2

Agile and UML-Based Methodology

As useful modeling language must be embedded in a methodology. This
chapter presents characteristics of agile methods, in particular those of the
process of Extreme Programming (XP) [Bec04, RumO01]. Using these character-
istics and further elements, the chapter introduces a proposal for an agile

The most valuable insights are the methods.
Friedrich Wilhelm Nietzsche

methodology based on UML.

2.1
2.2
2.3
24
2.5

The Software Engineering Portfolio................... 11
Extreme Programming (XP)........................... 13
Selected Development Practices 19
Agile UML-Based Approach.......................... 24
SUMMAIY . .viiiiiiiiiiiii ittt ittt 30

© Springer International Publishing AG 2017
B. Rumpe, Agile Modeling with UML,
DOI 10.1007/978-3-319-58862-9_2

10 2 Agile and UML-Based Methodology

For many years now, the improvements in Software Engineering have been
responsible for the continual increases in efficiency in software development
projects. These days, software has to be created with a high level of qual-
ity with increasingly fewer personnel resources in increasingly shorter time-
frames. Processes such as the Rational Unified Process (RUP) [Kru03] or the
V-Modell XT [HHO8] are more suitable for large projects with a lot of team
members. For smaller projects, however, these processes are overloaded with
activities that are not entirely essential for the end result. Consequently, the
processes are too inflexible to be able to respond to the rapidly changing
environment (technology, requirements, competing products) of a software
development project.

A relatively new group of processes has arisen under the common label of
“agile processes”. These new processes are characterized primarily by flex-
ibility and quick feedback. They concentrate on the main work results and
focus on the people involved in the project—in particular, customers.

The Standish Report [Grol5] describes how significant causes of project
failure can be found in poor project management: there is insufficient com-
munication; too much, too little, or incorrect documentation; risks are not
counteracted in time; and feedback is requested from users too late.

It is the human element in particular—the communication within the
project and the cooperation amongst the developers and between the de-
velopers and the users—that is seen as the main cause of failure for software
development projects. [Coc06] also states that projects rarely fail for techni-
cal reasons. On the one hand, this indicates that the developers have a good
command of even innovative technologies; but on the other hand, this claim
must be questioned to some extent at least. If the technology used causes
difficulties, these problems often disrupt the communication between team
members. As the project continues, these problems in communication come
to the fore for emotional reasons and are ultimately remembered as “per-
ceived” reasons for the failure of the project.

Because use only a reduced set of appropriate languages and tools is used
this generation of processes can be regarded as lightweight. The more com-
pact the language and the better the analysis and generation tools, the less
redundancy is necessary. In addition, the efficiency of the developers is im-
proved by reducing additional efforts and expenses for management and
documentation.

Today, Software Engineering offers an extensive portfolio of approaches,
principles, development practices, tools, and notations that we can use to de-
velop software systems in various forms, sizes, and levels of quality. These
elements of the portfolio complement each other to some extent, but can also
be used as alternatives to one another, which means that there is a wide
range of selection options available for managing, controlling, and execut-
ing a project.

This chapter looks firstly at the current status of the Software Engineering
portfolio. Section 2.2 discusses “Extreme Programming” (XP) and Section 2.3

2.1 The Software Engineering Portfolio 11

presents three essential practices from XP. Section 2.4 contains a sketch for
a method that is suitable as a reference for the use of UML/P and the tech-
niques discussed in detail in this book.

Chapter 3 provides a compact overview of the Unified Modeling Lan-
guage profile UML/P. This profile can be used for the method proposed
here and is supported, e.g., in [Sch12] with a suitable tool. Like UML itself,
UML/P is largely not method-specific. This means that it is possible and even
helpful to use UML/P in other methods. However, as UML/P focuses on the
ability to generate code and tests, it is particularly suitable for agile methods.

2.1 The Software Engineering Portfolio

[AMB*04] and [BDA99] attempt to consolidate the knowledge about Soft-
ware Engineering that has built up over more than 40 years into a “Software
Engineering Body of Knowledge” (SWEBOK). In the SWEBOK, concept for-
mations are standardized, the main core elements of Software Engineering
are presented as an engineering discipline. The goal is to establish a generally
accepted consensus about the content and concepts of Software Engineering.

Some of the terminology used for software development processes which
is significant for our deliberations is shown in Fig. 2.1.

Experience gained from the execution of software development projects
in recent years clearly shows that there cannot be one, unique process for soft-
ware development: Projects strongly differ in importance, size, area of appli-
cation, and project environment. Instead, efforts are being made to compile
a collection of concepts, best practices, and tools that allow project-specific
requirements to be taken into account in an individual process. The level of
detail and the precision of the documents, milestones, and results to be deliv-
ered are defined dependent on the size of the project and the desired quality
of the results in each case. Existing process descriptions, which can be viewed
as templates, can be helpful. However, project-specific adjustments are con-
sidered necessary in most cases. Therefore, it is useful for those involved in
a project to be familiar with as many approaches from the current portfolio
as possible.

The 1990s saw a strong trend towards complete and therefore rather bu-
reaucratic software development processes. The agile methods of the 2000s
have broken away from this trend. Two factors enabled this change of direc-
tion: firstly, the significantly increased understanding of the tasks involved
in developing complex software systems; and secondly, the availability of
improved programming languages, compilers, and a number of other devel-
opment tools. Today, it is almost as efficient to implement a GUI immediately
as it is to specify the GUI The specification can therefore be replaced by a
prototype which the user can try out and which can be reused in the real-
ization of the final product. The trend towards reducing the level of required

12 2 Agile and UML-Based Methodology

Development method: A development method (synonym process model) describes
the procedure “for executing software creation in a project” [Pae00]. We can
differentiate between a technical, a social, and an organizational development
method.

