
Using Everest Platform for Teaching Parallel
and Distributed Computing

Oleg Sukhoroslov1,2(B)

1 Institute for Information Transmission Problems of the Russian
Academy of Sciences (Kharkevich Institute), Moscow, Russia

sukhoroslov@iitp.ru
2 Higher School of Economics, Moscow, Russia

Abstract. The paper presents a practical approach for building high-
level services for teaching parallel and distributed computing based on
Everest platform. Originally designed for publication of computing appli-
cations, the platform is suitable for rapid development of services for run-
ning different types of parallel programs on high-performance resources,
as well as services for evaluation of practical assignments. As was demon-
strated by using Everest for teaching two introductory PDC courses, the
proposed approach helps to enhance students’ practical experience while
avoiding low-level interfaces and providing a level of automation neces-
sary for scaling the course to a large number of students. In contrast to
other solutions, the exploited Platform as a Service model provides the
ability to quickly reuse this approach by other PDC educators without
installation of the platform.

Keywords: Parallel programming ·Distributed computing ·Web-based
interfaces · Web services · Platform as a Service

1 Introduction

The teaching of parallel and distributed computing (PDC) has increasingly
gained importance during the last decade due to the ubiquity of multi-core
architectures, graphical processors, cloud computing services and the need to
process wast amounts of data. Aside from the theoretical foundations, practical
programming exercises form an integral part of any PDC course aimed at mas-
tering domain knowledge and developing relevant skills by working with different
classes of computational systems and programming technologies.

However, providing a practical experience to the students of PDC course
is challenging due to the inherent complexity of involved systems, user inter-
faces and technologies. A typical example is arranging practical exercises and
homework assignments on a compute cluster. A common approach is to provide
remote logins for each student, and then train students to use cluster command
line environment to compile and submit their programs. This approach suffers
from several problems. First, it introduces additional administration, teaching
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 16–27, 2017.
DOI: 10.1007/978-3-319-58943-5 2



Using Everest Platform for Teaching Parallel and Distributed Computing 17

and support overheads for the course staff. Second, it requires a considerable
effort for running programs by students who are often unfamiliar with Unix
environment, etc. As a result, the additional time and effort are spent by both
instructors and students instead of focusing on the essential parts of the course.
Due to the limited human resources the traditional approaches to teaching also
do not scale well to a large number of students. Therefore new approaches are
needed to make teaching PDC more efficient and reach a wider audience.

Web-based environments provide a convenient alternative for accessing par-
allel computing systems and supporting practical assignments on such systems.
While being successfully used in teaching some PDC courses, the development of
such environments represents a substantial cost to many educators. While some
of existing solutions can be reused, the additional costs related to deployment,
customization and administration of such systems in-house can also be signifi-
cant. Therefore there is a need in generic platforms that can be reused with a
minimal effort, possibly without installation as modern cloud platforms, while
being flexible and supporting all common use cases.

In this paper we present an approach to automation of practical programming
exercises in PDC based on using Everest platform [1,9]. While originally designed
for building computational web services, the platform proved to be extremely
useful for supporting educational activities as well. Everest has a number of
unique features in comparison to related solutions. It implements the Platform
as a Service (PaaS) model by supporting multiple users and providing all its
functionality via remote interfaces. The platform is not tied to a predefined
computing infrastructure by enabling users to attach external resources and
bind them to applications. This makes it possible to immediately start using
Everest without installation.

In order to simplify access to computing resources a number of generic ser-
vices have been developed on Everest for running various types of concurrent,
parallel and distributed programs. Also a number of problem-specific services
has been created for each homework assignment in order to automate evaluation
and provide immediate feedback to a student. The presented approach has been
successfully used since 2014 for teaching two introductory PDC courses.

The paper is organized as follows: Sect. 2 discusses related work and com-
pares the presented approach and available solutions. Section 3 provides technical
details on the Everest platform and describes it’s use for development of services
supporting teaching activities on HPC resources. Section 4 presents several use
cases from different PDC topics and describes the experience gained from using
Everest in two PDC courses. Section 5 concludes and discusses future work.

