
Chapter 2

Mathematical Modeling and Optimization

Abstract This chapter provides a primer on optimization and mathematical model-
ing. It does not provide a complete description of these topics. Instead, this chapter
provides enough background information to support reading the rest of the book. For
more discussion of optimization modeling techniques see, for example, Williams
[86]. Implementations of simple examples of models are shown to provide the reader
with a quick start to using Pyomo.

2.1 Mathematical Modeling

2.1.1 Overview

Modeling is a fundamental process in many aspects of scientific research, engineer-
ing, and business. Modeling involves the formulation of a simplified representation
of a system or real-world object. These simplifications allow structured represen-
tation of knowledge about the original system that facilitates the analysis of the
resulting model. Schichl [78] notes that models are used to

• Explain phenomena that arise in a system;
• Make predictions about future states of a system;
• Assess key factors that influence phenomena in a system;
• Identify extreme states in a system that might represent worst-case scenarios

or minimal cost plans; and
• Analyze trade-offs to support human decision makers.

Additionally, the structured aspect of a model’s representation facilitates commu-
nication of the knowledge associated with a model. For example, a key aspect of a
model is its level of detail, which reflects the system knowledge that is needed to
employ the model in an application.

Mathematics has always played a fundamental role in representing and formulat-
ing our knowledge. Mathematical modeling has become increasingly formal as new

15© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_2

16 2 Mathematical Modeling and Optimization

frameworks have emerged to express complex systems. The following mathematical
concepts are central to modern modeling activities:

• Variables: These represent unknown or changing parts of a model (e.g., which
decisions to take, or the characteristic of a system outcome).

• Parameters: These are symbolic representations for real-world data, which
might vary for different problem instances or scenarios.

• Relations: These are equations, inequalities, or other mathematical relation-
ships that define how different parts of a model are related to each other.

Optimization models are mathematical models that include functions that represent
goals or objectives for the system being modeled. Optimization models can be an-
alyzed to explore system trade-offs in order to find solutions that optimize system
objectives. Consequently, these models can be used for a wide range of scientific,
business, and engineering applications.

2.1.2 A Modeling Example

A Model, in the sense that we will use the word, represents items by abstracting
away some features. Everyone is familiar with physical models, such as model rail-
roads or model cars. Our interest is in mathematical models that use symbols to
represent aspects of a system or real-world object.

For example, a person might want to determine the best number of scoops of ice
cream to buy. We could use the symbol x to represent the number of scoops. We
might use c to represent the cost per scoop. So then we could model the total cost as
c times x, which we usually write as cx.

We might need a more sophisticated model of total cost if there are volume dis-
counts or surcharges for buying fractional scoops. Also, this model is probably not
valid for negative values of x. It is seldom possible to sell back ice cream for the
same price paid for it.

It is more complicated to provide a mathematical model of the happiness associ-
ated with scoops of ice cream on an ice cream cone. One approach is to use a scaled
measure of happiness. We will do that using the basic unit of the happiness asso-
ciated with one scoop of ice cream, which we call h. A simple model, then, would
be to say that the total happiness from x scoops of ice cream is h times x, which we
write as hx. For some people, that might be a pretty good approximation for values
of x between one-half and three, but there is almost no one who is 100 times as
happy to have 100 scoops of ice cream on their ice cream cone as they are to have
one scoop. For some people, the model of happiness for values of x between zero
and ten might be something like

h · (x− (x/5)2) .
Note that this model becomes negative when there are more than 25 scoops on the
cone, which might not be a good model for everyone.

2.1 Mathematical Modeling 17

It is common to want to model more than one thing at a time. For example,
you might be able to have scoops of ice cream and peanuts. Since there are multiple
things that can be purchased, we can represent the quantity purchased using a vector
x (i.e. the symbol x now represents a list). We refer to elements of the list using the
notation xi where the symbol i indexes the vector. For example, if we agree that
the first element is the number of scoops of ice cream, then this number could be
referenced using x1. For higher dimensions we use a tuple, such as i, j or (i, j) as
the index.

Let’s change c to be a vector of costs with the same indices as x (i.e., c1 is the
cost per scoop of ice cream and c2 is the cost per cup of peanuts). So now, we write
the total cost of ice cream and peanuts as

c1x1 + c2x2 =
2

∑
i=1

cixi.

Once again, this cost model is probably not valid for all possible values of all ele-
ments of x, but it might be good enough for some purposes.