Software development process: This term is occasionally used as a synonym for
“development method” but is often understood as a more detailed form. Thus,
[Som10] defines a process as a set of activities and results used to create a soft-
ware product. In most cases, the chronological sequence or the dependencies of
the activities are also defined.

Development task: A process is divided into a series of development tasks. Each
task delivers certain results in the form of artifacts. The team members partici-
pating in the project perform activities in order to complete these tasks.

Principle: Principles are fundamentals on which action is based. Principles are gen-
erally valid, abstract, and as general as possible in nature. They form a theoreti-
cal basis. Principles are derived from experience and findings (see [Bal00]).

Best practices: This term describes successfully tested development practices in devel-
opment processes. A development practice can be perceived as a specific, opera-
tionalized process pattern that implements a general principle (see RUP [Kru03]
or XP [Bec04]).

Artifact: Development results are represented with a specific form of notation—for
example, natural language, UML, or a programming language. The documents
of these languages are called artifacts and examples include requirements analy-
ses, models, code, review results, or a glossary. An artifact can have a hierarchi-
cal structure.

Transformation: Developing a new artifact and improving a version of an exist-
ing artifact can both be understood as transformations. The development or im-
provement can be automated or manual. Ultimately, almost all activities can be
seen as transformations of the set of given artifacts in a project.

Fig. 2.1. Terminology definitions for the software development process

developer capacities is intensified by the fact that having fewer people in-
volved in a project also reduces the level of organizational overhead, which
in turn can further reduce the workload.

When we use agile methods, the increased emphasis on the individual
capabilities and needs of the developers and customers involved in a project
allows us to reduce project bureaucracy even further in favor of greater in-
dividual responsibility. This focus on the team can also be observed in other
areas of economic life—for example, where flat management hierarchies are
used. It is based on the assumption that mature and motivated project par-
ticipants will demonstrate responsibility and courage by taking the initiative
when the project environment gives them the opportunity to do so.

2.2 Extreme Programming (XP) 13

2.2 Extreme Programming (XP)

Extreme Programming (XP) is an “agile” software development method. The
main elements of this method are described in [Bec04]. Although XP as an
approach was defined and refined in, for example, software development
projects at a Swiss bank, its name already indicates a strong influence by the
software development culture of North America, which is defined by prag-
matism. Despite its given name, XP is no hacker technology; rather, it has
some very detailed, elaborate methodological aspects which have to be ap-
plied rigorously. These aspects allow its supporters to postulate that XP can
be used to create high-quality software with relatively low effort, within bud-
get, and to the satisfaction of the customers. Statistically meaningful studies
of XP projects are more than mere anecdotes [DD08, RS02, RS01].

XP is rather popular in practice. Many books have already been written
about XP [Bec04, JAHO00, BF0O, LRW02] discussing different aspects of XP
in detail, as well as the current levels of knowledge about this methodol-
ogy or illustrate case studies of projects that have already been conducted
[NMO1]. [Wak02] and [AMO1] contain particular practical aids for imple-
menting XP, [Woy08] looks at cultural aspects, and [BFO0] discusses planning
in XP projects.

[EHO00a] and [EHO1] offer a critical description of XP with an explicit dis-
cussion of its weaknesses. Amongst other things, these works criticize the
lack of use of modeling techniques such as UML and draw a critical com-
parison with Catalysis [DW98]. A dialectic discussion of the advantages and
disadvantages of Extreme Programming can be found in [KWO02]. It high-
lights, for example, the necessity of a disciplined approach, as well as the
strong and, compared to classic approaches, significantly modified demands
placed on the team leader and the coach in particular.

Important elements of XP are presented and discussed below in accor-
dance with the introductions given in [Bec04] and [RumO01]. Further topics in
literature now treat XP in parallel with other methods [Han10, Leh07, Stel0,
HRS09] and thus support a portfolio of agile techniques. Alternatively, they
adapt agile methods for distributed teams [Eck09] or cover the migration of
companies to agile methods [Eck11].

Overview of XP

XP is a lightweight method of software development. It dispenses with the
need for a number of elements from classic software development in order
to allow faster and more efficient coding. The potential deficits this causes
for quality management are compensated for by a stronger weighting for
other concepts (in particular, the test process). XP consists of a larger number
of concepts. Within the scope of this overview, we will cover only the most
important of these.

14 2 Agile and UML-Based Methodology

XP tries explicitly not to use new methodological concepts or method-
ological concepts that have not yet been tested to any great extent. Instead, it
integrates proven techniques into a process model which focuses on the es-
sentials and dispenses with the need for organizational ballast as far as pos-
sible. Since the ultimate goal of software development is source code, this is
what XP focuses on from the very beginning. Any additional documentation
is considered to be ballast that should be avoided. Creating documentation
takes a lot of effort, and the documentation is often much more erroneous
than the code itself because it cannot usually be analyzed and tested auto-
matically to a satisfactory extent. In practice, customers frequently present
new or modified requirements; documentation reduces the flexibility of the
evolution and adaptation of the system as a quick response to these new or
modified requirements. Therefore, almost no documentation is created in XP
projects (with the exception of the code and the tests). To compensate for
this, good comments in the source code based on coding standards and an
extensive test suite are very important.

The primary goal of XP is the efficient development of high-quality soft-
ware on time and within budget. The mechanisms used to do this are il-
lustrated by the values, the principles, the basic activities, and the development
practices implemented in the activities shown in the pyramid in Fig. 2.2.

