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Algebra

It is now time to split mathematics into branches. First, algebra. A section on algebraic
identities hones computational skills. It is followed naturally by inequalities. In general, any
inequality can be reduced to the question of finding the minimum of a function. But this is a
highly nontrivial matter, and that makes the subject exciting. We discuss the fact that squares
are nonnegative, the Cauchy-Schwarz inequality, the triangle inequality, the arithmetic mean-
geometric mean inequality, and also Sturm’s method for proving inequalities.

Our treatment of algebra continues with polynomials. We focus on quadratic polynomials,
the relations between zeros and coefficients, the properties of the derivative of a polynomial,
problems about the location of the zeros in the complex plane or on the real axis, and methods
for proving irreducibility of polynomials (such as the Eisenstein criterion). From all special
polynomials we present the most important, the Chebyshev polynomials.

Linear algebra comes next. The first three sections, about operations with matrices,
determinants, and the inverse of a matrix, insist on both the array structure of a matrix and
the ring structure of the set of matrices. They are more elementary, as is the section on
linear systems. The last three sections, about vector spaces and linear transformations, are
more advanced, covering among other things the Cayley-Hamilton Theorem and the Perron-
Frobenius Theorem.

The chapter concludes with a brief incursion into abstract algebra: binary operations,
groups, and rings, really no further than the definition of a group or a ring.

2.1 Identities and Inequalities

2.1.1 Algebraic Identities

The scope of this section is to train algebraic skills. Our idea is to hide behind each problem an
important algebraic identity. We commence with three examples, the first and the last written
by the second author of the book, and the second given at a Soviet Union college entrance
exam and suggested to us by A. Soifer.
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26 2 Algebra

Example. Solve in real numbers the system of equations

(3x + y)(x + 3y)
√
xy = 14,

(x + y)(x2 + 14xy + y2) = 36.

Solution. By substituting
√
x = u,

√
y = v, we obtain the equivalent form

uv(3u4 + 10u2v2 + 3v4) = 14,

u6 + 15u4v2 + 14u2v4 + v6 = 36.

Herewe should recognize elements of the binomial expansionwith exponent equal to 6. Based
on this observation we find that

36 + 2 · 14 = u6 + 6u5v + 15y4v2 + 20u3v3 + 15u2v4 + 6uv5 + v6

and

36 − 2 · 14 = u6 − 6u5v + 15y4v2 − 20u3v3 + 15u2v4 − 6uv5 + v6.

Therefore, (u + v)6 = 64 and (u − v)6 = 8, which implies u + v = 2 and u − v = ±√
2

(recall that u and v have to be positive). So u = 1 +
√
2
2 and v = 1 −

√
2
2 or u = 1 −

√
2
2 and

v = 1 +
√
2
2 . The solutions to the system are

(x, y) =
(
3

2
+ √

2,
3

2
− √

2

)
and (x, y) =

(
3

2
− √

2,
3

2
+ √

2

)
. �

Example. Given two segments of lengths a and b, construct with a straightedge and a compass
a segment of length 4

√
a4 + b4.

Solution. The solution is based on the following version of the Sophie Germain identity:

a4 + b4 = (a2 + √
2ab + b2)(a2 − √

2ab + b2).

Write

4
√
a4 + b4 =

√√
a2 + √

2ab + b2 ·
√
a2 − √

2ab + b2.

Applying the law of cosines, we can construct segments of lengths
√
a2 ± √

2ab + b2 using
triangles of sides a and b with the angle between them 135◦, respectively, 45◦.

On the other hand, given two segments of lengths x , respectively y, we can construct a
segment of length

√
xy (their geometric mean) as the altitude AD in a right triangle ABC

(∠A = 90◦) with BD = x and CD = y. These two steps combined give the method for
constructing 4

√
a4 + b4. �
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Example. Let x, y, z be distinct real numbers. Prove that

3
√
x − y + 3

√
y − z + 3

√
z − x �= 0.

Solution. The solution is based on the identity

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − bc − ca).

This identity arises from computing the circulant determinant

D =
∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣
in two ways: first by expanding with Sarrus’ rule, and second by adding up all columns to
the first, factoring (a + b+ c), and then expanding the remaining determinant. Note that this
identity can also be written as

a3 + b3 + c3 − 3abc = 1

2
(a + b + c)[(a − b)2 + (b − c)2 + (c − a)2].

Returning to the problem, let us assume the contrary, and set 3
√
x − y = a, 3

√
y − z = b,

3
√
z − x = c. By assumption, a + b + c = 0, and so a3 + b3 + c3 = 3abc. But this implies

0 = (x − y) + (y − z) + (z − x) = 3 3
√
x − y 3

√
y − z 3

√
z − x �= 0,

since the numbers are distinct. The contradiction we have reached proves that our assumption
is false, and so the sum is nonzero. �

And now the problems.

86. Show that for no positive integer n can both n + 3 and n2 + 3n + 3 be perfect cubes.

87. Let A and B be two n × n matrices that commute and such that for some positive
integers p and q, Ap = In and Bq = On . Prove that A + B is invertible, and find its
inverse.

88. Prove that any polynomial with real coefficients that takes only nonnegative values can
be written as the sum of the squares of two polynomials.

89. Prove that for any nonnegative integer n, the number 55
n+1 + 55

n + 1 is not prime.

90. Show that for an odd integer n ≥ 5,
(
n

0

)
5n−1 −

(
n

1

)
5n−2 +

(
n

2

)
5n−3 − · · · +

(
n

n − 1

)

is not a prime number.

91. Factor 51985 − 1 into a product of three integers, each of which is greater than 5100.
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92. Prove that the number
5125 − 1

525 − 1
is not prime.

93. Let a and b be coprime integers greater than 1. Prove that for n ≥ 0 is a2n + b2n

divisible by a + b.

94. Prove that any integer can be written as the sum of five perfect cubes.

95. Prove that

31∑
k=1

1

(k − 1)4/5 − k4/5 + (k − 1)4/5
<

3

2
+

31∑
k=1

(k − 1)1/5.

96. Solve in real numbers the equation

3
√
x − 1 + 3

√
x + 3

√
x + 1 = 0.

97. Find all triples (x, y, z) of positive integers such that

x3 + y3 + z3 − 3xyz = p,

where p is a prime number greater than 3.

98. Let a, b, c be distinct positive integers such that ab+ bc + ca ≥ 3k2 − 1, where k is a
positive integer. Prove that

a3 + b3 + c3 ≥ 3(abc + 3k).

99. Show that the expression

(x2 − yz)3 + (y2 − zx)3 + (x2 − yz)3 − 3(x2 − yz)(y2 − zx)(z2 − xy)

is a perfect square.

100. Find all triples (m, n, p) of positive integers such that m + n + p = 2002 and the
system of equations

x

y
+ y

x
= m,

y

z
+ z

y
= n,

z

x
+ x

z
= p

has at least one solution in nonzero real numbers.

2.1.2 x2 ≥ 0

We now turn to inequalities. The simplest inequality in algebra says that the square of any real
number is nonnegative, and it is equal to zero if and only if the number is zero. We illustrate
how this inequality can be used with an example by the second author of the book.

Example. Find the minimum of the function f : (0,∞)3 → R,

f (x, y, z) = xz + yz − (xy)z/4.
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Solution. Rewrite the function as

f (x, y, z) = (xz/2 − yz/2)2 + 2

[
(xy)z/4 − 1

4

]2
− 1

8
.

We now see that the minimum is − 1
8 , achieved if and only if

(x, y, z) =
(
a, a, loga

1

16

)
,

where a ∈ (0, 1) ∪ (1,∞). �

We continue with a problem from the 2001 USA team selection test proposed also by the
second author of the book.

Example. Let (an)n≥0 be a sequence of real numbers such that

an+1 ≥ a2n + 1

5
, for all n ≥ 0.

Prove that
√
an+5 ≥ a2n−5, for all n ≥ 5.

Solution. It suffices to prove that an+5 ≥ a2n , for all n ≥ 0. Let us write the inequality for five
consecutive indices:

an+1 ≥ a2n + 1

5
,

an+2 ≥ a2n+1 + 1

5
,

an+3 ≥ a2n+2 + 1

5
,

an+4 ≥ a2n+3 + 1

5
,

an+5 ≥ a2n+4 + 1

5
.

If we add these up, we obtain

an+5 − a2n ≥ (a2n+1 + a2n+2 + a2n+3 + a2n+4) − (an+1 + an+2 + an+3 + an+4) + 5 · 1
5

=
(
an+1 − 1

2

)2

+
(
an+2 − 1

2

)2

+
(
an+3 − 1

2

)2

+
(
an+4 − 1

2

)2

≥ 0.

The conclusion follows. �

And finally a more challenging problem from the 64th W.L. Putnam Mathematics Com-
petition.
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Example. Let f be a continuous function on the unit square. Prove that

∫ 1

0

(∫ 1

0
f (x, y)dx

)2

dx +
∫ 1

0

(∫ 1

0
f (x, y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0
f (x, y)dxdy

)2

+
∫ 1

0

∫ 1

0
f (x, y)2dxdy.

Solution. To make this problem as simple as possible, we prove the inequality for a Riemann
sum, and then pass to the limit. Divide the unit square into n2 equal squares, then pick a point
(xi , y j ) in each such square and define ai j = f (xi , y j ), i, j = 1, 2, . . . , n. Written for the
Riemann sum, the inequality becomes

1

n3
∑
i

⎛
⎝
⎛
⎝∑

j

ai j

⎞
⎠

2

+
⎛
⎝∑

j

a ji

⎞
⎠

2⎞
⎠ ≤ 1

n4

⎛
⎝∑

i j

ai j

⎞
⎠

2

+ 1

n2

⎛
⎝∑

i j

a2i j

⎞
⎠ .

Multiply this by n4, then move everything to one side. After cancellations, the inequality
becomes

(n − 1)2
∑
i j

a2i j +
∑

i �=k, j �=l

ai j akl − (n − 1)
∑

i jk, j �=k

(ai jaik + a jiaki ) ≥ 0.

Here we have a quadratic function in the ai j ’s that should always be nonnegative. In general,
such a quadratic function can be expressed as an algebraic sumof squares, and it is nonnegative
precisely when all squares appear with a positive sign. We are left with the problem of
representing our expression as a sum of squares. To boost your intuition, look at the following
tableau:

a11 . . . . . . . . . . . . . . . a1n
...

. . .
...

. . .
...

. . .
...

. . . . . . ai j . . . ail . . . . . .
...

. . .
...

. . .
...

. . .
...

. . . . . . akj . . . akl . . . . . .
...

. . .
...

. . .
...

. . .
...

an1 . . . . . . . . . . . . . . . ann

The expression
(ai j + akl − ail − akj )

2

when expanded gives rise to the following terms:

a2i j + a2kl + a2il + a2k j + 2ai jakl + 2ailak j − 2ailai j − 2ai jak j − 2aklail − 2aklak j .