2 Related Work

The use of web technologies for building convenient interfaces for accessing high-
performance resources has been exploited since the emergence of the World Wide
Web. In [3] authors describe several prototypes of web-based parallel program-
ming environments, including the Virtual Programming Laboratory (VPL) used



18 O. Sukhoroslov

for teaching parallel programming. The emergence of grid computing and the
web portal technology enabled development of grid portals facilitating access to
distributed computing facilities. [10] describes an experience of building a grid
portal to support an undergraduate parallel programming course.

Web-based interfaces have also been exploited to support submission and
automated evaluation of programming assignments in PDC courses. In [5]
authors describe a framework enabling implementation of web portals for auto-
mated testing of student programming assignments in distributed programming
courses. Among the recent works, [8] describes a web-based application for auto-
mated assessment and evaluation of source code in the field of parallel pro-
gramming. In [6] authors present a similar web-based system for running and
validating parallel programs written in different programming paradigms.

Finally, a few web-based environments emerged to support recent PDC
topics such as big data processing and general-purpose computing on GPU.
WebMapReduce [4] is a web interface for Hadoop designed for teaching MapRe-
duce programming. WebGPU is a web-based system developed to support
GPU programming assignments in the Heterogeneous Parallel Programming
course [2].

In comparison to existing solutions built from scratch for teaching purposes,
the presented approach is based on reusing a general-purpose web platform for
building computational web services. The ability to quickly build custom services
and connect them to computing resources helps to significantly reduce devel-
opment time. The flexibility of service-oriented approach enables development
of different types of services targeting various use cases and application areas.
Finally, the exploited PaaS model provides the ability to reuse this approach
by other educators without installation of the platform. To our best knowledge,
there are no similar attempts were previously made. These features make Everest
to stand out in cases where educators need an easy to use yet flexible solution,
but lack the resources needed to deploy and maintain such system in-house.

3 Technical Aspects

3.1 Everest Overview

Everest [1,9] is a web-based platform enabling publication, sharing and execution
of scientific applications across distributed computing resources. In this section
we provide a brief overview of this platform.

Figure 1 shows the high-level architecture and some of the key concepts
of Everest. In contrast to traditional distributed computing platforms, Ever-
est implements the Platform as a Service model by providing its functionality
via remote web and programming interfaces. A single instance of the platform
can be accessed by many users in order to create, run and share applications
with each other. An application added to Everest is automatically published as
a web form and a web service. The latter enables programmatic access to appli-
cations, integration with third-party tools and composition of applications into



Using Everest Platform for Teaching Parallel and Distributed Computing 19

Applications

Compute

REST API

Web browser

Web UI

Client

Client Library

Service Service

Application Application

tasktask task

Job

exposesowns

uses

HTTPS + JSON

Agent

Agent

Agent
owns

Fig. 1. High-level architecture of Everest

workflows. Another distinct feature of Everest is that it allows users to attach
their computing resources and flexibly bind them to applications.

The server-side part of the platform is composed of three main layers: REST
API, Applications layer and Compute layer. The client-side part includes the
web user interface (Web UI) and client libraries.

REST API implements the remote programming interface providing access
to all platform’s capabilities. It serves as a single entry point for all clients,
including Web UI and client libraries, and is implemented as a set of web services
following the Representational State Transfer (REST) architectural style [7]. The
API specification is open and allows implementation of third-party clients.

Applications layer implements a hosting environment for applications cre-
ated by users. Applications are the core entities in Everest that represent reusable
computational units that follow a well-defined model. An application has a num-
ber of inputs that constitute a valid request to the application and a number of
outputs that constitute a result of computation corresponding to some request.
Each application is automatically exposed as a web service via the REST API.
This enables remote access to the application via Web UI and client libraries.

To simplify creation of applications Everest provides a generic skeleton for
command-line applications that makes it possible to avoid programming while
adding an application. In addition to description of application inputs and out-
puts, the user should specify the command pattern parametrized by input values
and describe the mappings between inputs/outputs and files read/produced by
the application.