Extreme Programming

’ Simp icity Communication Values
‘ Feedback Courage
Quick Simp icit ncrementa Support Good qua ity Es;e/{f/b/
feedback imp icity changes modifiabi ity resuts principles
~) Targeted Open SU,gp/gmen tary
‘ Lear to teach ‘LOW eve ba ast P ay towin experiments communication | principles
Use the instincts Accept Adapt Keep nta Honest
of the team responsibi ity apt process investments ow measurements
‘ Simu ation game Metaphor Pair programming Testing Refactoring ’ C%T\,T:rr;r:;i;de
’ Sma re eases %‘zgg?;%: Max 40 hours/week | Customer avai abe stggg:r%s Simp e design

Development practices

Fig. 2.2. Structure of Extreme Programming

Success Factors of XP

Now that XP has been in use for some years, we can clearly identify some of
the major factors for the success of XP projects:

o The team is motivated and the working environment is suitable for XP.
This means, for example, that working places are set up for pair program-

2.2 Extreme Programming (XP) 15

ming and the developers sit in close proximity to one another and to the
customer.

o The customer is actively involved in the project and is available to answer
questions. The study [RS502] showed that this has to be rated as one of the
most critical success factors for XP projects.

o Theimportance of tests at all levels becomes clear as soon as there are any
changes, new developers join the team, or the system reaches a certain
size which means that manual testing can no longer be performed.

o The result of the drive for simplicity, which is a topic that is being dis-
cussed in all domains, means that documentation is omitted. Equally, the
design is as simple as possible. These factors allow a significant reduction
in the workload.

o The lack of system specifications and the presence of a customer who can
be included in negotiations about functionality during the course of the
project means that the customer is integrated in the project more inten-
sively. This has two effects: on the one hand, it allows a fast response to
changing customer wishes. On the other hand, it also allows the project
to influence customer wishes. The project success thus also becomes a
social agreement between the customer and the team of developers and
not solely an objectively tested achievement of objectives based on docu-
ments.

This last aspect in particular corresponds to the XP philosophy of less
control and a greater demand for individual responsibility and commitment.
In a world in which requirements are constantly changing, this could lead to
a more satisfactory result for everyone involved in the project than is possible
with fixed system specifications.

Limits to the Applicability of XP

As far as project documentation and the integration of customers are con-
cerned, XP is indeed revolutionary. Accordingly, there are a number of con-
straints and requirements that apply to the project size and project environ-
ment. These are discussed in various works, including [Bec04], [TFR02], and
[Boe02]. XP is particularly suitable for projects with up to ten team members
[Bec04] but it is evidently a problem to scale XP for large projects, as dis-
cussed in [JRO1], for example. XP is simply one more approach in the Soft-
ware Engineering portfolio—just like many other techniques, it can only be
used under certain premises.

The basic assumptions, techniques, and concepts of XP polarize opinions.
On the one hand, some programmers believe that XP elevates hacking to the
status of an approach; on the other hand, XP is not taken entirely seriously
because it ignores a lot of development processes that have been compiled
over earlier decades. In fact, both arguments are only correct to a limited ex-
tent. On the one hand, it is true that hackers are more attracted to an XP-type

16 2 Agile and UML-Based Methodology

approach than to an approach according to RUP. On the other hand, when
they look more closely, many software developers will recognize develop-
ment practices that are already established. Furthermore, the XP approach is
very strict and requires discipline for implementation.

It is certainly correct that XP is a lightweight software development
method which is positioned explicitly as a counterweight to heavyweight
methods such as RUP [Kru03] or V-Modell XT [HHO8]. Significant differ-
ences in XP include firstly, the fact that it concentrates solely on code as a
result, and secondly, the integration of the needs of the project participants.
However, the most interesting difference is the increased capability of XP
to respond to changes in the project environment or the user requirements
flexibly. This is why XP belongs to the group of “agile methods”.

The Costs of Fixing Bugs in XP Projects

One of the fundamental assumptions in XP questions important findings
in Software Engineering. Previously, the assumption was that the costs for
fixing errors or for implementing modifications increase exponentially over
time, as described in [Boe81]. However, the assumption for XP is that these
costs flatten out over the course of the project. Fig. 2.3 shows these two cost
curves.

Costs of Costs of

bug fixing bug fixing
and changes and changes
In a conventional process In XP

model defined by a
monolithic structure
and approach

process model

Project progress Project progress

Requirements Design Testing terations
Ana ysis mpem Production

(According to [Bec99])

Fig. 2.3. Bug-fixing costs over the course of a project

In XP, the assumption is that the costs of modifications no longer increase
dramatically over time [Bec04, Chapter 5]. There is no real empirical evidence
for this assumption; however, it does have significant implications for the ap-
plicability of XP. If we assume that the cost curve can be flattened out with
XP, then it is actually no longer essential to develop an initial architecture
which is largely correct and which can be extended for all future develop-
ments. The entire profitability of the XP approach is therefore based on this
assumption.

2.2 Extreme Programming (XP) 17

However, there are indicators that support at least a certain amount of
flattening out of the cost curve in XP. Defects can be eliminated more quickly
and more extensively by considering the following aspects, all of which are
reflected in coding standards: using better languages such as Java, using bet-
ter web and database technologies, and improving development practices.
The use of better tools and development environments also helps in elimi-
nating defects more effectively. Due to the common code ownership, even
defects that are not localized in one artefact can be eliminated without the
need for a series of planning and discussion meetings. The waiving of doc-
umentation removes the necessity of keeping any documents created con-
sistent. On the contrary, with XP we have the effort and expense of updating
automated tests. However, the fact that the tests are automated offers the sig-
nificant advantage that tests which are no longer correct can be recognized
efficiently—compared to the expensive and time-consuming proofreading of
written documentation.

One of the main indications of a reduced cost curve, however, is an ap-
proach that uses small iterations. Errors and defects that can be localized
in one iteration only have a local effect and remain within the iteration. In
the subsequent iterations the effect is limited, meaning that only a slow in-
crease in bug-fixing costs can then be expected there. The iterative approach,
possibly coupled with a decomposition of the system into subsystems, may
therefore produce the cost curve presented in Fig. 2.4. This is the cost curve
that we saw in the auction project, for example.!