For a fixed pair (i, j), the term ai j appears in (n− 1)2 such expressions. The products 2ai jakl
and 2ailak j appear just once, while the products 2ailai j , 2ai jak j , 2aklail , 2aklak j appear (n−1)
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times (once for each square of the form (i, j), (i, l), (k, j), (k, l)). It follows that the expression
that we are trying to prove is nonnegative is nothing but∑

i jkl

(ai j + akl − ail − akj )
2,

which is of course nonnegative. This proves the inequality for all Riemann sums of the
function f , and hence for f itself. �

101. Find min
a,b∈R

max(a2 + b, b2 + a).

102. Prove that for all real numbers x ,

2x + 3x − 4x + 6x − 9x ≤ 1.

103. Find all positive integers n for which the equation

nx4 + 4x + 3 = 0

has a real root.

104. Find all triples (x, y, z) of real numbers that are solutions to the system of equations

4x2

4x2 + 1
= y,

4y2

4y2 + 1
= z,

4z2

4z2 + 1
= x .

105. Find the minimum of

logx1

(
x2 − 1

4

)
+ logx2

(
x3 − 1

4

)
+ · · · + logxn

(
x1 − 1

4

)
,

over all x1, x2, . . . , xn ∈ ( 14 , 1).
106. Let a and b be real numbers such that

9a2 + 8ab + 7b2 ≤ 6.

Prove that 7a + 5b + 12ab ≤ 9.

107. Let a1, a2, . . . , an an be real numbers such that a1 + a2 + · · · + an ≥ n2 and a21 + a22 +
· · · + a2n ≤ n3 + 1. Prove that n − 1 ≤ ak ≤ n + 1 for all k.

108. Find all pairs (x, y) of real numbers that are solutions to the system

x4 + 2x3 − y = −1

4
+ √

3,

y4 + 2y3 − x = −1

4
− √

3.
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109. Let n be an even positive integer. Prove that for any real number x there are at least
2n/2 choices of the signs + and − such that

±xn ± xn−1 ± · · · ± x <
1

2
.

2.1.3 The Cauchy-Schwarz Inequality

A direct application of the discussion in the previous section is the proof of the Cauchy-
Schwarz (or Cauchy-Bunyakovski-Schwarz) inequality

n∑
k=1

a2k

n∑
k=1

b2k ≥
(

n∑
k=1

akbk

)2

,

where the equality holds if and only if the ai ’s and the bi ’s are proportional. The expression

n∑
k=1

a2k

n∑
k=1

b2k −
(

n∑
k=1

akbk

)2

is a quadratic function in the ai ’s and bi ’s. For it to have only nonnegative values, it should
be a sum of squares. And this is true by the Lagrange identity

n∑
k=1

a2k

n∑
k=1

b2k −
(

n∑
k=1

akbk

)2

=
∑
i<k

(aibk − akbi )
2.

Sadly, this proof works only in the finite-dimensional case, while the Cauchy-Schwarz
inequality is true in far more generality, such as for square integrable functions. Its cor-
rect framework is that of a real or complex vector space, which could be finite or infinite
dimensional, endowed with an inner product 〈·, ·〉.

By definition, an inner product is subject to the following conditions:
(i) 〈x, x〉 ≥ 0, with equality if and only if x = 0,
(ii) 〈x, y〉 = 〈y, x〉, for any vectors x, y (here the bar stands for complex conjugation if

the vector space is complex),
(iii) 〈λ1x1 + λ2x2, y〉 = λ1〈x1, y〉 + λ2〈x2, y〉, for any vectors x1, x2, y and scalars λ1

and λ2.
The quantity ‖x‖ = √〈x, x〉 is called the norm of x . Examples of inner product spaces

are Rn with the usual dot product, Cn with the inner product

〈(z1, z2, . . . , zn), (w1,w2, . . . ,wn)〉 = z1w1 + z2w2 + . . . + znwn,

but also the space of square integrable functions on an interval [a, b] with the inner product

〈 f, g〉 =
∫ b

a
f (t)g(t)dt.

The Cauchy-Schwarz inequality. Let x, y be two vectors. Then

‖x‖ · ‖y‖ ≥ |〈x, y〉|,
with equality if and only if the vectors x and y are parallel and point in the same direction.
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Proof. We have

0 ≤ 〈‖y‖x − ‖x‖y, ‖y‖x − ‖x‖y〉 = 2‖x‖2‖y‖2 − ‖x‖ · ‖y‖(〈x, y〉 + 〈y, x〉),
hence 2‖x‖ · ‖y‖ ≥ (〈x, y〉 + 〈y, x〉). Yet another trick: rotate y by 〈x, y〉/|〈x, y〉|. The
left-hand side does not change, but because of property (ii) the right-hand side becomes

1
|〈x,y〉|(〈x, y〉〈x, y〉 + 〈x, y〉〈x, y〉), which is the same as 2|〈x, y〉|. It follows that

‖x‖ · ‖y‖ ≥ |〈x, y〉|,
which is the Cauchy-Schwarz inequality in its full generality. In our sequence of deductions,
the only inequality that showed up holds with equality precisely when the vectors are parallel
and point in the same direction. �

As an example, if f and g are two complex-valued continuous functions on the interval
[a, b], or more generally two square integrable functions, then

∫ b

a
| f (t)|2dt

∫ b

a
|g(t)|2dt ≥

∣∣∣∣
∫ b

a
f (t)g(t)dt

∣∣∣∣
2

.

Let us turn to more elementary problems.

Example. Find the maximum of the function f (x, y, z) = 5x − 6y + 7z on the ellipsoid

2x2 + 3y2 + 4z2 = 1.

Solution. For a point (x, y, z) on the ellipsoid,

( f (x, y, z))2 = (5x − 6y + 7z)2 =
(

5√
2

· √
2x − 6√

3
· √

3y + 7

2
· 2z
)2

≤
((

5√
2

)2

+
(

− 6√
3

)2

+
(
7

2

)2
)(

(
√
2x)2 + (

√
3y)2 + (2z)2

)

= 147

4
(2x2 + 3y2 + 4z2) = 147

4
.

Hence the maximum of f is
√
147/2, reached at the point (x, y, z) on the ellipsoid for which

x, z > 0, y < 0, and x : y : z = 5√
2

: − 6√
3

: 7
2 . �

The next problem was on the short list of the 1993 International Mathematical Olympiad,
being proposed by the second author of the book.

Example. Prove that

a

b + 2c + 3d
+ b

c + 2d + 3a
+ c

b + 2a + 3b
+ d

a + 2b + 3c
≥ 2

3
,

for all a, b, c, d > 0.
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Solution. Denote by E the expression on the left. Then

4(ab + ac + ad + bc + bd + cd)E

= (a(b + 2c + 3d) + b(c + 2d + 3a) + c(d + 2a + 3b) + d(a + 2b + 3c))

×
(

a

b + 2c + 3s
+ b

c + 2d + 3a
+ c

b + 2a + 3b
+ d

a + 2b + 3c

)

≥ (a + b + c + d)2,

where the last inequality is a well-disguised Cauchy-Schwarz. Finally,

3(a + b + c + d)2 ≥ 8(ab + ac + ad + bc + bd + cd),

because it reduces to

(a − b)2 + (a − c)2 + (a − d)2 + (b − c)2 + (b − d)2 + (c − d)2 ≥ 0.

Combining these two and cancelling the factor ab + ac + ad + bc + bd + cd , we obtain the
inequality from the statement. �

And now a list of problems, all of which are to be solved using the Cauchy-Schwarz
inequality.

110. If a, b, c are positive numbers, prove that

9a2b2c2 ≤ (a2b + b2c + c2a)(ab2 + bc2 + ca2).

111. If a1 + a2 + · · · + an = n prove that a41 + a42 + · · · + a4n ≥ n.

112. Let a1, a2, . . . , an be distinct real numbers. Find the maximum of

a1aσ(a) + a2aσ(2) + · · · + anaσ(n)

over all permutations of the set {1, 2, . . . , n}.
113. Let f1, f2, . . . , fn be positive real numbers. Prove that for any real numbers

x1, x2, . . . , xn , the quantity

f1x
2
1 + f2x

2
2 + · · · + fnx

2
n − ( f1x1 + f2x2 + · · · + fnxn)2

f1 + f2 + · · · + fn

is nonnegative.

114. Find all positive integers n, k1, . . . , kn such that k1 + · · · + kn = 5n − 4 and

1

k1
+ · · · + 1

kn
= 1.
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115. Prove that the finite sequence a0, a1, . . . , an of positive real numbers is a geometric
progression if and only if

(a0a1 + a1a2 + · · · + an−1an)
2 = (a20 + a21 + · · · + a2n−1)(a

2
1 + a22 + · · · + a2n).

116. Let P(x) be a polynomial with positive real coefficients. Prove that
√
P(a)P(b) ≥ P(

√
ab),

for all positive real numbers a and b.

117. Consider the real numbers x0 > x1 > x2 > · · · > xn . Prove that

x0 + 1

x0 − x1
= 1

x1 − x2
+ · · · + 1

xn−1 − xn
≥ xn + 2n.

When does equality hold?

118. Prove that
sin3 a

sin b
+ cos3 a

cos b
≥ sec(a − b),

for all a, b ∈ (0, π
2

)
.

119. Prove that

1

a + b
+ 1

b + c
+ 1

c + a
+ 1

2 3
√
abc

≥ (a + b + c + 3
√
abc)2

(a + b)(b + c)(c + a)
,

for all a, b, c > 0.

2.1.4 The Triangle Inequality

In its most general form, the triangle inequality states that in a metric space X the distance
function δ satisfies

δ(x, y) ≤ δ(x, z) + δ(z, y), for any x, y, z ∈ X.

An equivalent form is
|δ(x, y) − δ(y, z)| ≤ δ(x, z).

Here are some familiar examples of distance functions: the distance between two real or
complex numbers as the absolute value of their difference, the distance between two vectors
in n-dimensional Euclidean space as the length of their difference ‖v − w‖, the distance
between two matrices as the norm of their difference, the distance between two continuous
functions on the same interval as the supremum of the absolute value of their difference. In
all these cases the triangle inequality holds.

Let us see how the triangle inequality can be used to solve a problem from T.B. Soulami’s
book Les olympiades de mathématiques: Réflexes et stratégies (Ellipses, 1999).
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Example. For positive numbers a, b, c prove the inequality

√
a2 − ab + b2 +

√
b2 − bc + c2 ≥

√
a2 + ac + c2.

Solution. The inequality suggests the following geometric construction. With the same
origin O , draw segments OA, OB, and OC of lengths a, b, respectively c, such that OB
makes 60◦ angles with OA and OC (see Figure 12).

