

have (see Fig. 2.15):
a = r cos θ, b = r sin θ. (2.105)

Thus
z = a + ib = r(cos θ + i sin θ). (2.106)

The angle θ is called argument of z. The real numbers r and θ uniquely determine the
complex number z. For example, if r = 1 and θ = π

4 (45 degrees), z = 1√
2
(1+ i). In

general, complex numbers of modulus 1 are represented by points on the unit circle
(with center at the origin and radius 1). For z = a + ib, the angle θ is given by:

θ = arctan
b

a
, (2.107)

with θ determined up to multiples of 2π (360 degrees). For example, the pair r, θ
and the pair r, θ + 2π correspond to the same complex number.

The following very useful and beautiful formula can be used in place of (2.106):

z = a + ib = reiθ , (2.108)
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Fig. 2.21 eiθ z can be obtained from z by rotation by the angle θ

where e is Euler’s constant, e = 2.7182818 . . . (the base of natural logarithms). The
usual algebraic properties of the exponential function: e0 = 1, eaeb = ea+b, e−a =
1/ea , etc., still hold even when the exponent is imaginary or complex. However,
the corresponding geometric representation is entirely different from the real case. A
complex number eiθ can alternatively be regarded as an operator. Given the complex
number z = reiϕ , eiθ z = zeiθeiϕ = rei(θ+ϕ) is a number with the same modulus r
but a new argument ϕ + θ (see Fig. 2.21). The factor eiθ “rotates” z by an angle θ ,
similar to the way an orthogonal matrix, such as Eq. (2.28) rotates a two component
vector.

2.6 Complex Vector Spaces and Dirac Notation

In order to make our development as simple as possible up to now, we have consid-
ered only real vector spaces, totally avoiding complex numbers. However, complex
quantities turn out to be mandatory for complete understanding of the fundamental
equations of QM, in particular, the Schrödinger equation itself. We have already
noted that in QM, the operator D is proportional to the momentum p = mv of a
particle. In fact, the proportionality factor is −i�, where i = √−1, the imaginary
unit. We will also, in this section, be introducing Dirac’s bra/ket notation, invented
in 1939 by P.A.M. Dirac (1958), one of the founding fathers of quantum mechanics.
This is now a standard notation for describing quantum states, using angle brackets
and vertical bars to represent abstract vectors and linear operations. The notation has
also become popular in other mathematical applications.

We denote by C
n the set of the ordered n-tuples (z1, z2, . . . , zn) of complex num-

bers. An element z = (z1, z2, . . . , zn) of such a set is now what we designate a
vector. Thus, for n = 2, a vector (z1, z2) = (x1 + iy1, x2 + iy2) of C

2 is determined
by 4 real numbers. In the following, unless explicitly stated, we will consider the
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complex space C
2. In Dirac notation, a vector z = (z1, z2) will be denoted by |z〉, in

place of z. The null vector |0〉 is the vector with all components equal to zero. There-
fore, in C

n , |0〉 = (0, 0, . . . , 0). Dirac denoted vectors, such as |ψ〉, representing
quantum states, as “kets.” Adjoint vectors (associated with the complex conjugate
of a wavefunction), such as 〈φ|, were called “bras.” The product of a bra and a ket is
a bracket, representing a scalar product 〈φ|ψ〉. This connects with the notation we
have already introduced for scalar products.

In C
2 space, all the familiar linear properties still apply,. The linear combination

z = a|u〉 + b|v〉 is, in general, constructed with complex a, b. We can visualize the
sum |z〉 = |u〉 + |v〉 as in Fig. 2.2, but to determine |z〉 now requires 4 real numbers
(although our physical space remains R

3, not R
4). For example, if u1 = 1 + i ,

u2 = 2 + 3i , v1 = 1 − 2i , v2 = 3 − 2i , then |u〉 + |v〉 = (2 − i, 5 + i). The scalar
product used in quantummechanics is a generalization of the form of Eqs. (2.11) and
(2.18), used in real spaces. Instead, an Hermitian scalar product is defined in C

n , as
follows:

Definition 2.1 Given two vectors |z〉 = (z1, z2, . . . , zn), |w〉 = (w1,w2, . . . ,wn),
the Hermitian scalar product 〈z|w〉 (sometimes written 〈z|w〉H ) is defined by:

〈z|w〉 = z∗
1 w1 + z∗

2 w2 + . . . (2.109)

Clearly, if |z〉, |w〉 have only real components, 〈z|w〉 reduces to z ·w. The Hermitian
scalar product is not necessarily symmetrical: 〈z|w〉 is not, in general, equal to 〈w|z〉.
Instead:

〈v|u〉 = 〈u|v〉∗. (2.110)

The norm or length |u| of a vector |u〉 is defined by a formula analogous to Eqs. (2.8)
and (2.9):

|u| = +√ 〈u|u〉. (2.111)

It is still, of course, a nonnegative real number. It is also easy to verify that |u| = 0,
if and only if |u〉 = |0〉. The Hermitian scalar product 〈u|v〉 is linear with respect to
|v〉, but antilinear with respect to 〈u|, thus,

〈u|cv〉 = c〈u|v〉, 〈cu|v〉 = c∗〈u|v〉, (2.112)

and
〈u|v + w〉 = 〈u|v〉 + 〈u|w〉. (2.113)

The notion of orthonormal basis can be extended. The vectors u, v form an ortho-
normal basis in C

2 if they are of unit length and orthogonal:

〈u|u〉 = 〈v|v〉 = 1, 〈u|v〉 = 0. (2.114)
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The definition of the scalar product, as integrals over complex-valued functions,
must be generalized from the form of Eq. (2.83). Using Dirac notation and extending
the integration over the whole real axis, we now write

〈 f |g〉 =
∫ +∞

−∞
f (x)∗g(x) dx . (2.115)

If | f | and |g| are finite, the scalar product 〈 f |g〉 is also finite, as implied by the
Cauchy–Schwarz inequality:

| f | |g| ≥ |〈 f |g〉|. (2.116)

In our toy Hilbert space R
2, the Cauchy–Schwarz inequality follows simply from

| cosφ| ≤ 1 in Eq. (2.10).
The generalization of matrices to the complex field is straightforward. All the

matrix formulas in Sect. 2.2 remain valid, with the real numbers replaced by complex
numbers. A very important operation for complex n × n matrices, leading to the
definition of the adjoint matrix, can defined as follows:

Definition 2.2 Given an operator A, represented in an orthonormal basis by the
matrix Ai j , the operator whose matrix is obtained by taking the complex conjugate
and interchanging rows and columns is called the adjoint of A, denoted by A†. Thus:

A†
i j = A∗

j i (i, j = 1, 2, . . . , n). (2.117)

The adjoint has the following properties:

(AB)† = B†A†,

(A†)† = A,

(A + B)† = A† + B†,

(cA)† = c∗A†,

(2.118)

where c is a complex number. The identity is the operator I such that I |x〉 = |x〉
for any |x〉. The matrix representing the identity has all elements along the main
diagonal equal to 1, and 0 everywhere else (the same as for real matrices).

The adjoint operation allows us to move an operator from one side of a scalar
product to the other, by virtue of the following Theorem:

Theorem 2.2 For every pair of vectors |x〉, |y〉 and every operator A the following
relations hold:

〈y|Ax〉 = 〈A†y| x〉, 〈Ay|x〉 = 〈y|A†x〉. (2.119)
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The proof of the first equality follows from the sequence of operations:

〈A†y|x〉 = 〈x |A†y〉∗ =
(∑

k

x∗
k (A

†y)k

)∗
=

(∑
k

x∗
k

∑
i

A†
ki yi

)∗
=

(∑
k

∑
i

x∗
k A

∗
ik yi

)∗
=

∑
i,k

xk Aik y
∗
i = 〈y|Ax〉. (2.120)

The second equality follows from the first, since (A†)† = A. The relations (2.119)
are easy to verify explicitly for the case n = 2.

Recall that rotations leave the lengths of real vectors invariant. What are the
corresponding linear operators that leave the lengths of complex vectors in C

2 or C
n

invariant? The answer is unitary operators.

Definition 2.3 An operator U is called unitary if

U U † = U †U = I, (2.121)

where, as usual, I denotes the identity.

A unitary operation leaves invariant the scalar product of two vectors |x〉, |y〉, since,
using (2.119), we have:

〈Ux |Uy〉 = 〈x |U †Uy〉 = 〈x |I y〉 = 〈x |y〉. (2.122)

Thus the norm (or length) of a vector is left invariant by a unitary transformation.
The correct generalization of ordinary rotations of vectors (which are generated by
orthogonal matrices) are thus unitary operations on complex vectors. Our tentative
postulate was that dynamical variables are represented by symmetric matrices; more
generally, these should be Hermitian matrices. A matrix Hi j (i, j = 1, 2 . . . , n) is
Hermitian (or self-adjoint) if H = H †, so that its elements are related by

Hi j = H∗
j i (i, j = 1, 2, . . . , n). (2.123)