Costs of

bug fixing
and changes Development phase
(usually one iteration)
/

Phase of the Saturation

development "
of dependent phase
functionality
n n+1 n+2 n+3 n+4 n+5 Project progress

in iterations

Fig. 2.4. Bug-fixing costs in iterative projects

Depending on whether the error can be localized within one part of the
system, a certain increase in bug-fixing costs can arise in the causal and im-
mediately subsequent iterations. In later iterations, it is only the costs of iden-
tifying the defect and its source that should increase. For defects in the archi-
tecture, however, which by their nature affect many parts of the system, the
saturation occurs very late and at a high level. It is therefore generally worth
investing a certain amount of initial expense in modeling the architecture.

! However, there is no statistically valid numerical data for this.

18 2 Agile and UML-Based Methodology

Hence, even though certain arguments support the achievable cost reduc-
tion at least to some extent, this statement must first be proven with numeri-
cal data obtained by examining a sufficient number of XP projects.

However, we can say that one of the advantages of XP is that, as a result of
the development of automated tests, continuous integration, pair program-
ming, short iteration cycles, and permanent feedback with the customer, the
probability of finding errors at an early stage has increased.

Relationship between XP and CMM

In the article [Pau01], one of the authors of the Capability Maturity Model
(CMM) asserts that, rather than being incompatible contradictions, XP and
the software CMM [PWC*95] actually complement each other. Accordingly,
XP has good development practices that satisfy core requirements of CMM.
For many of the “key process areas” (KPA) demanded by CMM for the five
CMM levels, XP offers practices which, although to a certain extent uncon-
ventional, are well-suited to the project area covered by the XP approach.
These practices address the goals of CMM. The article [Pau01] breaks down
the support provided by XP for the KPAs individually in a table. Of the total
number of eighteen KPAs, seven are rated as negative and eleven are rated as
positive to very positive. Of the KPAs rated as negative, however, the train-
ing program can also be rated as more positive due to the pair programming
performed by experts with beginners, and the management of subcontracts
can be ignored. In agreement, [Gla01] describes how the XP approach ad-
heres to CMM Level 2 without any additional effort and indicates that the
project-based part of CMM Level 3 can also be achieved with little additional
effort. However, full CMM Level 3 requires cross-project measures across the
company which are not addressed by XP.

In summary, [Pau01] comes to the understandable conclusion that XP has
good techniques that companies could consider, but that very critical systems
should not be realized exclusively with XP techniques.

Findings from Experiences with XP

XP provides a lightweight process comprised of coherent techniques. As XP
focuses on the code, the process can be designed much more efficiently than
RUP, for example. This efficiency means that fewer resources are required
and the process is more flexible. The increased flexibility mitigates one of
the basic problems of software development, namely handling user require-
ments that change over the duration of the project.

Ensuring the quality of the product being developed calls for pair pro-
gramming and rigorous automated tests without, however, relying to much
on the test theory which has been around for a long time. The constant de-
mand for simplicity increases the quality and efficiency further.

2.3 Selected Development Practices 19

Based on this analysis of XP, which stems partly from literature and partly
from own project experiences, including the auction project described in Ap-
pendix D, Volume 1, we can categorize XP as an approach suitable for small
projects with approximately 3-15 people. To a limited extent, using suitable
measures, such as the hierarchical decomposition of larger projects based on
components [JRO1, Hes01] and the accompanying additional activities, XP
can be scaled to larger tasks.

Alternatively, it may also be possible to reduce the size of the task using
innovative technologies, including reusing and adapting an existing system
where this is possible.

In particular, reducing the size of the task involves the improvement of
used languages, tools, and class libraries. Many parts of a program that have
technical code, such as the output, storage, or communication of data, have
similar structures. If these program parts can be generated and, using an
abstract representation of the application, composed to form executable code,
this increases the efficiency of the developers even further. This is true for the
product code but even more so for the development of tests which, in abstract
modeling, are also made more understandable with diagrams.

Accordingly, the goal of using an executable sublanguage of UML as a
high-level programming language must be to increase the efficiency of the
process of developing models and transforming them into code, thereby ac-
celerating the software development process further. Ideally, the design and
implementation part of a project is reduced to such an extent that a project
consists primarily of eliciting requirements that can be implemented effi-
ciently and directly.

2.3 Selected Development Practices

Three of the development practices of XP are being investigated further: pair
programming, the test-first approach, and the evolution of code. This is be-
cause they also play a significant role in agile modeling with UML.

2.3.1 Pair Programming

Pair programming existed before XP and was described in [Con95], for exam-
ple. Although it was initially a stand-alone technique, today it is integrated
in XP (as well as other techniques) because it is a good basis for common
code ownership. It means that for all parts of the system, there are at least
two people who are familiar with it.

The main idea behind pair programming is also referred to as the “prin-
ciple of dual control”: two developers work on one task which they solve
together. They need only one computer to do so, and while one developer

20 2 Agile and UML-Based Methodology

types in what they have developed, the partner performs a constructive re-
view at the same time. However, the keyboard and the control over the con-
structive work quickly alternate between the two parties involved. Origi-
nally, this principle was intended for use by developers with the same level
of expertise; however, it is also suitable for a combination of a system ex-
pert and a project beginner. It allows the beginners to familiarize themselves
with existing software structures and new techniques efficiently. In purely
mathematical terms, however, pair programming initially means double the
personnel expense.