The law of cosines in the triangles OAB, OBC , and OAC gives AB2 = a2 − ab + b2,
BC2 = b2 − bc + c2, and AC2 = a2 + ac + c2. Plugging these formulas into the triangle
inequality AB + BC ≥ AC produces the inequality from the statement. �

60
60

C

A

B

o
o

O
a

b
c

Figure 12

Example. Let P(x) be a polynomial whose coefficients lie in the interval [1, 2], and let Q(x)
and R(x) be two nonconstant polynomials such that P(x) = Q(x)R(x), with Q(x) having
the dominant coefficient equal to 1. Prove that |Q(3)| > 1.

Solution. Let P(x) = anxn + an−1xn−1 + · · ·+ a0. We claim that the zeros of P(x) lie in the
union of the half-plane Re z = 0 and the disk |z| < 2.

Indeed, suppose that P(x) has a zero z such that Re, z > 0 and |z| = 2. From P(z) = 0,
we deduce that

anz
n + an−1z

n−1 = −an−2z
n−2 − an−3z

n−3 − · · · − a0.

Dividing through by zn , which is not equal to 0, we obtain

an + an−1

z
= −an−2

z2
− an−3

z3
− · · · − a0

zn
.

Note that Re z > 0 implies that Re 1
z > 0. Hence

1 ≤ an ≤ Re

(
an + an−1

z

)
= Re

(
−an−2

z2
− an−3

z3
− · · · − a0

zn

)

≤
∣∣∣∣−an−2

z2
− an−3

z3
− · · · − a0

zn

∣∣∣∣ ≤ an−2

|z|2 + an−3

|z|3 + · · · + a0
|z|n ,
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where for the last inequality we used the triangle inequality. Because the ai ’s are in the interval
[1, 2], this is strictly less than

2|z|−2(1 + |z|−1 + |z|−2 + · · · ) = 2|z|−2

1 − |z|−1
.

The last quantity must therefore be greater than 1. But this cannot happen if |z| ≥ 2, because

the inequality reduces to
(

2
|z| − 1

) (
1
|z| + 1

)
> 0, impossible. This proves the claim.

Returning to the problem, Q(x) = (x − z1)(x − z2) · · · (x − zk), where z1, z2, . . . , zk are
some of the zeros of P(x). Then

|Q(3)| = |3 − z1| · |3 − z2| · · · |3 − zk |.
If Re zi ≤ 0, then |3 − zi | ≥ 0. On the other hand, if |zi | < 2, then by the triangle

inequality |3− zi | ≥ 3− |zi | > 1. Hence |Q(3)| is a product of terms greater than 1, and the
conclusion follows. �

More applications follow.

120. Let a, b, c be the side lengths of a triangle with the property that for any positive
integer n, the numbers an, bn, cn can also be the side lengths of a triangle. Prove that
the triangle is necessarily isosceles.

121. Given the vectors −→a ,
−→
b ,

−→c in the plane, show that

‖−→a ‖ + ‖−→b ‖ + ‖−→c ‖ + ‖−→a + −→
b + −→c ‖ ≥ ‖−→a + −→

b ‖ + ‖−→a + −→c ‖ + ‖−→b + −→c ‖.

122. Let P(z) be a polynomial with real coefficients whose roots can be covered by a disk of
radius R. Prove that for any real number k, the roots of the polynomial nP(z)−kP ′(z)
can be covered by a disk of radius R + |k|, where n is the degree of P(z), and P ′(z) is
the derivative.

123. Prove that the positive real numbers a, b, c are the side lengths of a triangle if and only
if

a2 + b2 + c2 < 2
√
a2b2 + b2c2 + c2a2.

124. Let ABCD be a convex cyclic quadrilateral. Prove that

|AB − CD| + |AD − BC | ≥ 2|AC − BD|.

125. Let V1, V2, . . . , Vm and W1,W2, . . . ,Wm be isometries of Rn (m, n positive integers).
Assume that for all x with ‖x‖ ≤ 1, ‖Vi x − Wix‖ ≤ 1, i = 1, 2, . . . ,m. Prove that

∥∥∥∥∥
(

m∏
i=1

Vi

)
x −
(

m∏
i=1

Wi

)
x

∥∥∥∥∥ ≤ m,

for all x with ‖x‖ ≤ 1.
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126. Given an equilateral triangle ABC and a point P that does not lie on the circumcircle
of ABC , show that one can construct a triangle with sides the segments PA, PB, and
PC . If P lies on the circumcircle, show that one of these segments is equal to the sum
of the other two.

127. Let M be a point in the plane of the triangle ABC whose centroid is G. Prove that

MA3 · BC + MB3 · AC + MC3 · AB ≥ 3MG · AB · BC · CA.

2.1.5 The Arithmetic Mean-Geometric Mean Inequality

Jensen’s inequality, which will be discussed in the section about convex functions, states that
if f is a real-valued concave function, then

f (λ1x1 + λ2x2 + · · · + λnxn) ≥ λ1 f (x1) + λ2 f (x2) + · · · + λn f (xn),

for any x1, x2, . . . , xn in the domain of f and for any positive weights λ1, λ2, . . . , λn with
λ1 + λ2 + · · · + λn = 1. Moreover, if the function is nowhere linear (that is, if it is strictly
concave) and the numbers λ1, λ2, . . . , λn are nonzero, then equality holds if and only if
x1 = x2 = · · · = xn .

Applying this to the concave function f (x) = ln x , the positive numbers x1, x2, . . . , xn ,
and the weights λ1 = λ2 = · · · = λn = 1

n , we obtain

ln
x1 + x2 + · · · + xn

n
≥ ln x1 + ln x2 + · · · + ln xn

n
.

Exponentiation yields the following inequality.

The arithmetic mean-geometric mean inequality. Let x1, x2, . . . , xn be nonnegative real
numbers. Then

x1 + x2 + · · · + xn
n

≥ n
√
x1x2 · · · xn,

with equality if and only if all numbers are equal.

Proof. We will call this inequality AM-GM for short. We give it an alternative proof using
derivatives, a proof by induction on n. For n = 2 the inequality is equivalent to the obvious
(
√
a1 − √

a2)2 ≥ 0. Next, assume that the inequality holds for any n − 1 positive numbers,
meaning that

x1 + x2 + · · · + xn−1

n − 1
≥ n−1

√
x1x2 · · · xn−1,

with equality only when x1 = x2 = · · · = xn−1. To show that the same is true for n numbers,
consider the function f : (0,∞) → R,

f (x) = x1 + x2 + · · · + xn−1 + x

n
− n

√
x1x2 · · · xn−1x .

To find the minimum of this function we need the critical points. The derivative of f is

f ′(x) = 1

n
−

n
√
x1x2 · · · xn−1

n
x

1
n −1 = x

1
n −1

n

(
x1−

1
n − n

√
x1x2 · · · xn−1

)
.
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Setting this equal to zero, we find the unique critical point x = n−1
√
x1x2 · · · xn , since in this

case x1−
1
n = n

√
x1x2 · · · xn−1. Moreover, the function x1−

1
n is increasing on (0,∞); hence

f ′(x) < 0 for x < n−1
√
x1x2 · · · xn−1, and f ′(x) > 0 for x > n−1

√
x1x2 · · · xn−1. We find that

f has a global minimum at x = n−1
√
x1x2 · · · xn−1, where it takes the value

f
(

n−1
√
x1x2 · · · xn−1

) = x1 + x2 + · · · + xn−1 + n−1
√
x1x2 · · · xn−1

n
− n

√
x1x2 · · · xn−1 · n(n−1)

√
x1x2 · · · xn−1

= x1 + x2 + · · · + xn−1 + n−1
√
x1x2 · · · xn−1

n
− n−1

√
x1x2 · · · xn−1

= x1 + x2 + · · · + xn−1 − (n − 1) n−1
√
x1x2 · · · xn−1

n
.

By the induction hypothesis, this minimum is nonnegative, and is equal to 0 if and only if
x1 = x2 = · · · = xn−1. We conclude that f (xn) ≥ 0 with equality if and only if x1 = x2 =
· · · = xn−1 and xn = n−1

√
x1x2 · · · xn−1 = x1. This completes the induction. �

We apply the AM-GM inequality to solve two problems composed by the second author
of the book.

Example. Find the global minimum of the function f : R2 → R,

f (x, y) = 3x+y(3x−1 + 3y−1 − 1).

Solution. The expression

3 f (x, y) + 1 = 32x+y + 3x+2y + 1 − 3 · 3x+y

is of the form a3 + b3 + c3 − 3abc, where a = 3
√
32x+y , b = 3

√
3x+2y , and c = 1, all of which

are positive. By the AM-GM inequality, this expression is nonnegative. It is equal to zero
only when a = b = c, that is, when 2x + y = x + 2y = 0. We conclude that the minimum
of f is f (0, 0) = − 1

3 . �

Example. Let a, b, c, d be positive real numbers with abcd = 1. Prove that

a

b + c + d + 1
+ b

c + d + a + 1
+ c

d + a + b + 1
+ d

a + b + c + 1
≥ 1.

Solution. A first idea is to homogenize this inequality, and for that we replace the 1 in each
denominator by 4

√
abcd , transforming the inequality into

a

b + c + d + 4
√
abcd

+ b

c + d + a + 4
√
abcd

+ c

d + a + b + 4
√
abcd

+ d

a + b + c + 4
√
abcd

≥ 1.
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Then we apply the AM-GM inequality to the last term in each denominator to obtain the
stronger inequality

4a

a + 5(b + c + d)
+ 4b

b + 5(c + d + a)
+ 4c

c + 5(d + a + b)
+ 4d

d + 5(a + b + c)
≥ 1,

which we proceed to prove.
In order to simplify computations, it is better to denote the four denominators by 16x ,

16y, 16z, 16w, respectively. Then a + b + c + d = x + y + z + w, and so 4a + 16x =
4b + 16y = 4c + 16z = 4d + 16w = 5(x + y + z + w). The inequality becomes

−11x + 5(y + z + w)

16x
+ −11y + 5(z + w + x)

16y
+ −11z + 5(w + x + y)

16z

+ −11w + 5(x + y + z)

16w
≥ 1,

or

−4 · 11 + 5

(
y

x
+ z

x
+ w

x
+ z

y
+ w

y
+ x

y
+ w

z
+ x

z
+ y

z
+ x

w
+ y

w
+ z

w

)
≥ 16.

And this follows by applying the AM-GM inequality to the twelve summands in the paren-
theses. �

We continue with a third example, which is an problem of A. Basyoni that was given
in 2015 at a preliminary selection test for the team that represented the United States at the
International Mathematical Olympiad in 2016.

Example. Let x, y, z be real numbers satisfying x4 + y4 + z4 + xyz = 4. Show that
√
2 − x ≥ y + z

2
.

Solution. We have selected the problem for the book because of this elegant solution based
on the AM-GM inequality found by the member of the Canadian team Zh.Q. (Alex) Song. It
suffices to show that √

2 − x ≥
∣∣∣∣ y + z

2

∣∣∣∣ .
This inequality and the fact that the square root is well defined follow simultaneously if we
prove that

x +
(
y + z

2

)2

≤ 2.