20 O. Sukhoroslov

Compute layer manages execution of applications on computing resources.
When an application is invoked via REST API it generates a job consisting of
one or more computational tasks. Compute layer manages execution of these
tasks on remote resources and performs all routine actions related to staging of
task input files, submitting a task, monitoring a task state and downloading task
results.

Everest does not provide a computing infrastructure and instead relies on
external resources attached by users. The platform implements integration with
standalone machines and clusters by using a developed program called agent.
The agent runs on the resource and acts as a mediator between it and Everest
enabling the platform to submit and manage computations on the resource. The
platform also supports integration with the European Grid Infrastructure.

Web UI provides a convenient graphical interface for interaction with the
platform. It is implemented as a JavaScript application that can run in a modern
web browser without installation of additional software on the user’s machine.

Client libraries simplify programmatic access to Everest via REST API and
enable users to write programs that access applications and compose them in
workflows. At the moment, a client library for Python language is implemented.

3.2 Generic Services for Running Parallel Programs

A common challenge for students learning PDC is working on computing
resources in order to run their programs on scale. The command line environment
and queuing systems used on such resources are unfamiliar and too low-level for
many students. Everest can be used to remove these technical barriers by creat-
ing web-based services for running parallel programs on a compute cluster. Such
services are implemented as Everest applications linked to the provided resource.
Since different programming models and technologies use different languages and
runtime parameters it is convenient to create multiple generic applications with
relevant parameters. In this section we outline steps required in order to create
such applications. The complete description of these steps along with technical
details can be found in user tutorial on the Everest website [1].

In order to create an application an instructor should specify via Everest
Web UI application’s metadata, input and output parameters, mapping of para-
meters to the executed command and files, etc. The core part of the application
is a wrapper that takes input parameters and manages execution of a paral-
lel program on the cluster. The wrapper can be written in any programming
language since Everest runs it via command line. It usually performs program
compilation, preparing of execution environment, submitting the program via
queuing system, etc. The development of such wrapper is currently the most
difficult part of the process, however once implemented its parts can be reused
for other applications.

In order to link the application to a compute cluster used in the course
the instructor should attach the cluster to Everest by installing and starting
the agent. This step usually does not require much effort since the agent is
easy to install under non-root user, provides integration with common batch



Using Everest Platform for Teaching Parallel and Distributed Computing 21

systems and does not need inbound connectivity. It is convenient to create a
dedicated account on the cluster for running the agent and student submissions
from Everest. This approach also avoids creation of personal accounts for each
student and associated management overheads.

Once the application is tested and ready to be used by the students, the
instructor configures access to the application by specifying users and groups
allowed to run it. Everest supports creation of arbitrary user groups. For teach-
ing activities it is convenient to create two groups for students and instructors
respectively and configure application to allow submissions from both groups.
The students’ group can be configured to allow self-registration by providing a
secret code to avoid manually adding students to the group. After all is set up it
is sufficient to ask students to sign up in Everest, add themselves to the required
group and check the applications list.

An example of generic application for running MPI programs created on
Everest is presented in Fig. 2. The submit form shown on the figure includes
input parameters that should be specified by a student for submitting a job. It
is also possible to specify custom job name and enable email notification when
the job completes which is convenient for long-running jobs or jobs waiting in a
queue. Note that this example allows only a single source file to be submitted by
a user, which is often adequate for teaching purposes. However it can be easily
modified to support cases that require submitting multiple source files.

Upon the job submission the student is redirected to the job page that dis-
plays dynamically updated information about the job state. Figure 3 contains
a screenshot of completed job for the MPI application. The opened Outputs
section provides access to output parameters produced by the job. The job page
also includes sections containing general information about the job and all input
parameters specified by the student. By default Everest job is accessible only by
its owner. For teaching purposes it is possible to automatically share all jobs sub-
mitted by the students with the instructors group, so that in case of a problem
a student can just send a link to a failed job to the instructor.

The described approach have been used to implement a number of generic
services for running different types of programs described in Sect. 4.