In tests conducted at universities, pair programming has been studied in
more detail and analysis schemes have been created [SSSHO1]. The studies
[WKCJ00] and [CWO01] show that, for pair programming, after a relatively
short time for familiarization with the new programming style, the total ex-
pense compared to programming by individuals had increased but there was
a significant reduction in the duration of the project and in particular, a sig-
nificant increase in the quality of the software.? However, it is also evident
that the technique of programming in pairs has to be learned and that pair
programming does not suit everyone.

Therefore, in practice rigorously enforced pair programming would not
be productive. Instead, cooperatively encouraging pair programming should
lead to optimal results, because among others a project also involves ac-
tivities that do not need to be performed in pairs. These activities include
planning activities, tool installation and maintenance, as well as (in some
circumstances) discussions with customers to elicit requirements. Unfortu-
nately, flexible working hours for developers and unfavorable room alloca-
tions are further obstacles to applying pair programming consistently.

2.3.2 Test-First Approach

Tests are performed at different points in time and discussed and used with
differing intensity in different methodologies. For example: the V-Modell XT
explicitly separates tests for methods, classes, subsystems, and the overall
system. In the Rational Unified Process according to [Kru03], however, there
is no differentiation between the test levels and no discussion of metrics for
test coverage. In XP, testing is one of the four core activities—it plays a sig-
nificant role and is therefore discussed in more detail here.

[Bec01] describes the advantages of the test-first approach propagated in
XP for software development very clearly. [LF02] elaborates on this approach
for describing unit tests and discusses the advantages and disadvantages as
well as the methodological use in a pragmatic form. [PP02] compares the test-
first approach with the traditional creation of tests after implementation in a

? Statistically meaningful example figures are given in [WKCJ00] and [CW01], show-
ing that when pair programming was used, development costs rose by 15% but the
resulting code had 15% fewer defects. This allows a reduction in costs for bug fix-
ing. The total cost saving is estimated at between 15% and 60%.

2.3 Selected Development Practices 21

general context. [Wak02, p. 8] contains a description of a micro development
cycle based on tests and coding.

The main idea of the test-first approach is to think about test cases be-
fore developing the actual functionality (in particular, individual methods).
These test cases must be suitable for checking that the functionality to be re-
alized is correct in order to describe this functionality in the form of an exam-
ple. The test cases are documented in tests that run automatically. According
to [Bec01] and [LF02], this has a number of advantages:

o Defining test cases before the actual implementation allows an explicit
demarcation of the functionality to be realized, meaning that the test de-
sign equates de facto to a specification.

o The test justifies the necessity of the code and describes, amongst other
things, which parameters are required for the function that is to be real-
ized. This means that the code is designed such that it can be tested.

e Once the functionality has been realized, the existing test cases can be
used for immediate verification; this increases the confidence in the code
developed enormously. Although there is no guarantee that the func-
tionality is free of errors, practical application, including in the auction
project, shows that this confidence is justified.

o It is easier to separate the logical design from the implementation. When
test cases are defined—in this case before the implementation—the first
step is to determine the signature of the new functionality. This signature
contains the name, parameters, and the classes, which contain methods.
The methods are not implemented until the next step, that is, after the
definition of the tests.

e The amount of work involved in formulating test cases should generally

not be forgotten, especially if complex test data is required. According to
[Bec01], this leads to functions being defined in such a way that they are
provided with only the data necessary in each case. This results in classes
being decoupled, making the designs better and more simple.
This argument may be true in individual cases but it may not always be
correct. It would be more correct to state that classes are decoupled as
a result of the early detection of the possibility for decoupling or due to
retrospective refactoring. This is also demonstrated by typical examples
of the test-first approach [LF02, Bec01].

o Early definition of sets of test data and signatures is also helpful in pair
programming as it allows developers to discuss the desired functionality
more explicitly.

One advantage of test cases is that other developers can recognize the de-
sired functionality based on the test case descriptions. This is e.g. necessary
if the code is unclear and does not have sufficient comments and there is no
explicit specification of the functionality. The test cases themselves therefore
represent a model for the system.

22 2 Agile and UML-Based Methodology

Experience shows, however, that the possibility of developing the func-
tionality based on the tests is limited. This is because tests are usually defined
less thoroughly than the actual code. Also, tests written in a programming
language do not represent the actual test data very compactly or clearly.

Although the test-first approach offers a number of advantages, in prac-
tice we must still assume that defining tests in advance does not provide suf-
ficient coverage for implementation. However, the coverage metrics that we
know from the testing theory are not explicit part of XP. A very informal con-
cept for test coverage based in particular on the intuition of the developers
is generally seems satisfactory. On the one hand, this is somehow unsatisfac-
tory for the controlling in a project, but on the other hand, it is successful in
practice. But there are also tools which automatically measure the extent to
which the tests detect local modifications in the code and therefore satisfy
certain coverage criteria. Some are even developed or adapted for the XP ap-
proach [Moo01]. These tools include mutation tests [Voa95, KCM00, Moo01]
that through simple mutation of the test object check whether a test detects
the modification (defect).

If the desired functionality is implemented, once the initial test suite has
been completed, the development of further tests should achieve a better
coverage. These further tests include, for example, the treatment of border-
line cases and the investigation of conditional expressions and loops that can
be necessary in part due to the technique or framework used and therefore
were not anticipated in the test cases developed in advance.

The test-first approach is generally seen as an activity which combines
analysis, design, and implementation in “microcycles”. However, [Bec01]
also refers to the fact that test methods which are used to define test cases
systematically and which measure the coverage of the code according to dif-
ferent criteria are generally ignored. This is consciously accepted with the
argument that these test methods involve a lot more effort but the results are
not (if at all) significantly better. [LF02, p. 59] at least points out that tests are
created not only before implementation but also after completion of a task in
order to achieve “sufficient” coverage, but does not explain precisely when
the coverage is sufficient.