Apply the AM-GM inequality three times:

x4

8
+ y4

8
+ y4

8
+1

8
≥ xy2

2
x4

8
+ z4

8
+ z4

8
+1

8
≥ xz2

2
3x4

4
+3

4
≥ 3x2

2
.
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Then apply the power-mean inequality:

y4 + z4

2
≥
(
y + z

2

)4

,

to write

3y4

4
+ 3z4

4
≥ 3

2

(
y + z

2

)4

.

Now add the four inequalities and use the relation from the statement to obtain

5 ≥ 3

2
x2 + 3

2

[(
y + z

2

)2
]2

+ 2

[
x

(
y + z

2

)]2
.

Finally, noticing that the AM-GM inequality implies

1

4

⎛
⎝x2 +

[(
y + z

2

)2
]2⎞
⎠ ≥ 1

2

[
x

(
y + z

2

)2
]

,

we obtain

5 ≥ 5

4

[
x +
(
y + z

2

)2
]2

,

and the conclusion follows. �

For completeness let us prove this particular case of the power mean inequality:

y4 + z4

2
≥
(
y2 + z2

2

)2

≥
[(

y + z

2

)2
]2

=
(
y + z

2

)4

.

It becomes clear after expanding the square that the first inequality is a consequence of the
AM-GM inequality. Taking the square root of the second inequality, we recognize that it is
of the same type. So we are done.
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Try your hand at the following problems.

128. Show that all real roots of the polynomial P(x) = x5 − 10x + 35 are negative.

129. Find all real numbers that satisfy

x · 2 1
x + 1

x
· 2x = 4.

130. Let a1, a2, . . . , an and b1, b2, . . . , bn be nonnegative numbers. Show that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ ((a1 + b1)(a2 + b2) · · · (an + bn))
1/n.

131. Let a, b, c be the side lengths of a triangle with semiperimeter 1. Prove that

1 < ab + bc + ca − abc ≤ 28

27
.

132. Which number is larger,
25∏
n=1

(
1 − n

365

)
or

1

2
?

133. On a sphere of radius 1 are given four points A, B,C, D such that

AB · AC · AD · BC · BD · CD = 29

33
.

Prove that the tetrahedron ABCD is regular.

134. Prove that
y2 − x2

2x2 + 1
+ z2 − y2

2y2 + 1
+ x2 − z2

2z2 + 1
≥ 0,

for all real numbers x, y, z.

135. Let a1, a2, . . . , an be positive real numbers such that a1 + a2 + · · · + an < 1. Prove
that

a1a2 · · · an(1 − (a1 + a2 + · · · + an))

(a1 + a2 + · · · + an)(1 − a1)(1 − a2) · · · (1 − an)
≤ 1

nn+1
.

136. Consider the positive real numbers x1, x2, . . . , xn with x1x2 · · · xn = 1. Prove that

1

n − 1 + x1
+ 1

n − 1 + x2
+ · · · + 1

n − 1 + xn
≤ 1.



2.1 Identities and Inequalities 43

2.1.6 Sturm’s Principle

In this section we present a method for proving inequalities that is based on real analysis. It
is based on a principle attributed to R. Sturm, phrased as follows.

Sturm’s principle. Given a function f defined on a set M and a point x0 ∈ M, if

(i) f has a maximum (minimum) on M, and

(ii) if no other point x in M is a maximum (minimum) of f ,

then x0 is the maximum (minimum) of f .

But how to decide whether the function f has a maximum or a minimum? Two results
from real analysis come in handy.

Theorem. A continuous function on a compact set always attains its extrema.

Theorem. A closed and bounded subset of Rn is compact.

Let us see how Sturm’s principle can be applied to a problem from the first Balkan
Mathematical Olympiad in 1984.

Example. Letα1, α2, . . . , αn be positive real numbers, n ≥ 2, such thatα1+α2+· · ·+αn = 1.
Prove that

α1

1 + α2 + · · · + αn
+ α2

1 + α1 + · · · + αn
+ · · · + αn

1 + α1 + · · · + αn−1
≥ n

2n − 1
.

Solution. Rewrite the inequality as

α1

2 − α1
+ α2

2 − α2
+ · · · + αn

2 − αn
≥ n

2n − 1
,

and then define the function

f (α1, α2, . . . , αn) = α1

2 − α1
+ α2

2 − α2
+ · · · + αn

2 − αn
.

As said in the statement, this function is defined on the subset ofRn consisting of points whose
coordinates are positive and add up to 1. We would like to show that on this set f is greater
than or equal to n

2n−1 .
Does f have a minimum? The domain of f is bounded but is not closed, being the interior

of a tetrahedron. We can enlarge it, though, by adding the boundary, to the set

M = {(α1, α2, . . . , αn) | α1 + α2 + · · · + αn = 1, αi ≥ 0, i = 1, 2, . . . , n}.
We now know that f has a minimum on M .

A look at the original inequality suggests that the minimum is attained when all the αi ’s
are equal. So let us choose a point (α1, α2, . . . , αn) for which αi �= α j for some indices i, j .
Assume that αi < α j and let us see what happens if we substitute αi + x for αi and α j − x
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for α j , with 0 < x < α j − αi . In the defining expression of f , only the i th and j th terms
change. Moreover,

αi

2 − αi
+ α j

2 − α j
− αi + x

2 − αi − x
− α j − x

2 − α j + x

= 2x(α j − αi − x)(4 − αi − α j )

(2 − αi )(2 − α j )(2 − αi − x)(2 − α j − x)
> 0,

so on moving the numbers closer, the value of f decreases. It follows that the point that we
picked was not a minimum. Hence the only possible minimum is

(
1
n ,

1
n , . . . ,

1
n

)
, in which

case the value of f is n
2n−1 . This proves the inequality. �

However, in most situations, as is the case with this problem, we can bypass the use of
real analysis and argue as follows. If the ai ’s were not all equal, then one of them must be
less than 1

n and one of them must be greater. Take these two numbers and move them closer
until one of them reaches 1

n . Then stop and choose another pair. Continue the algorithm until
all numbers become 1

n . At this very moment, the value of the expression is

1

n

(
2 − 1

n

)−1

· n = n

2n − 1
.

Since during the process the value of the expression kept decreasing, initially it must have
been greater than or equal to n

2n−1 . This proves the inequality.
Let us summarize the last idea. Wewant tomaximize (orminimize) an n-variable function,

and we have a candidate for the extremum. If we can move the variables one by one toward
the maximum without decreasing (respectively, increasing) the value of the function, than the
candidate is indeed the desired extremum. This approach is more elementary but can be more
time consuming than the application of the principle itself.

Let us revisit the AM-GM inequality with a proof using Sturm’s principle.

The arithmetic mean-geometric mean inequality. Let x1, x2, . . . , xn be nonnegative real
numbers. Then

x1 + x2 + · · · + xn
n

≥ n
√
x1x2 · · · xn.

with equality if and only if x1 = x2 = · · · = xn .

Proof. The inequality is homogeneous in the variables, so the general case follows if we check
the inequality for a fixed value of the sum of the numbers, say x1 + x2 + · · · + xn = 1. This
amounts to checking that n

√
x1x2 · · · xn ≤ 1

n if x1 + x2 + · · · + xn = 1 with equality only
when x1 = x2 = · · · = xn , and this is equivalent to checking x1x2 · · · xn ≤ 1

nn with equality
as specified.

The set

K = {(x1, x2, . . . , xn) ⊂ R
n | x j ≥ 0, x1 + x2 + · · · + xn = 1}

contains all its limit points, so it is closed. It also lies in the hypercube [0, 1]n so it is bounded,
thus it is compact. The function

f : K → R, f (x1, x2, . . . , xn) = x1x2 · · · xn
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is continuous, being a polynomial, so it attains its maximum. This maximum is not attained
at a point where not all x j are equal, because if x j < xk and we replace x j by x j + ε and xk
by xk − ε, where ε = xk−x j

2 , then the value of f increases to

∏
i �= j,k

xi (x j + ε)(xk − ε) =
∏
i �= j,k

xi (x j xk + ε(xk − x j ) + ε2)

=
∏
i �= j,k

xi (x j xk + ε2) = f (x1, x2, · · · , xn) + ε2
∏
i �= j,k

xi .

Thus the only candidate for the maximum is ( 1n ,
1
n , · · · , 1

n ) and in this case the inequality
holds with equality. �

You can find more applications of Sturm’s principle below.

137. Let a, b, c be nonnegative real numbers such that a + b + c = 1. Prove that

4(ab + bc + ac) − 9abc ≤ 1.

138. Let x1, x2, . . . , xn , n ≥ 2, be positive numbers such that

x1 + x2 + · · · + xn = 1.

Prove that (
1 + 1

x1

)(
1 + 1

x2

)
· · ·
(
1 + 1

xn

)
≥ (n + 1)n.

139. Prove that a necessary and sufficient condition that a triangle inscribed in an ellipse
have maximum area is that its centroid coincide with the center of the ellipse.

140. Let n > 2 be an integer. A convex n-gon of area 1 is inscribed in a circle. What is the
minimum that the radius of the circle can be?

141. Let a, b, c > 0, a + b + c = 1. Prove that

0 ≤ ab + bc + ac − 2abc ≤ 7

27
.

142. Let x1, x2, . . . , xn be n real numbers such that 0 < x j ≤ 1
2 , for 1 ≤ j ≤ n. Prove the

inequality
n∏
j=1

x j

⎛
⎝ n∑

j=1

x j

⎞
⎠

n ≤

n∏
j=1

(1 − x j )

⎛
⎝ n∑

j=1

(1 − x j )

⎞
⎠

n .
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143. Let a, b, c, and d be nonnegative numbers such that a ≤ 1, a+ b ≤ 5, a+ b+ c ≤ 14,
a + b + c + d ≤ 30. Prove that

√
a + √

b + √
c + √

d ≤ 10.

144. What is the maximal value of the expression
∑
i< j

xi x j if x1, x2, . . . , xn are nonnegative

integers whose sum is equal to m?

145. Given the n × n array (ai j )i j with ai j = i + j − 1, what is the smallest product of n
elements of the array provided that no two lie on the same row or column?

146. Given a positive integer n, find the minimum value of

x31 + x32 + · · · + x3n
x1 + x2 + · · · + xn

subject to the condition that x1, x2, . . . , xn be distinct positive integers.

2.1.7 Other Inequalities

We conclude with a section for the inequalities aficionado. Behind each problem hides a
famous inequality.

147. If x and y are positive real numbers, show that x y + yx > 1.

148. Prove that for all a, b, c ≥ 0,

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a + b + c)3.

149. Assume that all the zeros of the polynomial P(x) = xn + a1xn−1 + · · · + an are real
and positive. Show that if there exist 1 ≤ m < p ≤ n such that am = (−1)m

(n
m

)
and

ap = (−1)p
(n
p

)
, then P(x) = (x − 1)n .