Often, it is useful to refer to indices as being members of a set. For the example
just given, we could use the set {1,2} to write the total cost as

∑
i∈{1,2}

cixi.

but it would be more common to use a more abstract expression like

∑
i∈A

cixi

where the set A is understood to be the index set for c and x (and for our example
the set A would be {1,2}.)

In addition to summing over an index set, we might want to have conditions that
hold for all members of an index set. This is done simply by using a comma. For
example, if we want to require that none of the values of x can be negative, we would
write

xi ≥ 0, i ∈ A

and we read this line out loud as “x subscript i is greater than or equal to zero for all
i in A.”

There is no law of mathematics or even mathematical modeling that requires the
use of single letter symbols such as x and c or i. It would be perfectly okay for the set
A to be composed of a picture of an ice cream cone and a picture of a cup of peanuts,
but that is hard to work with in some settings. The set could also be {Scoops,Cups},
but that is not commonly done in books because it takes up too much space and
causes lines to overflow. Also, x could be replaced by something like Quantity. Long
names are, importantly, supported by modeling languages such as Pyomo, and it is
generally a good idea to use meaningful names when writing Pyomo models. Spaces
or dashes embedded in names often cause troubles and confusion, so underscores

18 2 Mathematical Modeling and Optimization

are often used in long names instead.

2.2 Optimization

The symbol x is often used as a variable in optimization modeling. It is sometimes
called a decision variable because we build optimization models to help make de-
cisions. This can sometimes cause a little confusion for people who are familiar
with modeling as practiced by statisticians. They often use the symbol x to refer to
data. Thus statisticians give values of x to the computer to have it compute statistics,
while optimization modelers give other data to the computer and ask the computer
to compute good values of x. Of course, symbols other than x can be used; however,
in text books and introductions x is often chosen.

Values such as cost (we used the symbol c) are referred to as data or parameters.
An optimization model can be described with undefined parameter values, but a spe-
cific instance that is optimized must have specific data values, which we sometimes
call instance data.

A model must have an objective to perform optimization, which is expressed
as an objective function. Optimal values of the decision variables result in the best
possible value of the objective function. It is important to note that we did not say
“the optimal values” because it is often the case that more than one set of variable
values result in the best possible value of the objective function. It is common to
write this function in a very abstract way, such as f (x). Whether the best is the
smallest or the largest possible value is determined by the sense of the optimization:
minimize or maximize.

For example, suppose that x is not a vector, but rather a scalar that denotes the
number of scoops of ice cream to buy. If we use the model of happiness given before,
then

f (x)≡ h · (x− (x/5)2) ,
where h is given as data. (It turns out not to matter what value of h is given for the
purpose of finding the x that maximizes happiness in this particular example.) The
optimization problem, as we have modeled it, is given as

max h · (x− (x/5)2) ,
but very careful authors would write

max
x

h · (x− (x/5)2)
to make it clear that x is the decision variable. In this case, there is only one best
value of x, which can be found using numerical optimization. The best value of x
turns out to be fractional, which means that it is not an integer number of scoops.
This model might not be considered useful for a typical ice cream shop, where the
number of scoops must be a non-negative integer. To specify this requirement, we

2.2 Optimization 19

add a constraint to the optimization model:

max
x

h · (x− (x/5)2)
s.t.

x ∈ non-negative integers

where “s.t.” is an abbreviation for either “subject to” or “such that.” Suppose that
the model is not being used in an ice cream shop, but rather at home, where the ice
cream is being served by the model user’s parent. If the parent is willing to make
partial scoops but not willing to go above two scoops, then the constraint

x ∈ non-negative integers

would be replaced with
0 ≤ x ≤ 2.

This is not a perfect model because really, not all fractional values of x would be
reasonable.

To illustrate the model aspects discussed so far, let us return to multiple products
described by an index set A , so x is a vector. Let us make use of the following
model of happiness for a product index i:

hi ·
(
xi − (xi/di)

2) ,
where h and d are both data vectors with the same index set as x. Further, let c be a
vector of costs and u be a vector of the most of any product that can be purchased.
Let us assume that all products can be purchased in fractional quantities for the mo-
ment. Finally, suppose there is a total budget given by b. The optimization problem
would be written as:

max
x ∑

i∈A

hi ·
(
xi − (xi/di)

2) (H)

s.t. ∑
i∈A

cixi ≤ b

0 ≤ xi ≤ ui, i ∈ A

Some modelers would express the last constraint separately:

max
x ∑

i∈A

hi ·
(
xi − (xi/di)

2) (H)

s.t. ∑
i∈A

cixi ≤ b

xi ≤ ui, i ∈ A

xi ≥ 0, i ∈ A

20 2 Mathematical Modeling and Optimization

It is common to put a short, abbreviated name of the model in parentheses on
the same line as the objective. The name (P) is very common, but we used (H) as a
mnemonic for “happiness.” The name (H) allows us to refer to this model later in
the chapter, where we show how to implement it in Pyomo and solve it.