Depending on the type and size of the project, the strict test-first approach
can be an interesting element of the software development process which
can typically be used after at least an initial architecture has been modeled
for the system and the system has been broken down into subsystems. By
using the executable sublanguage UML/P, this approach can be elevated to
the modeling level more or less unchanged. For this purpose, in a first step,
sample data and sample sequences can be modeled as test cases using ob-
ject diagrams and sequence diagrams respectively. Based on these test cases,
the functionality to be realized can be modeled using Statecharts and class
diagrams.

2.3 Selected Development Practices 23
2.3.3 Refactoring

The desire for techniques which incrementally improve and modify source
code using sets of rules is only a slightly more recent phenomenon than
the creation of the first programming languages [BBB*85, Dij76]. The goal
of transformational software development is to break the software devel-
opment process down into small, systematically applicable steps which are
manageable due to their effects being limited to the local environment. Refac-
toring was first discussed in [Opd92] for class diagrams. [Fow99] is highly
recommended. It describes an extensive collection of transformation tech-
niques for the programming language Java. The refactoring techniques allow
us to migrate code in line with a class hierarchy. They also allow us to break
down or divide classes, shift attributes, expand or outsource parts of code
into separate methods, and much more. The strength of the refactoring tech-
niques is based on how easy it is to manage the individual transformation
steps (referred to as “mechanisms”) and the ability to combine them flexibly,
which leads to large, goal-oriented improvements in the software structure.

The goal of refactoring is to transform an existing program but preserve
the semantics. Refactoring is used to improve the quality of the design whilst
retaining the functionality rather than to extend the functionality. It therefore
supplements the normal programming activity.

Refactoring and the evolution of functionality are complementary activ-
ities that can quickly alternate in the development process. The course of a
project can thus be outlined as shown in Fig. 2.5. However, there is no objec-
tive criterion for measuring the “quality of the design”. Initial approaches,
for example, measure the conformance to coding standards, but are insuffi-
cient for evaluating the maintainability and testability of the architecture and
implementation.

mp emented T 700% ® Goa /s a relatively good design with complete functionality
functions

'X_ - ¥~ Evo ution

Adds new functions but usually
has a negative effect on the
quality of the design

——> Refactoring
Improves the design and
preserves the functionality

Qua ity of the design

Fig. 2.5. Refactoring and evolution are complementary

No verification techniques are used to ensure that transformations which
preserve semantics are correct; instead, the existing test suite is used. If we
can assume that the existing test suite has a high level of quality, there is

24 2 Agile and UML-Based Methodology

a high probability that faulty modifications, that is, modifications which
change the behavior of the system, will be detected. Refactoring often modi-
fies internal signatures of a subsystem if, for example, a parameter is added
to a method. Therefore, certain tests have to be adapted together with the
code. In the sense of the test-first approach, [Pip02] even proposes refactor-
ing first the tests and then the code.

Refactoring techniques are aimed at various levels of the system. Some
refactoring rules have a small effect; others are suitable for modifying an en-
tire system architecture. The possibility of improving a system architecture
that has already been realized in code means that it has become less neces-
sary to define a correct and stable system architecture a priori. Modifications
to the system architecture of course involve high costs. In XP, however, the
assumption is that maintaining system functions which are not used is more
cost-intensive over the long term. In accordance with the principle of simplic-
ity, the XP approach prefers to keep the system architecture simple and to
only modify or extend it as required using suitable refactoring steps.

While many refactoring techniques for Java based on [Fow99] are cur-
rently under ongoing development, at present only a few similar techniques
exist for UML diagrams [SPT]01].

2.4 Agile UML-Based Approach

Due to the diversity of software development projects in terms of size, appli-
cation domain, criticality, context etc., we can conclude that a standardized
approach does not and will exist in the diversified project landscape.

Instead, as proposed in Crystal [Coc06], a suitable approach must be se-
lected (and adapted) where necessary from a collection of approaches based
on the following criteria: the size and type of project, the criticality of the ap-
plication, as well as the experience and knowledge of the people involved in
the project.

Corresponding to this diversity, this book outlines a proposal for a light-
weight, agile method using UML. This proposal concentrates in particular
on the technical part of an approach and does not claim to be suitable for all
types of projects.

Definition of “Agility”

The characterization of the agility of a method is outlined in Fig. 2.6.
Efficiency can be improved by cleverly omitting unnecessary work (docu-
mentation, functionality not required, etc.) and also through an efficient im-
plementation.
It is not necessarily the case that all of the techniques of an agile method
focus on the quality of the product developed. However, certain elements of
an agile method, such as concentrating on the simplicity of the design and

2.4 Agile UML-Based Approach 25

An approach is deemed to be “agile” if it emphasizes the following criteria:

The efficiency of the overall process and the individual steps is as ideal as possible.
The reactivity, that is, the speed at which the approach reacts to changing require-
ments or a different project environment, is high. Planning therefore tends to be
short-term and adaptable.

e The approach itself can also be adapted flexibly so that it can adapt itself dynam-
ically to internal project circumstances, as well as to external project circum-
stances which are determined by the environment and which therefore can only
be partially controlled.

e Simplicity and practical implementation of the development approach and its
techniques lead to simple design and implementation.

e The approach is customer-oriented and demands active integration of the cus-
tomer during the project.

o The capabilities, knowledge, and needs of the project participants are accounted for in
the project.

Fig. 2.6. Terminology: agility of a method

the extensive development of automated tests, do support the improvement
in the quality. Other practices enforced by some agile methods, such as the
lack of detailed specifications and reviews, discourage using the method for
highly critical systems. In this case, an alternative process or a suitable exten-
sion must be selected.