150. Let n > 2 be an integer, and let x1, x2, . . . , xn be positive numbers with the sum equal
to 1. Prove that

n∏
i=1

(
1 + 1

xi

)
≥

n∏
i=1

(
n − xi
1 − xi

)
.

151. Let a1, a2, . . . , an , b1, b2, . . . , bn be real numbers such that

(a21 + a22 + · · · + a2n − 1)(b21 + b22 + · · · + b2n − 1) > (a1b1 + a2b2 + · · · + anbn − 1)2.

Prove that a21 + a22 + · · · + a2n > 1 and b21 + b22 + · · · + b2n > 1.

152. Let a, b, c, d be positive numbers such that abc = 1. Prove that

1

a3(b + c)
+ 1

b3(c + a)
+ 1

c3(a + b)
≥ 3

2
.



2.2 Polynomials 47

2.2 Polynomials

2.2.1 A Warmup in One-Variable Polynomials

A polynomial is a sum of the form

P(x) = anx
n + an−1x

n−1 + · · · + a0,

where x is the variable, and an, an−1, . . . , a0 are constant coefficients. If an �= 0, the num-
ber n is called the degree, denoted by deg(P(x)). If an = 1, the polynomial is called
monic. The sets, which, in fact, are rings, of polynomials with integer, rational, real, or
complex coefficients are denoted, respectively, by Z[x], Q[x], R[x], and C[x]. A number r
such that P(r) = 0 is called a zero of P(x), or a root of the equation P(x) = 0. By the
Gauss-d’Alembert theorem, also called the fundamental theorem of algebra, every noncon-
stant polynomial with complex coefficients has at least one complex zero. Consequently, the
number of zeros of a polynomial equals the degree, multiplicities counted. For a number α,
P(α) = anαn + an−1α

n−1 + · · · + a0 is called the value of the polynomial at α.
We begin the section on polynomials with an old problem from the 1943 competition of

the Mathematics Gazette, Bucharest, proposed by Gh. Buicliu.

Example. Verify the equality

3
√
20 + 14

√
2 + 3
√
20 − 14

√
2 = 4.

Solution. Apparently, this problem has nothing to do with polynomials. But let us denote the
complicated irrational expression by x and analyze its properties. Because of the cube roots,
it becomes natural to raise x to the third power:

x3 = 20 + 14
√
2 + 20 − 14

√
2

+ 3
3
√

(20 + 14
√
2)(20 − 14

√
2)

(
3
√
20 + 14

√
2 + 3
√
20 − 14

√
2

)

= 40 + 3x 3
√
400 − 392 = 40 + 6x .

And now we see that x satisfies the polynomial equation

x3 − 6x − 40 = 0.

We have already been told that 4 is a root of this equation. The other two roots are complex,
and hence x can only equal 4, the desired answer. �

Of course, one can also recognize the quantities under the cube roots to be the cubes of
2 + √

2 and 2 − √
2, but that is just a lucky strike.

The second example is a problem from the Russian Journal Kvant (Quantum), proposed
by A. Alexeev.
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Example. Prove that for every odd positive integer n, there is a constant cn such that

tan x + tan
(
x + π

n

)+ · · · + tan
(
x + (n−1)π

n

)

tan x tan
(
x + π

n

) · · · tan (x + (n−1)π
n

) = cn,

for all x for which the denominator is nonzero. Find the value of cn .

Solution. Since the tangent function is periodic with period π , it suffices to look at x ∈ [0, π].
Consider the function f : [0, π] → R,

f (x) =
tan x + tan

(
x + π

n

)+ · · · + tan
(
x + (n−1)π

n

)

tan x tan
(
x + π

n

) · · · tan (x + (n−1)π
n

) .

Denote tan x = ξ and tan kπ
n = tk , k = 0, 1, . . . n − 1. Then the numerator and the

denominator are of the form

P1(ξ)

Q(ξ)
= ξ + ξ + t1

1 − ξ t1
+ · · · + ξ + tn−1

1 − ξ tn−1

P2(ξ)

Q(ξ)
= ξ · ξ + t1

1 − ξ t1
· · · ξ + tn−1

1 − ξ tn−1

where P1(ξ), P2(ξ), Q(ξ) are polynomials, and Q(ξ) = (1 − ξ t1)(1 − ξ t2) · · · (1 − ξ tn−1).
The polynomials P1(ξ), P2(ξ) have nth degree. Because of the fact that n is odd, and of

the trigonometric identity tan(π − x) = − tan x , the roots of P1(ξ) must be 0, t1, t2, . . . , tn−1.
Of course these are also the roots of P2(ξ). It follows that one of the polynomials is a constant
multiple of the other. This proves the existence of the constant cn .

To find cn , note that it is equal to the ratio of the dominant coefficient of the polynomials
P1(ξ) and P2(ξ). In the case of the first polynomial, this coefficient is

tan
π

n
tan

2π

n
· · · tan (n − 1)π

n
= (−1)

n−1
2 n (See Problem 207).

For the second polynomial this number is equal to 1. Hence cn = (−1)
n−1
2 n. �

And now the problems.

153. Find all solutions to the equation

(x + 1)(x + 2)(x + 3)2(x + 4)(x + 5) = 360.

154. Solve the polynomial equation

x3 − (7 + 2
√
5)x + √

5 + 1 = 0.
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155. Let a, b, c be real numbers. Prove that three roots of the equation

b + c

x − a
+ c + a

x − b
+ a + b

x − c
= 3

are real.

156. Find all polynomials satisfying the functional equation

(x + 1)P(x) = (x − 10)P(x + 1).

157. Let n > 1 be an integer and x, a1, a2, . . . , an be distinct real numbers. Show that

(x − a2)(x − a3) · · · (x − an)

(a1 − a2)(a1 − a3) · · · (a1 − an)
+ (x − a1)(x − a3) · · · (x − an)

(a2 − a1)(a2 − a3) · · · (a2 − an)

+ · · · + (x − a1)(x − a2) · · · (x − an−1)

(an − a1)(an − a2) · · · (an − an−1)
= 1.

158. Let P(x) be a polynomial of odd degree with real coefficients. Show that the equation
P(P(x)) = 0 has at least as many real roots as the equation P(x) = 0, counted without
multiplicities.

159. Let P(x) = x2 + 2007x + 1. Prove that for every positive integer n, P (n)(x) = 0 has
at least one real root, where P (n) denotes P composed with itself n times.

160. Determine all polynomials P(x) with real coefficients for which there exists a positive
integer n such that for all x ,

P

(
x + 1

n

)
+ P

(
x − 1

n

)
= 2P(x).

161. Find a polynomial with integer coefficients that has the zero
√
2 + 3

√
3.

162. Let P(x) be a polynomial with real coefficients that satisfies the functional equation

(x − 1)P(x + 2) = (x + 1)P(x − 1) + 2, for all x ∈ R.

Compute P(−1989).

163. Consider the polynomial with real coefficients P(x) = x6 + ax5 + bx4 + cx3 + bx2 +
ax + 1, and let x1, x2, . . . , x6 be its zeros. Prove that

6∏
k=1

(x2k + 1) = (2a − c)2.

164. Let P(z) = (z − z1)(z − z2) · · · (z − zn) with |zi | ≥ 1, i = 1, 2, . . . , n. Prove that if
0 < r < 1, then for any z, with |z| = 1,

∣∣∣∣ P(z)

P(r z)

∣∣∣∣ ≤
(

2

1 + r

)n

.
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165. Let P(x) = x4 + ax3 + bx2 + cx + d and Q(x) = x2 + px + q be two polynomials
with real coefficients. Suppose that there exists an interval (r, s) of length greater than
2 such that both P(x) and Q(x) are negative for x ∈ (r, s) and both are positive for
x < r or x > s. Show that there is a real number x0 such that P(x0) < Q(x0).

166. Let P(x) be a polynomial of degree n. Knowing that

P(k) = k

k + 1
, k = 0, 1, . . . , n,

find P(m) for m > n.

167. Consider the polynomials with complex coefficients

P(x) = xn + a1x
n−1 + · · · + an

with zeros x1, x2, . . . , xn and

Q(x) = xn + b1x
n−1 + · · · + bn

with zeros x21 , x
2
2 , . . . , x

2
n . Prove that if a1 + a3 + a5 + · · · and a2 + a4 + a6 + · · · are

both real numbers, then so is b1 + b2 + · · · + bn .

168. Let P(x) be a polynomial with complex coefficients. Prove that P(x) is an even func-
tion if and only if there exists a polynomial Q(x) with complex coefficients satisfying

P(x) = Q(x)Q(−x).

2.2.2 Polynomials in Several Variables

Let us switched to polynomials in several variables. The first example was published by the
first author in Mathematical Reflections.

Example. Given that the real numbers x, y, z satisfy x + y + z = 0 and

x4

2x2 + yz
+ y4

2y2 + xz
+ z4

2z2 + xy
= 1,

determine, with proof, all possible values of x4 + y4 + z4.

Solution. First note that x, y, z have to be distinct, or else one of the denominators will be
zero. We have

2x2 + yz = x2 + x2 + yz = x2 − (y + z)x + yz = (x − y)(x − z).

Similarly 2y2 + xz = (y − z)(y − x) and 2z2 + xy = (z − x)(z − y). Hence the second
equation from the statement can be written as

x4

(x − y)(z − x)
+ y4

(x − y)(y − z)
+ z4

(z − x)(y − z)
= −1,
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which gives the following equality

x4(y − z) + y4(z − x) + z4(x − y) = −(x − y)(y − z)(z − x).

Viewing the left-hand side as a polynomial in x , the zeros of the polynomial are y and z, and
its coefficients are divisible by y − z. Hence there is a quadratic homogeneous symmetric
polynomial Q(x, y, z) such that

x4(y − z) + y4(z − x) + z4(x − y) = (x − y)(y − z)(z − x)Q(x, y, z).

Write Q(x, y, z) = α(x2 + y2 + z2) + β(xy + xz + yz). Equating the coefficients of x4 on
both sides gives α = −1. Equating the coefficients of x3y2 on both sides gives 0 = −1 − β,
hence β = −1. We conclude that Q(x, y, z) = −(x2 + y2 + z2 + xy + xz + yz). Hence

(x − y)(y − z)(z − x)(x2 + y2 + x2 + xy + xz + yz) = −(x − y)(y − z)(z − x).

Given that (x + y + z)2 = 0, we have x2 + y2 + z2 = −2xy − 2xz − 2yz, and we obtain

xy + xz + yz = −1,

or

x2 + y2 + z2 = 2.

Then

1 = (xy + xz + yz)2 = x2y2 + x2z2 + y2z2 + 2xyz(x + y + z) = x2y2 + x2z2 + y2z2,

and hence

x4 + y4 + z4 = (x2 + y2 + z2)2 − 2(x2y2 + x2z2 + y2z2) = 4 − 2 = 2.