3.3 Problem-Specific Services for Programming Assignments

The evaluation of programming assignments in PDC requires a significant effort
and is one of the key scalability bottlenecks in terms of a number of students.
The generic applications described above can be used for quick demonstrations,
practical exercises and projects. However, they usually do not provide a feedback
needed to validate solutions to programming assignments. For example, whether
the program produced a correct result or has a good performance. Such imme-
diate feedback is crucial for students since it helps to avoid manual validation
and to focus on the solution. This feedback can also help instructors to reduce
the time and effort needed to grade the solution.

The automated evaluation of assignments requires development of problem-
specific services that run the program against the custom test suite. Such ser-
vices can be implemented on Everest using the same approach as the previously



22 O. Sukhoroslov

Fig. 2. Submit form of generic application for running MPI programs

Fig. 3. Results of completed MPI job



Using Everest Platform for Teaching Parallel and Distributed Computing 23

discussed generic services. However, in this case the wrapper is replaced by a test
suite for the given assignment that can execute a program multiple times with
different runtime parameters and performs additional actions such as result val-
idation and performance measurements. The outputs of problem-specific appli-
cations can include validation results, performance metrics and scores, etc.

4 Use Cases

The described approach and Everest have been successfully used since 2014 to
support two PDC courses for students of various levels.

The Parallel and Distributed Computing course at The Yandex School of
Data Analysis (YSDA, Moscow, Russia) is an introductory PDC course for MSc
students that features the following topics: concurrency, parallel programming
and distributed data processing. The course grade is based on the results of
homework assignments implying writing parallel and distributed programs that
are executed on a dedicated compute cluster.

The use of Everest in the YSDA course started in 2014 by development
of services for evaluation of homework assignments. These services have been
improved and are actively used in this course since that time. Until 2016 no
generic services for running parallel programs were used, and students had direct
access to the YSDA cluster via personal SSH accounts.

In 2015 a similar approach has been applied for teaching High Performance
Computing course for BSc students from the Faculty of Computer Science at the
Higher School of Economics (HSE, Moscow, Russia). In order to simplify working
with the cluster, in addition to problem-specific services, new generic services for
running different types of parallel programs have been introduced. Such services
also helped to arrange more practical exercises and demos in the class. The
students had no problem with accessing Everest via a web browser and were
able to quickly learn and successfully use the provided services for submitting
their programs both in class and while working on homework assignments.

In 2016 the complete approach using both generic and problem-specific ser-
vices was used during teaching YSDA course. This time the students were able to
perform all practical activities via Everest without directly accessing the cluster.
As an option, it was possible to request a cluster account as in previous years
to get an additional practical experience. However, only a few students used
this option during the course and none of them has completely switched from
using Everest to the cluster command line. The decreased support overhead and
increased level of automation helped to scale the course to a larger number of
students (118 enrolled students in comparison to 80 in 2015 and 48 in 2014).

According to existing experience the development of a service takes from an
hour to several days depending on case. The majority of the time is consumed
by implementing and debugging a wrapper or a test suite written in Python or
Bash. The development of test suites and corresponding services is usually more
time consuming than generic services where some previous code can be reused.

In the rest of this section we provide an overview of various services used in
the mentioned courses grouped by the core subjects.



24 O. Sukhoroslov

4.1 Multi-threaded Programming

Both courses include introduction to concurrency and multi-threaded program-
ming. The C++ programming language and the standard thread support library
are used for writing concurrent programs. During this part students examine var-
ious pitfalls of concurrent programming, learn how to avoid them and perform
coordination between threads.

Since the students usually have no problem with compiling and running
multi-threaded programs on their machines, there were no need in development
of generic services for running such programs on a cluster. However, the devel-
opment of problem-specific services for testing homework assignments proved to
be extremely useful.

For example, in the Dining Philosophers task the students should solve the
well-known problem by meeting the basic safely and liveness guarantees while
also ensuring fairness, performance and scalability of their solution. The students
are provided with an initial implementation that is not safe and serves as a
template for a student’s solution. A test suite for evaluation of solutions has
been developed that performs checking of all requirements by running a program
under various conditions. Besides checking safety and liveness, the test suite also
measures fairness, performance and scalability of the solution. The key metrics
used are min-max ratio of eat counts and mean wait time in hungry state. The
scalability is evaluated by increasing the number of philosophers up to 5000. The
test suite prints results of each test and overall summary including scores for all
requirements and the total grade.