Improved Support for Agility

The agility of a project can be improved not only by modifying the activities
but also in particular by increasing the efficiency of the developers. It is of
interest to improve the efficiency of creating models, the implementation,
and the tests. This is particularly effective if the implementation and the tests
can be derived as efficiently as possible or even completely automatically
from models. This type of automatic generation is interesting if the source
language used for the models allows a more compact representation than
the implementation itself could provide.

The premise for using models in this way is that they can be created more
quickly because they are more compact but still allow a complete description
of the system. In the form offered in the UML standard [OMG10], UML is not
sufficient for this purpose. Therefore, UML/P has been extended to include
a complete programming language.

Use Cases for Models

Models that are used to generate code require a high level of detail. But then
the usual coding activity, which is very time-consuming, is no longer neces-
sary. The detailed modeling and the implementation merge into one single

26 2 Agile and UML-Based Methodology

activity. Code generation is therefore an important tool for using models suc-
cessfully. This allows us to achieve a goal similar to XP, in which design and
modeling activities are generally executed directly in code.

However, we can use models for other goals besides code generation. Ab-
stract or relatively informal models suffice for the communication between
developers. Abstraction means that details that are not necessary for describ-
ing the communicated content can be omitted. Informality means that the lan-
guage correctness of the model represented does not have to be adhered to
precisely. For example, diagrams on paper can use intuitive notational ele-
ments that do not belong to the language if the developers have a common
understanding of their meaning as far as necessary. Furthermore, where in-
formal diagrams are used, they do not have to be completely consistent with
the content modeled or with other diagrams.

We can also use models to document the system. Documentation is a writ-
ten form of communication intended for long-term use. A higher level of
detail, greater formality, and/or consistency are therefore useful depending
on the goal of the documentation. A short document that gives an overview
of the architecture of a system and an introduction to important decisions
that led to this architecture will have a low level of detail, but the formality
and consistency within the model and with the implementation are impor-
tant. If complete documentation is required, the ideal way to ensure that the
documentation is consistent with the system implemented is to generate the
implementation and, as far as possible, tests, from the models of the docu-
mentation.

In a project that uses UML/P for modeling and for implementation, we
at least differentiate between:

Implementation models
Test models

Models for documentation
Models for communication

We can use UML/P for all of these purposes even though the models each
have different characteristics. However, there is a significant advantage in the
fact that there are no notational breaches between specification, implementa-
tion, and test cases. UML /P can be used for detailed as well as abstract and
incomplete modeling.

Modifying Models

If a model is used exclusively for communication, then it normally exists
only as an informal drawing. A model created by a tool has a formal rep-
resentation of the syntax® and can therefore be used for further processing

3 For example, XML Metadata Interchange Format (XMI) is a standard for representing
UML models and therefore this type of formal representation of the syntax.

2.4 Agile UML-Based Approach 27

supported by tools. The syntax of UML/P is therefore precisely defined in
Appendices A, Volume 1, B, Volume 1, and C, Volume 1.

We have already identified code generation as one of the important tech-
niques for using models. There are two main variants of code generation:
product code generation and test code generation.

The necessity of adapting software based on changing requirements also
means that techniques must be available for transforming or refactoring mod-
els. Systematically adapting models to new and changed functionalities in
a process validated at each stage by automated tests and invariants allows
this dynamic adjustment which is already familiar from XP. As a model cre-
ated according to given requirements is more compact and therefore easier to
understand than the code, this also improves adaptability of models. For ex-
ample, we can adapt the structure within one class diagram, which is spread
across a number of files in the code. The necessity of developing a fixed archi-
tecture at an early stage of a project decreases very similar to the observations
made in the XP approach. At the same time, the flexibility for integrating new
functionality and therefore the agility of the project continues to increase.

We can therefore identify the following important techniques in handling
models [Rum02]:

o Generating product code
o Generating test code
e Refactoring models

Furthermore, various techniques for analyzing models are interesting, such
as the reachability of states in Statecharts. Another factor that is helpful in
creating tests efficiently is deriving many test cases from universal specifica-
tions, such as OCL constraints or Statecharts.

Special techniques, for example, for generating database tables, generat-
ing a simple graphical interface from data models, or for migrating data sets
conforming to the old model into a new model are also important and must
be supported by a code generator with suitable parameters. However, this
book does not cover such techniques in any further detail.

Further Useful Principles and Practices

To complete an approach, further principles and practices have to be selected
on a project-specific basis. For small projects, for example, we can identify the
following principles and practices, many of them adaptable from XP:

Many small iterations and releases

Simplicity

Quick feedback

Permanent dialog with a customer who is constantly available
Short internal, daily meetings for coordination

Review after each iteration for the purpose of process optimization

28 2 Agile and UML-Based Methodology

Development of tests before implementation (“test-first”)

Pair programming as a technique for learning and review

Common ownership for models

Continuous integration

Modeling standards as a requirement for the form and commenting of
the models similar to coding standards

We can very easily apply the development of tests before an implemen-
tation in accordance with the test-first approach discussed in Section 2.3.2
to UML/P. To do so, we initially model sequence diagrams, which are an
essential component of tests, as descriptions for use cases and we can then
transform them into test cases with an acceptable level of effort. A similar sit-
uation applies for object diagrams, which we can create as examples of data
sets during the recording of requirements.

Standard modeling guidelines applicable across the project are necessary
to ensure the usability of the models; the project participants must be able to
adapt and extend these models as necessary.

Sometimes developers still need to learn the language UML/P for mod-
eling to become productive. Any necessary learning phase can be supported
by pair programming, which will now generally be referred to as “pair mod-
eling” in this book.

Quality, Resources, and Project Goals

The effects of the approach outlined in this section can be explained using
the value system discussed in Section 2.2 and the four criteria (time con-
sumption, costs, quality, and goal orientation) also used in XP, for example.