We conclude that the answer to the question is 2. �

We continue with problems left to the reader.

169. Given the polynomial P(x, y, z) prove that the polynomial

Q(x, y, z) = P(x, y, z) + P(y, z, x) + P(z, x, y)

− P(x, z, y) − P(y, x, z) − P(z, y, x)

is divisible by (x − y)(y − z)(z − x).

170. Let x, y, z be positive integers greater than 1. Prove that the expression

(x + y + z)3 − (−x + y + z)3 − (x − y + z)3 − (x + y − z)3

is the product of seven (not necessarily distinct) integers each of which is greater than
one.
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171. Factor completely the expression

(x + y + z)5 − (−x + y + z)5 − (x − y + z)5 − (x + y − z)5.

172. Factor the expression

E = a3(b − c) + b3(c − a) + c3(a − b).

173. What conditions should the real numbers a, b, c, d satisfy in order for the equation

(x − b)(x − c)(x − d)

(a − b)(a − c)(a − d)
+ (x − a)(x − c)(x − d)

(b − a)(b − c)(b − d)
+ (x − a)(x − b)(x − d)

(c − a)(c − b)(c − d)

+ (x − a)(x − b)(x − c)

(d − a)(d − b)(d − c)
= abcd

to admit real solutions.

174. Is there a polynomial P(x, y, z) with integer coefficients such that P(x, y, z) and
x + 3

√
2y + 3

√
3z have the same sign for all integers x, y, z?

175. Let f (x, y, z) = x2 + y2 + z2 + xyz. Let p(x, y, z), q(x, y, z), r(x, y, z) be polyno-
mials with real coefficients satisfying

f (p(x, y, z), q(x, y, z), r(x, y, z)) = f (x, y, z).

Prove or disprove the assertion that the sequence p, q, r consists of some permutation
of ±x , ±y, ±z where the number of minus signs is 0 or 2.

176. Find all positive integers p, q, with p > 2q, and real numbers a such that the two-
variable polynomial

x p + ax p−q yq + ax p−2q y2q + y p

is divisible by (x + y)2.

177. Find all polynomials of two variables satisfying

P(a, b)P(c, d) = P(ac + bd, ad + bc)

for all real numbers a, b, c, d.

2.2.3 Quadratic Polynomials

We continue our discussion of polynomials with the case of polynomials of second degree.
We start with the following problem due to I. Cucurezeanu, whose solution is based just on
the formula for the roots of a quadratic equation.

Example. Let a, b, c be integer numbers that are the sides of a triangle. Show that if the
equation

x2 + (a + 1)x + b − c = 0

has integer roots, then the triangle is isosceles.
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Solution. The quadratic equation has solutions

−(a + 1) ±√(a + 1)2 − 4(b − c)

2
.

For it to admit integer roots, it is necessary that the discriminant is a rational number. But
then the discriminant has to be an integer number. If b > c then (a + 1)2 − 4(b − c) is a
perfect square < (a + 1)2 and of the same parity with this number. Hence

(a + 1)2 − 4(b − c) ≤ (a − 1)2

We conclude that a + c ≤ b, which contradicts the triangle inequality. The case b < c is
similar. So the only possibility is b = c; the triangle is isosceles. �

Here is a problem that uses the sign of a quadratic function. Recall that a quadratic
function changes sign only if it has two distinct real zeros, and in that case it has the sign of
the dominant coefficient outside of the interval formed by the zeros and opposite sign between
the zero. If it has a double zero, or complex zeros, than it always has the sign of the dominant
coefficient.

Example. Let a, b, c be distinct real numbers. Show that there is a real number x such that

x2 + 2(a + b + c)x + 3(ab + bc + ac)

is negative.

Solution. We compute the discriminant


 = 4(a2 + b2 + c2 − ab − bc − ac) = 2[(a − b)2 + (b − c)2 + (c − a)2] > 0.

Hence the quadratic function has two distinct real zeros. Between the zeros this function is
negative. �

From the equality

(x − x1)(x − x2) = x2 + ax + b,

we see that the for the quadratic equation x2 + ax + b the sum of the roots is −a and the
product of the roots is b. This is a particular case of Viète’s relations, which will be studied
in general in the next section. Here is a problem.

Example. Find all positive integers a, b, c such that the equations

x2 − ax + b = 0, x2 − bx + c = 0, x2 − cx + a = 0

have integer roots.
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Solution. The roots must also be positive. Write x1 + x2 = a = x5x6, x3 + x4 = b = x1x2,
x5 + x6 = c = x3x4. Adding we obtain

x1 + x2 + x3 + x4 + x5 + x6 = x1x2 + x3x4 + x5x6.

This is equivalent to

(x1 − 1)(x2 − 1) + (x3 − 1)(x4 − 1) + (x5 − 1)(x6 − 1) = 3.

On the left there are only non-negative integers, so they can only be (0, 0, 3), (0, 1, 2), or
(1, 1, 1). In the first case, if say the third term is 3 then {x5, x6} = {4, 2}, so a = 8, c = 6.
Also one of x1, x2 is 1, so the other is a−1 = 7, and thus b = 7. We obtain (a, b, c) = (8, 7, 6)
and its circular permutations.

If, say, the second term is 1 and the third term is 2, then on the one hand x3 = x4 = 2,
so b = c = 4, and on the other hand {x5, x6} = {2, 3} and so c = 5, impossible. A similar
argument rules out the case where the second term is 1 and the first term is 2.

Finally, if each term is 1, then xi = 2, i = 1, 2, 3, and so we obtain the triple (a, b, c) =
(4, 4, 4). �

178. Let a > 2 be a real number. Solve the equation

x3 − 2ax2 + (a2 + 1)x + 2 − 2a = 0.

179. Does there exist a positive integer n such that the quadratic equation

(n3 − n + 1)x2 − (n5 − n + 1)x − (n7 − n + 1) = 0

has rational solutions?

180. Assume that the quadratic function f (x) = x2 + ax + b has integer zeros, and has
the property that there is an integer number n such that f (n) = 13. Prove that either
f (n + 1) or f (n − 1) is equal to 28.

181. Let a, b, c be integer numbers that are the sides of a triangle.
(a) Show that if the equation

x2 + (2ab + 1)x + a2 + b2 = c2

has integer roots, the the triangle is right.
(b) Show that if the equation

x2 + (a2 + b2 + c2 + 1)x + ab + bc + ac = 0

has integer roots, then the triangle is equilateral.

182. Let a < b < c < d be nonzero real numbers. Show that the equations

ax2 + (b + d)x + c = 0

bx2 + (c + d)x + a = 0

cx2 + (a + d)x + b = 0

have a common root if and only if a + b + c + d = 0.
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183. Find all real numbers a such that for all x, y ∈ R one has

2a(x2 + y2) + 4axy − y2 − 2xy − 2x + 1 ≥ 0.

184. Show that if the equation x2 + ax + b = 0 has real roots, then so does the equation
x2 − (a2 − 2b + 2)x + a2 + b2 + 1 = 0.

185. Prove that

log2 3 + log3 4 + log4 5 + log5 6 > 5.

186. Let a, b be integer numbers. Decide when the equation

(ax − b)2 + (bx − a)2 = x

has an integer solution.

187. Prove that if the real numbers p1, p2, q1, q2 satisfy

(q1 − q2)
2 + (p1 − p2)(p1q2 − p2q1) < 0,

then the quadratic equations

x2 + p1x + q1 = 0 and x2 + p2x + q2 = 0

have real roots and between the roots of one there is a root of the other.

188. Prove that if the inequality a2 + ab + ac < 0 holds, then so does b2 − 4ac > 0.

189. Let a and b be positive integers such that a2 + b2 is a prime number. Prove that the
equation x2 + ax + b + 1 = 0 does not have integer roots.

190. Find all positive integers a, b, c such that the equations

x2 − ax + b = 0, x2 − bx + c = 0, x2 − cx + a = 0

have integer roots.

191. Let ABC be a triangle. Show that there exists a point D inside the segment BC such
that AD2 = BD · DC if and only if b + c ≤ √

2a.

192. Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≥ b2 ≥ · · · ≥ bn be real numbers such that

n∑
i=1

(n − i)aibi and
n∑
j=1

( j − 1)a jb j

are both positive. Prove the inequality

[(
n∑

i=1

ai

)(
n∑

i=1

bi

)
−
(

n∑
i=1

aibi

)]2
≥ 4

(
n∑

i=1

(n − i)aibi

)⎛
⎝ n∑

j=1

( j − 1)a jb j

⎞
⎠ .
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193. Let a, a1, a2, . . . , a2n, b, b1, . . . , b2n be real numbers such that

a2 > 2max
(
a21 + a23 + · · · + a22n−1, a

2
2 + a24 + · · · + a22n

)
.

Show that (ab − a1b1 − a2b2 − · · · a2nb2n)2 is greater than or equal to the smaller of
the quantities (a2 − 2a21 − 2a23 − · · · − 2a22n−1)(b

2 − 2b21 − 2b23 − · · · − 2b22n−1) and
(a2 − 2a22 − 2a24 − · · · − 2a22n)(b

2 − 2b22 − 2b24 − · · · − 2b22n).

194. A sphere is inscribed in a regular cone. Around the sphere a cylinder is circumscribed
so that its base is in the same plane as the base of the cone. Let V1 be the volume of
the cone, and V2 the volume of the cylinder.

(a) Prove that V1 cannot equal V2.
(b) Find the smallest positive number k such that V1 = kV2.

2.2.4 Viète’s Relations

From the Gauss-d’Alembert fundamental theorem of algebra it follows that a polynomial

P(x) = anx
n + an−1x

n−1 + · · · + a0

can be factored over the complex numbers as

P(x) = an(x − x1)(x − x2) · · · (x − xn).

Equating the coefficients of x in the two expressions, we obtain

x1 + x2 + · · · + xn = −an−1

an
,

x1x2 + x1x3 + · · · + xn−1xn = an−2

an
,

. . .

x1x2 · · · xn = (−1)n
a0
an

.

These relations carry the name of the French mathematician F. Viète. They combine two ways
of looking at a polynomial: as a sum of monomials and as a product of linear factors. As a first
application of these relations, we have selected a problem from a 1957 Chinese mathematical
competition.

Example. If x + y + z = 0, prove that

x2 + y2 + z2

2
· x

5 + y5 + z5

5
= x7 + y7 + z7

7
.

Solution. Consider the polynomial P(X) = X3 + pX + q, whose zeros are x, y, z. Then

x2 + y2 + z2 = (x + y + z)2 − 2(xy + xz + yz) = −2p.
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Adding the relations x3 = −px − q, y3 = −py − q, and z3 = −pz − q, which hold because
x, y, z are zeros of P(X), we obtain

x3 + y3 + z3 = −3q.