For example, if n = 2, H11 and H22 are real, and H21 = H∗
12. Thus, the matrix

∣∣∣∣
∣∣∣∣

3 1 + i
1 − i 4

∣∣∣∣
∣∣∣∣ (2.124)

is Hermitian. If H is both Hermitian and real, it is again simply a symmetric matrix.
Hermitian matrices admit an orthonormal basis of eigenvectors, just like symmet-

ric matrices in the real case. Furthermore, the eigenvalues of an Hermitian matrix H
are real; indeed, taking the scalar product of both sides of the equation

H |x〉 = λ|x〉 (2.125)
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by the eigenvector |x〉 we obtain:

〈x |H |x〉 = λ〈x |x〉, λ = 〈x |H |x〉
〈x |x〉 . (2.126)

and by (2.110), we have:

〈x |H |x〉∗ = 〈x |H †|x〉 = 〈x |H |x〉. (2.127)

Thus, both numerator and denominator of (2.126) are real, therefore the eigenvalue

λ must be real. The matrix (2.124) has the eigenvectors |u〉 =
(
1+i√
3
,− 1√

3

)
, |v〉 =(

1+i
2 , 1

)
, thus

H |u〉 = 2|u〉, H |v〉 = 5|v〉, 〈u|v〉 = 0. (2.128)

Two Hermitian matrices A, B admit a common basis of eigenvectors, if and only if
they commute, that is, if

[
A, B

] = 0 or A B = B A.We omit the simple proof of these
results for Hermitian matrices. We note that the fundamental interpretative postulate
of QM (Postulate 1) is generalized with the simply substitution of “Hermitian” for
“symmetric.”

Observables are represented in QM by Hermitian matrices (more precisely, linear
Hermitian operators), and states of a physical system by real or complex vectors. Of
course, the case of two component vectors or spinors is the simplest (see Chap. 4).
However, as noted above, the Hilbert space of realistic physical systems is usually
infinite dimensional.

2.7 Coordinates and Momenta in Quantum Mechanics

We have seen in Chap.1 that de Broglie’s formula associates a “matter wave” with
the rectilinear motion of a particle, with a wavelength λ = h/mv = h/p, where m
is the mass, v the velocity and p the momentum of the particle. Accordingly, let us
consider a very general instance of wave motion propagating in the x-direction. At
a given instant of time, a periodic wave with wavelength λ might be represented by
a function of the form

ψ(x) = f

(
2πx

λ

)
, (2.129)

where f (θ) is most often a sinusoidal function such as sin θ , cos θ , e±iθ , or some
linear combination of these. Each of these is a periodic function, its value repeating
every time its argument increases by 2π . This happens when x increases by one
wavelength λ. The most useful form will turn out to be the complex exponential,
which is related to the sine and cosine by Euler’s formulaeiθ = cos θ + i sin θ . We

http://dx.doi.org/10.1007/978-3-319-58732-5_4
http://dx.doi.org/10.1007/978-3-319-58732-5_1
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consider the wavefunction
ψ(x) = ei2πx/λ, (2.130)

apart from an arbitrary multiplicative constant. The wavelength λ of this complex-
valued wavefunction can be replaced by h/p, where p is the particle momentum, in
accordance with the de Broglie formula. Thus,

ψ(x) = ei2πpx/h = eipx/�, (−∞ < x < ∞), (2.131)

where � ≡ h/2π . Since Planck’s constant occurs in most formulas with the denom-
inator 2π , this symbol, pronounced “aitch-bar,” was introduced by Dirac in 1930.

Now that we have a mathematical representation of a matter wave, we should
next try to find a “wave equation,” a differential equation which the wavefunction
satisfies. As a first step let us apply the operator D = d

dx to Eq. (2.131). We find

d

dx
ψ(x) = i p

�
ψ(x), (2.132)

which can be rearranged to

− i�
d

dx
ψ(x) = pψ(x). (2.133)

This can be recognized as an eigenvalue equation (see Eqs. 2.50 and 2.125) for the
x-component of momentum px :

pxψ(x) = pψ(x), (2.134)

with the momentum operator evidently given by

px = −i�
d

dx
. (2.135)

This, incidentally, confirms our earlier speculation that the operator D = d
dx is

proportional to the velocity v (hence themomentum p) of a particle. InDirac notation,
the eigenvalue equation can be written

px |ψ〉 = p |ψ〉. (2.136)