Communication is easier to accomplish based on UML/P models than based
on implemented code if we can assume that the communication partners
are familiar with UML.

Simplicity of the software is better supported for two reasons: on the one
hand, as the software can be changed easily, it is even less important
to establish structures for future functionality that might potentially be
required and thus integrate potentially unused complexity at an early
stage. On the other hand, it is even easier to remove elements that are
no longer necessary from the model using refactoring steps. However,
the developers themselves must still be able to recognize unnecessary
complexity and superfluous functionality.*

Feedback is ensured by the greater efficiency in development and the result-
ing even shorter iterations.

Individual responsibility and courage can and must remain with the de-
velopers, as in XP.

4 Analysis tools can only provide limited support here by recognizing which meth-
ods, parameters, or classes are not required.

2.4 Agile UML-Based Approach 29

The four main variables of project management are also addressed:

Time consumption: Time savings and, in particular, early availability of first
usable versions (“time to market”) are essential not only for Internet ap-
plications. The increased development efficiency and the higher level of
reusability of technical parts allow a reduction of the time necessary.

Costs: Costs also decline due to increased efficiency and the resulting de-
crease in time and personnel expense. This reduction in the personnel
expense means that some management efforts can also be omitted, mean-
ing that the process used is more lightweight and thus enables further
savings.

Quality: The quality of the product is influenced positively by the following
factors: the more compact and therefore clearer representation of the sys-
tem; the easier modeling of test cases; and through the fact that there is
no longer a breach between the modeling and implementation language.
Concentrating on further aspects, such as the level of test coverage, addi-
tional model reviews, and actively integrating the customer determines
whether the quality of the resulting system meets the demands.

Goal orientation: In order to ensure that the system is implemented in the
form desired by the user, it is important to integrate the user actively.
Using UML/P does not influence this aspect in any direction, as we can
assume that it is unlikely that a user would be presented with UML dia-
grams for discussion.

The Problems of Agile, UML-Based Software Development

In addition to the advantages discussed above, the approach outlined has
some disadvantages that should be considered:

e The advantage that almost the same notation can be used for the ab-
stract modeling and implementation can prove to be a blowback. In prac-
tice, previous approaches for an abstract modeling of essential properties,
such as SDL [IT07b, IT07a] or algebraic specifications [EM85, BEG*93],
have been used often as high-level programming languages as soon as
their executability has been available through a tool. The same is now
proposed for a sublanguage of UML.> If UML is used for specification,
this can lead to unnecessary details being filled out for the specification
because a later use of the specification as an implementation has been
anticipated to early. This phenomenon is also referred to as “overengi-
neering”.

o The teaching effort for using UML/P must be assumed as high. With re-
gard to syntax, UML/P is significantly more complex than Java, meaning

® In algebraic specifications, this has led at least in part to a greater focus on trans-
formability into efficient code rather than on the abstract modeling of properties
and thus led to strange implementation-oriented specifications.

30 2 Agile and UML-Based Methodology

that an incremental learning approach is recommended here. As an ini-
tial step, the use of UML/P for describing structures with class and object
diagrams can be taught. This can be followed by sequence diagrams for
modeling test cases and, building on that, OCL for defining conditions,
invariants, and method specifications. Using Statecharts for modeling be-
havior usually requires the most practice.

However, similarly to Java, it is not only the syntax that needs to be mas-
tered but in particular the use of modeling standards and design patterns,
which must also be learned.

o At present, there is not enough tool support that covers all aspects of the
desired code generation completely. In particular, efficient code genera-
tion is essential for creating the system quickly, which in turn enables
efficient execution of tests and the resulting feedback.

However, a number of tool developers are working on realizing this vi-
sion of complete tool support and are already in a position to demonstrate
results.

2.5 Summary

Agile methods represent a relatively new approach which, through several
characteristics, distinguishes itself explicitly from methods previously used
in software development. The tools, techniques, and the understanding for
the problems of software development have improved significantly. There-
fore, these methods can offer more efficient and more flexible approaches
for a subdomain of software development projects through, for example,
strengthening the focus on the primary result, the executable system, and
a reduction in the secondary activities. At the same time, the motivation
and the commitment of the project participants for rigorous execution of
their activities come to the fore and short iterations enable flexible, situation-
dependent control of the software development.

We have identified important factors for determining the size of a project:
the size of the problem and the efficiency of the developers. We can use these fac-
tors to derive the required method size, which consists mainly of the method-
ological elements to be executed, the formality required for the documents,
and the additional effort for communication and management. Due to ad-
ditional communication and management overheads, the efficienicy of the de-
velopers is disproportionate in the determination of the project size, i.e., the
number of developers required and the runtime of the project. Therefore, im-
proving developer efficiency is a significant lever for reducing development
costs.

As a modeling language for architecture modeling, design, and implementa-
tion, UML/P provides a standardized language framework that allows us to
model the executable system and the tests completely. The compact size of
the representation leads to greater efficiency and results in scaling effects for

2.5 Summary 31

the project size. The standardized framework prevents an otherwise often
observed notational breach between the modeling, implementation, and test
languages.

2 Springer
http://www.springer.com/978-3-319-58861-2

Agile Modeling with LML

Code Generation, Testing, Refactoring
Rumpe, B.

2017, XN, 388 p. 176 illus., 101 illus. in color.,
Hardcowver

ISBN: 978-3-319-58B861-2

	2
Agile and UML-Based Methodology
	2.1 The Software Engineering Portfolio
	2.2 Extreme Programming (XP)
	2.3 Selected Development Practices
	2.3.1 Pair Programming
	2.3.2 Test-First Approach
	2.3.3 Refactoring

	2.4 Agile UML-Based Approach
	2.5 Summary