Similarly,
x4 + y4 + z4 = −p(x2 + y2 + z2) − q(x + y + z) = 2p2,

and therefore

x5 + y5 + z5 = −p(x3 + y3 + z3) − q(x2 + y2 + z2) = 5pq,

x7 + y7 + z7 = −p(x5 + y5 + z5) − q(x4 + y4 + z4) = −5p2q − 2p2q = −7p2q.

The relation from the statement reduces to the obvious

−2p

2
· 5pq

5
= −7p2q

7
. �

Viète’s relations can be used to solve, or analyze, the roots of a polynomial equation when
additional information about the roots is given, as the following problem of B. Enescu shows.

Example. Let P(x) = x3+ax2+bx+c be a polynomial with rational coefficients, having the
roots x1, x2, x3. Show that if x1

x2
is a rational number different from 0 and −1, then x1, x2, x3

are all rational.

Solution. Set x1
x2

= t . Let us observe that if either x1 or x2 is rational, so is the other, and by
Viète’s relations x3 is rational as well. Also, if x3 is rational, then x1 + x2 = x2(1 + x1

2 ) is
rational, so x2 is rational, and x1 is rational as well. Hence it suffices to show that P(x) has a
rational root.

Substituting x1 = t x2 in Viète’s relations we obtain

(t + 1)x2 + x3 = −a

x2[t x2 + (t + 1)x3] = b.

Substituting x3 from the first equation we obtain the quadratic equation in x2,

(t2 + t + 1)x22 + (t + 1)ax2 + b = 0.

Thus x2 is a zero of the quadratic polynomial with rational coefficients Q(x) = (t2 + t +
1)x2 + (t + 1)ax + b. We deduce that the greatest common divisor of P(x) and Q(x) is a
non-constant polynomial. Moreover, because both P(x) and Q(x) have rational coefficients
their greatest common divisor must have rational coefficients as well. So P(x) can be written
as a product of two polynomials with rational coefficients. One of the factors must be a linear
polynomial, showing that P(x) has a rational zero. Hence the conclusion. �

Next, a problem from the short list of the 2005 Ibero-American Mathematical Olympiad.
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Example. Find the largest real number k with the property that for all fourth-degree polyno-
mials P(x) = x4 + ax3 + bx2 + cx + d whose zeros are all real and positive, one has

(b − a − c)2 ≥ kd,

and determine when equality holds.

Solution. Let r1, r2, r3, r4 be the zeros of P(x). Viète’s relations read

a = −(r1 + r2 + r3 + r4),

b = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4,

c = −(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4),

d = r1r2r3r4.

From here we obtain

b − a − c = (r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4) + (r1 + r2 + r3 + r4)

+ (r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4).

By the AM-GM inequality this is greater than or equal to

14 14
√

(r1r2r3r4)7 = 14
√
d.

Since equality can hold in the AM-GM inequality, we conclude that k = 196 is the answer
to the problem. Moreover, equality holds exactly when r1 = r2 = r3 = r4 = 1, that is, when
P(x) = x4 − 4x3 + 6x2 − 4x + 1. �

And now a challenging problem from A. Krechmar’s Problem Book in Algebra (Mir
Publishers, 1974).

Example. Prove that

3

√
cos

2π

7
+ 3

√
cos

4π

7
+ 3

√
cos

8π

7
= 3

√
1

2
(5 − 3 3

√
7).

Solution. We would like to find a polynomial whose zeros are the three terms on the left.
Let us simplify the problem and forget the cube roots for a moment. In this case we have
to find a polynomial whose zeros are cos 2π

7 , cos
4π
7 , cos

8π
7 . The seventh roots of unity

come in handy. Except for x = 1, which we ignore, these are also roots of the equation
x6 + x5 + x4 + x3 + x2 + x + 1 = 0, and are cos 2kπ

7 + i sin 2kπ
7 , k = 1, 2, . . . , 6. We see that

the numbers 2 cos 2π
7 , 2 cos

4π
7 , and 2 cos

8π
7 are of the form x + 1

x , with x one of these roots.
If we define y = x + 1

x , then x2 + 1
x2

= y2 − 2 and x3 + 1
x3

= y3 − 3y. Dividing the
equation x6 + x5 + x4 + x3 + x2 + x +1 = 0 through by x3 and substituting y in it, we obtain
the cubic equation

y3 + y2 − 2y − 1 = 0.
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The numbers 2 cos 2π
7 , 2 cos

4π
7 , and 2 cos 8π

7 are the three roots of this equation. The
simpler task is fulfilled.

But the problem asks us to find the sum of the cube roots of these numbers. Looking at
symmetric polynomials, we have

X3 + Y 3 + Z3 − 3XY Z = (X + Y + Z)3 − 3(X + Y + Z)(XY + Y Z + Z X)

and

X3Y 3 + Y 3Z3 + Z3X3 − 3(XY Z)2 = (XY + Y Z + X Z)3

− 3XY Z(X + Y + Z)(XY + Y Z + Z X).

Because X3, Y 3, Z3 are the roots of the equation y3 + y2 − 2y − 1 = 0, by Viète’s relations,
X3Y 3Z3 = 1, so XY Z = 3

√
1 = 1, and also X3+Y 3+Z3 = −1 and X3Y 3+X3Z3+Y 3Z3 =

−2. In the above two equalities we now know the left-hand sides. The equalities become a
system of two equations in the unknowns u = X + Y + Z and v = XY + Y Z + Z X , namely

u3 − 3uv = −4,

v3 − 3uv = −5.

Writing the two equations as u3 = 3uv − 4 and v3 = 3uv − 5 and multiplying them, we
obtain (uv)3 = 9(uv)2 − 27uv + 20. With the substitution m = uv this becomes m3 =
9m2 + 27m − 20 or (m − 3)3 + 7 = 0. This equation has the unique solution m = 3 − 3

√
7.

Hence u = 3
√
3m − 4 = 3

√
5 − 3 3

√
7. We conclude that

3

√
cos

2π

7
+ 3

√
cos

4π

7
+ 3

√
cos

8π

7
= X + Y + Z = 1

3
√
2
u = 3

√
1

2
(5 − 3 3

√
7),

as desired. �

All problems below can be solved using Viète’s relations.

195. Find the zeros of the polynomial

P(x) = x4 − 6x3 + 18x2 − 30x + 25

knowing that the sum of two of them is 4.

196. Let a, b, c be real numbers. Show that a ≥ 0, b ≥ 0, and c ≥ 0 if and only if
a + b + c ≥ 0, ab + bc + ca ≥ 0, and abc ≥ 0.

197. Solve the system

x + y + z = 1,

xyz = 1,

knowing that x, y, z are complex numbers of absolute value equal to 1.
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198. Let x1, x2, x3 be the roots of the equation

x3 − x2 − 2x + 4 = 0,

with |x1| ≥ |x2| ≥ |x3|. Find a polynomial with integer coefficients of minimal degree
that has the root x51 + x32 + x23 .

199. Find all real numbers r for which there is at least one triple (x, y, z) of nonzero real
numbers such that

x2y + y2z + z2x = xy2 + yz2 + zx2 = r xyz.

200. Let a, b, c, d be real numbers with a + b + c + d = 0. Prove that

a3 + b3 + c3 + d3 = 3(abc + bcd + cda + dab)

201. Given the real numbers x, y, z, t such that

x + y + z + t = x7 + y7 + z7 + t7 = 0,

prove that

x(x + y)(x + z)(x + t) = 0.

202. For five integers a, b, c, d, e we know that the sums a + b + c + d + e and a2 + b2 +
c2 + d2 + e2 are divisible by an odd number n. Prove that the number a5 + b5 + c5 +
d5 + e5 − 5abcde is also divisible by n.

203. Find all polynomials whose coefficients are equal either to 1 or −1 and whose zeros
are all real.

204. Let P(z) = az4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4), where
a, b, c, d, e are integers, a �= 0. Show that if r1 + r2 is a rational number, and if
r1 + r2 �= r3 + r4, then r1r2 is a rational number.

205. Let P(x) = x3 + ax2 + bx + c be a polynomial with rational coefficients, having the
roots x1, x2, x3. Show that if x1

x2
is a rational number different from 0 and −1, then

x1, x2, x3 are all rational.

206. The zeros of the polynomial P(x) = x3 − 10x + 11 are u, v, and w. Determine the
value of arctan u + arctan v + arctanw.

207. Prove that for every positive integer n,

tan
π

2n + 1
tan

2π

2n + 1
· · · tan nπ

2n + 1
= √

2n + 1.

208. Let P(x) = xn + an−1xn−1 + · · · + a0 be a polynomial of degree n ≥ 3. Knowing that
an−1 = −(n1), an−2 = (n2), and that all roots are real, find the remaining coefficients.
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209. Determine the maximum value of λ such that whenever P(x) = x3 + ax2 + bx + c is
a cubic polynomial with all zeros real and nonnegative, then

P(x) ≥ λ(x − a)3

for all x ≥ 0. Find the equality condition.

210. Prove that there are unique positive integers a, n such that

an+1 − (a + 1)n = 2001.

2.2.5 The Derivative of a Polynomial

This section adds some elements of real analysis. We remind the reader that the derivative of
a polynomial

P(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

is the polynomial
P ′(x) = nanx

n−1 + (n − 1)an−1x
n−2 + · · · + a1.

We also recall the product rule: (P(x)Q(x))′ = P ′(x)Q(x) + P(x)Q′(x). If x1, x2, . . . , xn
are the zeros of P(x), then by using the product rule we obtain

P ′(x)
P(x)

= 1

x − x1
+ 1

x − x2
+ · · · + 1

x − xn
.

If a zero of P(x) hasmultiplicity greater than 1, then it is also a zero of P ′(x), and the converse
is also true. By Rolle’s theorem, if all zeros of P(x) are real, then so are those of P ′(x). Let
us discuss in detail two problems, the first of which belonging to the second author of the
book, and the second to R. Gologan.

Example. Let P(x) be a polynomial with real zeros and let a < b be two real numbers that
are smaller than any of the zeros of P(x). Prove that

exp

(∫ b

a

P ′′′(x)P(x)

P ′(x)2
dx

)
<

∣∣∣∣ P(a)2P ′(b)3

P ′(a)3P(b)2

∣∣∣∣ .
Solution. Differentiate the identity

P ′(x)
P(x)

=
n∑

k=1

1

x − xk

to obtain

P ′′(x)P(x) − P ′(x)2

P(x)2
= −

n∑
k=1

1

(x − xk)2
.
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Differentiate one more time and obtain

(P ′′′(x)P(x) − P ′′(x)P ′(x))P(x)2 − (P ′′(x)P(x) − P ′(x)2)2P(x)P ′(x)
(P(x))4

=
n∑

k=1

2

(x − xk)3
.