2.3 Linear and Nonlinear Optimization Models

2.3.1 Definition

An expression in an optimization model is said to be linear if it is composed only
of sums of decision variables and/or decision variables multiplied by data. Thus,
a linear expression is an expression that is a non-constant, linear function of the
decision variables. Assume that x is a variable vector, c is a vector of data and
that both are indexed by A . Further assume that 2 and 3 are members of A . The
following are linear expressions:

∑i∈A cixi

∑i∈A xi
x2
c3x2 + c2x3
c3x2 + c2x3 +4

On the other hand, the following expressions are not linear: x2
i , x2x3 and cosine(x2).

Linear expressions often result in problems that can be solved with much less
computational effort than similar models with nonlinear expressions. Consequently,
many modelers make an effort to use linear expressions as much as possible, and
some modelers strive to use only linear expressions. Additionally, many models de-
velop linear approximations to nonlinear models in hopes of finding “good enough”
solutions to the original nonlinear model. In the context of nonlinear models, those
with nonlinear objective functions are typically easier to optimize than models with
nonlinear constraint expressions.

2.3.2 A Linear Approximation

We consider a simple way to linearize (H) to illustrate a linear optimization model.
We describe a version of (H) that does not have a squared objective, but that is
somewhat similar to (H).

For the moment, suppose that x is not an indexed list. We call x a scalar value.
The nonlinearities lie in the expression

h · (x− (x/5)2) ,

2.3 Linear and Nonlinear Optimization Models 21

and in (H) we generalize this to be of the form:

h · (x− (x/d)2) .
To simplify matters, let us require x to be non-negative and less than or equal to u.
We can form a linear expression that has the function value correctly computed at
the endpoints, namely zero and u. The linear function will connect these points with
a line. This expression is zero when x is zero, and it is h · (u− (u/d)2

)
when x=u.

The slope of the line between these two points is

h · (u− (u/d)2
)−0

u−0
= h · (1−u/d2) .

So a simple approximation for h · (x− (x/d)2
)

on the interval [0,u] is

h · (1−u/d2)x.

As can be seen in Figure 2.1, the linear approximation is quite good for the ice
cream example when h = 1, d = 5 and u = 5. In contrast, this simple method would
work very poorly if u = 25 for the same value of d.

Fig. 2.1: Plotting the quadratic happiness function (the thicker line) and the linear approximation
(the thin line). Both lines are drawn for h = 1, d = 5, and u = 5.

For illustrative purposes, to construct an expedient linear approximation to (H)
we replace the objective function with

max
x ∑

i∈A

hi ·
(
1−u/d2

i
)

xi (2.1)

22 2 Mathematical Modeling and Optimization

We say that this expression is linear because the decision variables are only multi-
plied by data, and summed. It is true that the parameter d is squared, but this is not
a decision variable. The numerical value of the entire expression

hi ·
(
1−ui/d2

i
)

is computed by Pyomo before the problem instance is passed to a solver, and the
task of the solver is to find values that are optimal for the decision variables.

2.4 Modeling with Pyomo

We now consider different strategies for formulating and optimizing algebraic opti-
mization models using Pyomo. Although a detailed explanation of Pyomo models is
deferred to Chapter 3, the following examples illustrate the use of Pyomo for model
(H).

2.4.1 An Abstract Formulation

An abstract mathematical formulation relies on unspecified parameter values. Since
model (H) is an abstract model, a natural way of expressing this model in Pyomo
is with Pyomo’s AbstractModel class. A Pyomo AbstractModel defers ini-
tialization of model components until a model instance is created using set and
parameter data. Thus, this modeling approach closely reflects the character of an
abstract model.