The developed test suite was provided to the students as a service that takes
a program and runs the tests against it on a cluster. To ensure the reliable and
reproducible evaluation each test run was configured to use a whole cluster node.

4.2 Parallel Programming

The parallel programming part considers OpenMP and MPI, the two most pop-
ular technologies used for shared and distributed memory systems respectively.
The generic services are developed for running both kinds of parallel programs
on the cluster.

While it is quite easy to compile and run OpenMP programs on students’
machines, the OpenMP service provided the students with the ability to run
a program on a high-end server with 12 processor cores. The input parame-
ters include the program, command arguments, additional files and number
of threads to use, while the output parameters include compiler and program
outputs.

The generic MPI service enabled students to compile and run MPI programs
with different runtime configurations on the cluster. The interface of this service
was already presented in Sect. 3.

The YSDA course includes a programming assignment with two tasks cover-
ing both technologies. In the first task the students should implement a parallel
version of the K-means method using OpenMP. A sequential implementation of



Using Everest Platform for Teaching Parallel and Distributed Computing 25

the method in C++ is provided as a starting point along with a generator of
input data. The solution is required to produce the same result as the initial
program on the same dataset. The second task considers a parallel implementa-
tion of the Game of Life using MPI. Similarly the students are provided with a
reference sequential program in C and an input data generator.

A test suite and an Everest application is developed for each task. Both test
suites have a similar structure. They compile a solution and perform multiple
runs with different runtime configuration (number of threads or processes), input
files and other parameters. The execution time, speedup and efficiency are mea-
sured for each run. The results of a run are compared with the reference values.
This enables a complete evaluation of a solution including its’ correctness, per-
formance, scalability, and dependence on input parameters. Figure 4 contains a
screenshot of completed submission for the MPI assignment.

Fig. 4. Results of testing Game of Life assignment

4.3 Distributed Data Processing

This part considers distributed computing models and platforms for processing
of large data sets, which are being actively developed during the last decade.
Students learn the MapReduce programming model and its implementation in
the Apache Hadoop platform. Another popular framework for distributed data
processing considered in both courses is Apache Spark.



26 O. Sukhoroslov

Two generic services were implemented for running MapReduce programs
written in Python and Java respectively on the Hadoop cluster. Both services
allow specifying program files, command line arguments, input and output paths
in HDFS, number of reduce tasks and additional Hadoop options. The wrap-
per script performs submission of MapReduce job, monitors the job’s state and
updates status information displayed in Everest. When the job is running, a stu-
dent is provided with a link to the job status page in the Hadoop web interface.
After the job is completed the total resource usage in core-seconds is displayed
along with a link to the job history interface with task logs. This provides enough
information to troubleshoot failed programs or evaluate the program’s efficiency.

Two similar services were implemented for running Spark programs written
in Python or Scala/Java on the same cluster. In comparison to MapReduce
services, the Spark services have more sophisticated runtime parameters such
as the number of executors, cores and memory per executor. It is also possible
to specify the minimum ratio of registered executors to wait for before starting
computations. This enables students to examine various trade-offs related to
using different values of runtime parameters. The corresponding wrapper script
is also more sophisticated. It allows to limit the maximum amount of physical
resources requested by the program and the number of concurrent jobs per user.

Due to the large size of input data and produced results, in addition to
running programs on Hadoop cluster it was essential to provide a way to easily
browse files stored in the HDFS file system. This was achieved by using Hue, a
Web interface for Hadoop which includes a convenient HDFS file browser.

The homework assignments include building an inverted index of Wikipedia
using MapReduce and analysis of Twitter graph using Spark. The corresponding
services were created for each assignment. In contrast to previous assignments,
these services do not run students’ programs and only check the produced results.
Therefore the students were asked to provide links to all submissions via generic
services used to produce these results.

5 Conclusion and Future Work

In this paper, we have presented a practical approach for building high-level
services for teaching PDC based on Everest platform. Originally designed for
publication of computing applications, the platform supports rapid development
of various types of computational web services. In particular, as was demon-
strated by using Everest for teaching introductory PDC courses, the platform is
suitable for building services for running different types of parallel programs on
HPC resources, as well as services for evaluation of practical assignments.