Evidently, an eigenvalue p = mv for a free particle, can be any real number:
−∞ < p < ∞. This is a continuous spectrum of eigenvalues, in contrast to the
energy levels of a bound atom or molecule, which was a distinguishing feature in
the early development of quantum theory. Actually, highly excited states of atoms or
molecules, in which ionization or dissociation has occurred, also show a continuum
of energy eigenvalues. The momentum eigenfunctions ψ(x) are complex-valued
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(except when p = 0). If ψp(x) = eipx/� and ψp′(x) = eip
′x/� represent eigenstates

with different eigenvalues, p and p′, respectively, then the corresponding eigen-
functions are orthogonal. This can be shown by an intuitive (although not entirely
mathematically rigorous) argument:

〈p|p′〉 =
∫ +∞

−∞
ψp(x)

∗ψp′(x) dx =
∫ +∞

−∞
ei(p

′−p)x/� dx =
∫ +∞

−∞

(
cos

[
(p′ − p)x/�

] + i sin
[
(p′ − p)x/�

])
dx = 0 (p′ �= p). (2.137)

In the last line, the infinite number of positive and negative contributions to the sine
or the cosine integrals cancel each other out to give a result of zero.

The Hilbert space L2(−∞,+∞) appropriate for QM is a set of complex valued
functions ψ(x) such that the following integral is finite:

∫ +∞

−∞
ψ(x)∗ψ(x) dx =

∫ +∞

−∞
|ψ(x)|2 dx < ∞. (2.138)

An apparent disaster occurs when we try to evaluate Eq. (2.138) using a momen-
tum eigenfunction (2.131). With ψ(x) = eipx/�, the complex conjugate is ψ(x)∗ =
e−i px/�. Thus ψ(x)∗ψ(x) = |ψ(x)|2 = 1 and

∫ +∞
−∞ 1 dx = ∞, violating the condi-

tion for a valid Hilbert space. There are several ways that we can talk our way out of
this difficulty.
(1) We might limit our consideration to quantum systems with bound states, for
which wavefunctions conforming to (2.138) can always be found. This could be
done, for example, by replacing the infinite domain −∞ < x < ∞ by a finite inter-
val −a ≤ x ≤ a. This excludes the free particle, Eq. (2.131), despite the fact that
this system has been so fundamental in deriving some essential results in QM.
(2) We recognize that for a system in a momentum eigenstate, the probability den-
sity function |ψ(x)|2 = 1 for all values of x , −∞ < x < ∞ (even beyond the
bounds of the known Universe!). This is in accord with the uncertainty principle,
since a precisely known momentum p implies a completely indefinite position x .
More realistically, a free particle should be described by a wavepacket, which is a
superposition of momentum eigenstates ψp(x) of the form

ψ(x) =
∫

φ(p)ψp(x) dp. (2.139)

Then the integral (2.138) converges, provided that
∫ |φ(p)|2 dp is finite.

(3) Hilbert space is redefined to accommodate continuous spectra and divergent
integrals. Dirac himself was aware that “the bra and ket vectors that we now use
form a more general space than a Hilbert space.” A modern extension, known as
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rigged Hilbert space4 has the desired structure (the term “rigged” here implies
“well-equipped and ready for action”). A “conventional” Hilbert space can accom-
modate a denumerably infinite number of basis vectors, labeled, for example, by
n = 1, 2, 3, . . . . But, in a rigged Hilbert space, the number of basis vectors can be
nondenumerably infinite, labeled, perhaps by indices with a continuum of allowed
values, such as ν, with −∞ < ν < ∞.

Fortunately, we can carry on, using naive conventional Hilbert space, knowing
that the mathematicians (however reluctantly) have us well covered regarding any
inconsistencies or complications. As an illustrative example, consider the scalar
product of eigenstates. For the discrete spectrum, we have

〈m|n〉 =
∫ +∞

−∞
ψm(x)∗ψn(x) dx = δm,n, (2.140)

where δm,n is the Kronecker delta, equal to 1 for m = n and 0 for m �= n. For
eigenstates belonging to a continuous spectrum, we can write

〈μ|ν〉 =
∫ +∞

−∞
ψμ(x)∗ψν(x) dx = δ(μ − ν). (2.141)

We have already seen that 〈μ|ν〉 = 0 for μ �= ν (Eq. (2.137)). We have also found
that 〈ν|ν〉 = ∞ for μ = ν. But Dirac here introduced a special kind of infinity, as
represented by the delta function, δ(μ − ν).