Consider the following abstract Pyomo model for model (H):
AbstractH.py - Implement model (H)
from pyomo.environ import *

model = AbstractModel(name="(H)")

model.A = Set()

model.h = Param(model.A)
model.d = Param(model.A)
model.c = Param(model.A)
model.b = Param()
model.u = Param(model.A)

def xbounds_rule(model, i):
return (0, model.u[i])

model.x = Var(model.A, bounds=xbounds_rule)

def obj_rule(model):
return sum(model.h[i] * \

2.4 Modeling with Pyomo 23

(model.x[i] - (model.x[i]/model.d[i])**2) \
for i in model.A)

model.z = Objective(rule=obj_rule, sense=maximize)

def budget_rule(model):
return sum(model.c[i]*model.x[i] for i in model.A) <= \

model.b
model.budgetconstr = Constraint(rule=budget_rule)

Given particular data for the parameters in this model, then one might be inter-
ested in finding an optimal assignment of values to model.x. There are numer-
ous ways to provide data to Pyomo for an abstract model. Here is data (saved in
AbstractH.dat) that defines a suitable happiness objective for one of the au-
thors of this book:

Pyomo data file for AbstractH.py
set A := I_C_Scoops Peanuts ;
param h := I_C_Scoops 1 Peanuts 0.1 ;
param d :=
I_C_Scoops 5
Peanuts 27 ;

param c := I_C_Scoops 3.14 Peanuts 0.2718 ;
param b := 12 ;
param u := I_C_Scoops 100 Peanuts 40.6 ;

This is a Pyomo data file, which includes set and param commands that closely
resemble AMPL data commands.

NOTE: The backslash character at the end of a line tells Python that the line
continues; we use it to help make the lines fit on a book page. In this particular
case it is not strictly required because the line is breaking inside a parenthetical
grouping.

2.4.2 A Concrete Formulation

A concrete Pyomo model initializes components as they are constructed. This allows
modelers to easily make use of native Python data structures when defining a model
instance. There are many ways to implement our model as a concrete model, and
we consider one that uses Python lists and dictionaries.

24 2 Mathematical Modeling and Optimization

ConcreteH.py - Implement a particular instance of (H)
from pyomo.environ import *

model = ConcreteModel(name = "(H)")

A = [’I_C_Scoops’, ’Peanuts’]
h = {’I_C_Scoops’: 1, ’Peanuts’: 0.1}
d = {’I_C_Scoops’: 5, ’Peanuts’: 27}
c = {’I_C_Scoops’: 3.14, ’Peanuts’: 0.2718}
b = 12
u = {’I_C_Scoops’: 100, ’Peanuts’: 40.6}

def x_bounds(m, i):
return (0,u[i])

model.x = Var(A, bounds=x_bounds)

def obj_rule(model):
return sum(h[i] * (model.x[i] - (model.x[i]/d[i])**2)

for i in A)
model.z = Objective(rule=obj_rule, sense=maximize)

model.budgetconstr = \
Constraint(expr = sum(c[i]*model.x[i] for i in A) <= b)

Note that in the budget constr, we define the constraint directly with the expr
keyword argument, however, a construction rule could also be used. Also note that
the lines,

A = [’I_C_Scoops’, ’Peanuts’]
h = {’I_C_Scoops’: 1, ’Peanuts’: 0.1}
d = {’I_C_Scoops’: 5, ’Peanuts’: 27}
c = {’I_C_Scoops’: 3.14, ’Peanuts’: 0.2718}
b = 12
u = {’I_C_Scoops’: 100, ’Peanuts’: 40.6}

could have been placed in a separate Python file and loaded with an import com-
mand. For example, if the data was in mydata.py, we could have placed the fol-
lowing line near the top of the file

from mydata import *

More details concerning AbstractModel and ConcreteModel are given in
the next two chapters.

2.4.3 Linear Version

If we want to modify the abstract model given on page 22 to use expression (2.1),
we would change the objective function expression rule as follows:

2.4 Modeling with Pyomo 25

AbstractHLinear.py - A simple linear version of (H)
from pyomo.environ import *

model = AbstractModel(name="Simple Linear (H)")

model.A = Set()

model.h = Param(model.A)
model.d = Param(model.A)
model.c = Param(model.A)
model.b = Param()
model.u = Param(model.A)

def xbounds_rule(model, i):
return (0, model.u[i])

model.x = Var(model.A, bounds=xbounds_rule)

def obj_rule(model):
return sum(model.h[i] * \

(1 - model.u[i]/model.d[i]**2) * model.x[i] \
for i in model.A)

model.z = Objective(rule=obj_rule, sense=maximize)

def budget_rule(model):
return summation(model.c, model.x) <= model.b

model.budgetconstr = Constraint(rule=budget_rule)

Similarly, the modified concrete Pyomo model uses the same expression, as
shown here:

ConcreteHLinear.py - Linear (H)
from pyomo.environ import *

model = ConcreteModel(name="Linear (H)")