The use of discussed services helped to provide easy-to-use interfaces to stu-
dents and to reduce administration overheads. The problem-specific services
ensured reliable and reproducible execution of test suites against students’ solu-
tions while providing immediate feedback to students and assisting grading by
instructors.

Everest has a number of unique features in comparison to related solutions.
It implements the PaaS model by supporting multiple users and providing all



Using Everest Platform for Teaching Parallel and Distributed Computing 27

its functionality via remote web and programming interfaces. The latter enable
integration of the platform and applications with external systems. Everest is
not tied to a predefined computing infrastructure by enabling users to attach
arbitrary resources and bind them to applications. This makes it possible to
immediately start using Everest without installation. The platform is publicly
available online to all interested users [1].

Being a general-purpose platform, Everest lacks a number of high-level fea-
tures in comparison to specialized solutions. For example, in order to create a
service an instructor should write a wrapper script or test suite implementing
all necessary actions. While providing maximum flexibility, this approach often
requires writing a boilerplate code dealing with cluster job submission or results
checking. We plan to address these issues in future by implementing additional
features in Everest and publishing ready-to-use blueprints to quickly reproduce
the discussed services by other PDC educators.

Acknowledgements. This work is supported by the Russian Science Foundation
(project No. 16-11-10352).

References

1. Everest. http://everest.distcomp.org/
2. Heterogeneous Parallel Programming. https://www.coursera.org/course/hetero
3. Dincer, K., Fox, G.C.: Design issues in building web-based parallel programming

environments. In: 1997 Proceedings of the Sixth IEEE International Symposium
on High Performance Distributed Computing, pp. 283–292. IEEE (1997)

4. Garrity, P., Yates, T., Brown, R., Shoop, E.: Webmapreduce: an accessible and
adaptable tool for teaching map-reduce computing. In: Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education, pp. 183–188. ACM
(2011)

5. Maggi, P., Sisto, R.: A grid-powered framework to support courses on distributed
programming. IEEE Trans. Educ. 50(1), 27–33 (2007)

6. Nowicki, M., Marchwiany, M., Szpindler, M., Ba�la, P.: On-line service for teaching
parallel programming. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523,
pp. 78–89. Springer, Cham (2015). doi:10.1007/978-3-319-27308-2 7

7. Richardson, L., Ruby, S.: RESTful web services. O’Reilly Media Inc., Sebastopol
(2008)

8. Schlarb, M., Hundt, C., Schmidt, B.: SAUCE: a web-based automated assess-
ment tool for teaching parallel programming. In: Hunold, S., et al. (eds.) Euro-
Par 2015. LNCS, vol. 9523, pp. 54–65. Springer, Cham (2015). doi:10.1007/
978-3-319-27308-2 5

9. Sukhoroslov, O., Volkov, S., Afanasiev, A.: A web-based platform for publication
and distributed execution of computing applications. In: 2015 14th International
Symposium on Parallel and Distributed Computing (ISPDC), pp. 175–184, June
2015

10. Touriño, J., Mart́ın, M.J., Tarŕıo, J., Arenaz, M.: A grid portal for an undergrad-
uate parallel programming course. IEEE Trans. Educ. 48(3), 391–399 (2005)

http://everest.distcomp.org/
https://www.coursera.org/course/hetero
http://dx.doi.org/10.1007/978-3-319-27308-2_7
http://dx.doi.org/10.1007/978-3-319-27308-2_5
http://dx.doi.org/10.1007/978-3-319-27308-2_5


http://www.springer.com/978-3-319-58942-8


	Using Everest Platform for Teaching Parallel and Distributed Computing
	1 Introduction
	2 Related Work
	3 Technical Aspects
	3.1 Everest Overview
	3.2 Generic Services for Running Parallel Programs
	3.3 Problem-Specific Services for Programming Assignments

	4 Use Cases
	4.1 Multi-threaded Programming
	4.2 Parallel Programming
	4.3 Distributed Data Processing

	5 Conclusion and Future Work
	References