The Dirac delta function was intended as the continuum analog of the Kronecker
delta. It is, however, not a true function in the mathematical sense, but rather a
generalized function or distribution. The delta function was regarded with much
disdain bymathematicians, until a rigorous theorywas proposed byLaurent Schwartz
in 1950.5 It is defined as a hypothetical “function” such that δ(x −a) = 0, if x �= a,
and δ(x − a) = ∞, if x = a. However, the infinite value is somewhat special:
an integral over that singular point is presumed to equal 1. Intuitively, the delta
function can be pictured as the limit of a distribution with integrated area 1, of
infinitesimal width but very large height, centered around the point x = a. The
delta function is presumed to satisfy the integral relations:

∫ +∞
−∞ δ(x − a) dx = 1

and
∫ +∞
−∞ f (x)δ(x − a) dx = f (a). To physicists, the delta function is invaluable

for representing idealized objects such as point masses and point charges and for
constructing Green’s functions.

The eigenvalues and eigenvectors of the position operator q are rather tricky,
but, fortunately, rarely needed. A particle localized around a point x = a might be
represented by a delta function:ψ(x) = δ(x−a). The relation xδ(x−a) = aδ(x−a)

can then be interpreted as an eigenvalue equation xψ(x) = aψ(x). As a consequence

4R de la Madrid (2005), The role of the rigged Hilbert space in Quantum Mechanics, Eur J Phys
26:287–312.
5Schwartz L (1950–51) Théorie des distributions, Hermann, Paris. See also: Lighthill MJ (1958)
An Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press.
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of the uncertainty principle, a particle with an exactly known value of x , has a totally
undetermined value of px , the possible values being spread over −∞ < p < ∞.

The commutators of components of position and momentum are of central impor-
tance in the formalism of QM. Let us first evaluate

[
x, px

] = x px − px x , where
px = −i� d

dx . These operators have meaning only when applied to a function of x ,
say φ(x). Now,

[
x, px

]
φ(x) = x(−i�)

d

dx
φ(x) − (−i�)

d

dx

[
xφ(x)

] = i�
dx

dx
φ(x) = i�φ(x),

(2.142)
in which we have taken the derivative of a product xψ(x) and simplified by cance-
lation. Since the function φ(x) is arbitrary, we can abstract the operator relation

[
x, px

] = i�. (2.143)

Obvious analogs of Eq. (2.135) for the y- and z-components of momentum are

py = −i�
d

dy
, pz = −i�

d

dz
. (2.144)

It is then simple to derive the analogous commutation relations:

[y, py] = i�, [z, pz] = i�. (2.145)

Since x commuteswith pz , etc., and the different components of position commute
with one another, as do the different components of momentum, we can collect the
entire set of commutation relations in the following compact form:

[qi , q j ] = [pi , p j ] = 0, [qi , p j ] = i�δi, j , (2.146)

where i, j = 1, 2, 3 and q1 = x, p1 = px , etc.

2.8 Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle is a fundamental consequence of the noncom-
mutativity of position andmomentum operators. Let us consider the one-dimensional
case with x and px , which we write simply as p. The average, mean or expectation
variable of a dynamical variable A in a quantum state |Ψ 〉 is written

A = 〈Ψ |A|Ψ 〉. (2.147)

The mean square deviation from the mean is then given by
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(ΔA)2 = 〈Ψ |(A − A)2|Ψ 〉, (2.148)

whereΔA is the root mean square, which is designated as the uncertainty in A. Now
define two functions

f = (x − x)Ψ, and g = i(p − p)Ψ. (2.149)

We then find

〈 f | f 〉 = 〈(x − x)Ψ |(x − x)Ψ 〉 = 〈Ψ |(x − x)2|Ψ 〉 = (Δx)2, (2.150)

and, analogously,

〈g|g〉 = 〈i(p − p)Ψ |i(p − p)Ψ 〉 = 〈Ψ |(p − p)2|Ψ 〉 = (Δp)2. (2.151)

Next, let us evaluate:

〈 f |g〉 + 〈g| f 〉 = 〈Ψ |(x − x)i(p − p) − i(p − p)(x − x)|Ψ 〉. (2.152)

After some cancelation, we find

〈 f |g〉 + 〈g| f 〉 = i〈Ψ | [x, p] |Ψ 〉 = −�, (2.153)

recalling the commutation relation
[
x, p

] = i�. From the Cauchy–Schwarz inequal-
ity, Eq. (2.116), √〈 f | f 〉) √〈g|g〉) ≥ ∣∣〈 f |g〉∣∣. (2.154)

Finally, we arrive at the Heisenberg uncertainty principle:

Δx Δp ≥ �

2
. (2.155)

This implies that exact values of a position variable and its conjugate momentum
cannot be simultaneously known. Thus the trajectories of Bohr orbits are illusory:
quantum behavior is not deterministic with regard to classical variables.
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