A = [’I_C_Scoops’, ’Peanuts’]
h = {’I_C_Scoops’: 1, ’Peanuts’: 0.1}
d = {’I_C_Scoops’: 5, ’Peanuts’: 27}
c = {’I_C_Scoops’: 3.14, ’Peanuts’: 0.2718}
b = 12
u = {’I_C_Scoops’: 100, ’Peanuts’: 40.6}

def x_bounds(m, i):
return (0,u[i])

model.x = Var(A, bounds=x_bounds)

def obj_rule(model):
return sum(h[i]*(1 - u[i]/d[i]**2) * model.x[i] \

for i in A)
model.z = Objective(rule=obj_rule, sense=maximize)

model.budgetconstr = \
Constraint(expr = sum(c[i]*model.x[i] for i in A) <= b)

26 2 Mathematical Modeling and Optimization

2.5 Solving the Pyomo Model

Pyomo provides automated methods to (1) combine the model and data, (2) send
the resulting model instance to a solver, and (3) recover the results for display and
further use. Pyomo does not, itself, solve optimization problem instances. They are
always passed to a solver of some sort.

2.5.1 Solvers

Pyomo can be installed without any solvers. For example, Pyomo can simply write
out problem instances into files that are suitable as direct input to a solver. This use
of Pyomo might be necessary if the solver is run separately on a different computer.
Typically, however, a solver should be installed and accessible to Pyomo, and most
of the examples in this book make this assumption.

Recall that the objective in (H) is not a linear function of the variable, x, and that
the budget constraint is linear. Although many solvers can solve an instance with a
quadratic objective and linear constraints, some solvers cannot. If the only solver on
your computer is limited to linear problems, then you would need to approximate
(H) with a linear model.

2.5.2 The pyomo Command

The pyomo command provides a command-line interface for solving Pyomo mod-
els. To use the pyomo command, the user must be in a terminal window, but not in
a Python interpreter. To verify that pyomo is properly installed, run the command

pyomo --version

The version number of Pyomo should be displayed without error messages. The
command

pyomo --help

displays some high level help on the terminal. Note that there are two dashes in
--version and --help.

We assume that you have the solver glpk properly installed, which can be veri-
fied by running the command

glpsol --help

in your terminal. If the model file ConcreteHLinear.py is in the current direc-
tory, then the following command will run glpk to find a solution to the problem:

pyomo solve --solver=glpk ConcreteHLinear.py

2.5 Solving the Pyomo Model 27

If you have some other solver that you want to use, substitute its name for glpk.
Note that there are two dashes in --solver. The solve subcommand displays
information about the time required for each step in the optimization process as well
as a little bit of information about the final solution. Information about the values of
the decisions variables is put in the file results.json (or in results.yml if
the Python pyyaml package is installed).

A data file is specified to use the solve subcommand with an abstract model:
pyomo solve --solver=glpk AbstractHLinear.py AbstractH.dat

Many other solvers can be used with Pyomo. For example, if the Gurobi solver is
installed, then the following command can be used to solve the original, quadratic
implementation of (H):

pyomo solve --solver=gurobi AbstractH.py AbstractH.dat

Also note that the solution can be printed to the screen with the --summary option
pyomo solve --solver=glpk --summary ConcreteHLinear.py

2.5.3 Python Scripts

An alternative to using the pyomo command is to add additional Python commands
in the model file to explicitly optimize the model. Such a Python script is then ex-
ecuted using Python from the command line or within a development environment
like Spyder. A script defining a concrete model can easily be solved by adding the
following lines to the bottom:

opt = SolverFactory(’glpk’)

results = opt.solve(instance) # solves and updates instance

instance.display()

If the resulting file is called ConcHLinScript.py, then it can be run from the
terminal with the command line:

python ConcHLinScript.py

Similarly, the following lines can be used to optimize an abstract model:
opt = SolverFactory(’glpk’)

instance = model.create_instance("AbstractH.dat")
results = opt.solve(instance) # solves and updates instance

instance.display()

For abstract models that rely on external data, the call to the create instance
method must specify the data source, as in

instance = model.create_instance("AbstractH.dat")

http://www.springer.com/978-3-319-58819-3

	Chapter 2 Mathematical Modeling and Optimization
	2.1 Mathematical Modeling
	2.1.1 Overview
	2.1.2 A Modeling Example

	2.2 Optimization
	2.3 Linear and Nonlinear Optimization Models
	2.3.1 Definition
	2.3.2 A Linear Approximation

	2.4 Modeling with Pyomo
	2.4.1 An Abstract Formulation
	2.4.2 A Concrete Formulation
	2.4.3 Linear Version

	2.5 Solving the Pyomo Model
	2.5.1 Solvers
	2.5.2 The pyomo Command
	2.5.3 Python Scripts