Notice that the right-hand side is negative for a ≤ x ≤ b < min(x1, . . . , xn). Hence

P ′′′(x)P(x)3 − P ′′(x)P ′(x)P(x)2 − 2P ′′(x)P ′(x)P(x)2 + 2P ′(x)3P(x) < 0,

that is

P ′′′(x)P(x)3 − 3P ′′(x)P ′(x)P(x)2 + 2P ′(x)3P(x) < 0.

Dividing by P(x)2P ′(x)2, we obtain

P ′′′(x)P(x)

P ′(x)2
<

3P ′′(x)
P ′(x)

− 2P ′(x)
P(x)

.

Integrating we obtain
∫ b

a

P ′′′(x)P(x)

P ′(x)2
dx < 3 ln |P ′(b)| − ln |P ′(a)| − 2 ln |P(b)| − ln |P(a)|

= ln

∣∣∣∣ P(a)2P ′(b)3

P ′(a)3P(b)2

∣∣∣∣ .
After exponentiation we obtain the inequality from the statement. �

Example. Let P(x) ∈ Z[x] be a polynomial with n distinct integer zeros. Prove that the
polynomial (P(x))2 + 1 has a factor of degree at least 2

⌊
n+1
2

⌋
that is irreducible over Z[x].

Solution. The statement apparently offers no clue about derivatives. The standard approach
is to assume that

(P(x))2 + 1 = P1(x)P2(x) · · · Pk(x)
is a decomposition into factors that are irreducible over Z[x]. Letting x1, x2, . . . , xn be the
integer zeros of P(x), we find that

P1(x j )P2(x j ) · · · Pk(x j ) = 1, for j = 1, 2, . . . , n.

Hence Pi (x j ) = ±1, which then implies 1
Pi (x j )

= Pi (x j ), i = 1, 2, . . . , k, j = 1, 2, . . . , n.
Now let us see how derivatives come into play. The key observation is that the zeros x j

of (P(x))2 appear with multiplicity greater than 1, and so they are zeros of the derivative.
Differentiating with the product rule, we obtain

k∑
i=1

P1(x j ) · · · P ′
i (x j ) · · · Pk(x j ) = 0, for j = 1, 2, . . . , n.
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This sum can be simplified by taking into account that P1(x j )P2(x j ) · · · Pk(x j ) = 1 and
1

Pi (x j )
= Pi (x j ) as

k∑
i=1

P ′
i (x j )Pi (x j ) = 0, for j = 1, 2, . . . , n.

It follows that x j is a zero of the polynomial

k∑
i=1

2P ′
i (x)Pi (x) =

(
k∑

i=1

P2
i (x)

)′
.

Let us remember that Pi (x j ) = ±1, which then implies
k∑

i=1

P2
i (x j ) − n = 0 for j =

1, 2, . . . , n. The numbers x j , j = 1, 2, . . . , n, are zeros of both
k∑

i=1

P2
i (x) − n and its

derivative, so they are zeros of order at least 2 of this polynomial. Therefore,

k∑
i=1

P2
i (x) = (x − x1)

2(x − x2)
2 · · · (x − xn)

2Q(x) + n,

for some polynomial Q(x) with integer coefficients. We deduce that there exists an index i0
such that the degree of Pi0(x) is greater than or equal to n. For n even, n = 2

⌊
n+1
2

⌋
, and

we are done. For n odd, since (P(x))2 + 1 does not have real zeros, neither does Pi0(x), so
this polynomial has even degree. Thus the degree of Pi0(x) is at least n + 1 = 2

⌊
n+1
2

⌋
. This

completes the solution. �

211. Find all polynomials P(x) with integer coefficients satisfying P(P ′(x)) = P ′(P(x))
for all x ∈ R.

212. Determine all polynomials P(x) with real coefficients satisfying (P(x))n = P(xn) for
all x ∈ R, where n > 1 is a fixed integer.

213. Let P(x) and Q(x) be polynomials with complex coefficients and let a be a nonzero
complex number. Prove that if

P(x)3 = Q(x)2 + a,

for all x ∈ C, then P(x) and Q(x) are constant polynomials.

214. Let P(z) and Q(z) be polynomials with complex coefficients of degree greater than or
equal to 1 with the property that P(z) = 0 if and only if Q(z) = 0 and P(z) = 1 if
and only if Q(z) = 1. Prove that the polynomials are equal.

215. Let P(x) be a polynomial with all zeros real and distinct and such that none of its zeros
is equal to 0. Prove that the polynomial x2P ′′(x) + 3x P ′(x) + P(x) also has all roots
real and distinct.
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216. Let P(x) be a polynomial of degree 5, with real coefficients, all of whose zeros are
real. Prove that for each real number a that is not a zero of P(x) or P ′(x), there is a
real number b such that

b2P(a) + 4bP ′(a) + 5P ′′(a) = 0.

217. Let Pn(x) = (xn − 1)(xn−1 − 1) · · · (x − 1), n ≥ 1. Prove that for n ≥ 2, P ′
n(x) is

divisible by P�n/2� in the ring of polynomials with integer coefficients.

218. The zeros of the nth-degree polynomial P(x) are all real and distinct. Prove that the
zeros of the polynomial G(x) = nP(x)P ′′(x) − (n − 1)(P ′(x))2 are all complex.

219. Let P(x) be a polynomial of degree n > 3 whose zeros x1 < x2 < x3 < · · · < xn−1 <

xn are real. Prove that

P ′
(
x1 + x2

2

)
· P ′
(
xn−1 + xn

2

)
�= 0.

220. A polynomial P(x) with real coefficients is called a mirror polynomial if |P(a)| =
|P(−a)| for all real numbers a. Let F(x) be a polynomial with real coefficients, and
consider polynomials with real coefficients P(x) and Q(x) such that P(x) − P ′(x) =
F(x) and Q(x) + Q′(x) = F(x). Prove that P(x) + Q(x) is a mirror polynomial if
and only if F(x) is a mirror polynomial.

2.2.6 The Location of the Zeros of a Polynomial

Since not all polynomial equations can be solved by radicals, methods of approximation are
necessary. Results that allow you to localize the roots in certain regions of the real axis or
complex plane are therefore useful.

The qualitative study of the position of the zeros of a polynomial has far-reaching applica-
tions. For example, the solutions of a homogeneous ordinary linear differential equation with
constant coefficients are stable (under errors of measuring the coefficients) if and only if the
roots of the characteristic equation lie in the open left half-plane (i.e., have negative real part).
Stability is, in fact, an essential question in control theory, where one is usually interested in
whether the zeros of a particular polynomial lie in the open left half-plane (Hurwitz stability)
or in the open unit disk (Schur stability). Here is a famous result.

Lucas’ theorem. The zeros of the derivative P ′(z) of a polynomial P(z) lie in the convex
hull of the zeros of P(z).

Proof. Because any convex domain can be obtained as the intersection of half-planes, it
suffices to show that if the zeros of P(z) lie in an open half-plane, then the zeros of P ′(z) lie
in that half-plane as well. Moreover, by rotating and translating the variable z we can further
reduce the problem to the case in which the zeros of P(z) lie in the upper half-plane Im z > 0.
Here Im z denotes the imaginary part.
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So let z1, z2, . . . , zn be the (not necessarily distinct) zeros of P(z), which by hypothesis
have positive imaginary part. If Imw ≤ 0, then Im 1

w−zk
> 0, for k = 1, . . . , n, and therefore

Im
P ′(w)

P(w)
=

n∑
k=1

Im
1

w − zk
> 0.

This shows thatw is not a zero of P ′(z) and so all zeros of P ′(z) lie in the upper half-plane.
The theorem is proved. �

221. Let a1, a2, . . . , an be positive real numbers. Prove that the polynomial

P(x) = xn − a1x
n−1 − a2x

n−2 − · · · − an

has a unique positive zero.

222. Prove that the zeros of the polynomial

P(z) = z7 + 7z4 + 4z + 1

lie inside the disk of radius 2 centered at the origin.

223. Prove that if the complex coefficients p, q of the quadratic equation x2 + px + q = 0
satisfy |p| + |q| < 1, then the roots of this equation lie in the interior of the unit disk.

224. Let P(x) be a polynomial with integer coefficients all of whose roots are real and lie
in the interval (0, 3). Prove that the roots of this polynomial lie in the set

{
1, 2,

3 − √
5

2
,
3 + √

5

2

}
.

225. For a �= 0 a real number and n > 2 an integer, prove that every nonreal root z of the

polynomial equation xn + ax + 1 = 0 satisfies the inequality |z| ≥ n

√
1

n−1 .

226. Let a ∈ C and n ≥ 2. Prove that the polynomial equation axn + x + 1 = 0 has a root
of absolute value less than or equal to 2.

227. Let P(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the
complex plane. Set g(z) = P(z)

zn/2 . Show that all roots of the equation g′(z) = 0 have
absolute value 1.

228. The polynomial x4 − 2x2 + ax + b has four distinct real zeros. Show that the absolute
value of each zero is smaller than

√
3.

229. Let Pn(z), n ≥ 1, be a sequence of monic kth-degree polynomials whose coefficients
converge to the coefficients of a monic kth-degree polynomial P(z). Prove that for any
ε > 0 there is n0 such that if n ≥ n0 then |zi (n)− zi | < ε, i = 1, 2, . . . , k, where zi (n)

are the zeros of Pn(z) and zi are the zeros of P(z), taken in the appropriate order.
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230. Let P(x) = anxn + an−1xn−1 + · · · + a0 be a polynomial with complex coefficients,
with a0 �= 0, and with the property that there exists an m such that

∣∣∣∣ama0
∣∣∣∣ >
(
n

m

)
.

Prove that P(x) has a zero of absolute value less than 1.

231. For a polynomial P(x) = (x − x1)(x − x2) · · · (x − xn), with distinct real zeros
x1 < x2 < · · · < xn , we set δ(P(x)) = mini (xi+1 − xi ). Prove that for any real
number k,

δ(P ′(x) − kP(x)) > δ(P(x)),

where P ′(x) is the derivative of P(x). In particular, δ(P ′(x)) > δ(P(x)).

2.2.7 Irreducible Polynomials

A polynomial is irreducible if it cannot be written as a product of two polynomials in a
nontrivialmanner. The question of irreducibility depends on the ring of coefficients. When the
coefficients are complex numbers, only linear polynomials are irreducible. For real numbers
some quadratic polynomials are irreducible as well. Both these cases are rather dull. The
interesting situations occur when the coefficients are rational or integer, in which case there is
an interplay between polynomials and arithmetic. The cases of rational and integer coefficients
are more or less equivalent, with minor differences such as the fact that 2x + 2 is irreducible
over Q[x] but reducible over Z[x]. For matters of elegance we focus on polynomials with
integer coefficients. We will assume implicitly from now on that for any polynomial with
integer coefficients, the greatest common divisor of its coefficients is 1.

Definition. A polynomial P(x) ∈ Z[x] is called irreducible over Z[x] if there do not exist
polynomials Q(x), R(x) ∈ Z[x] different from ±1 such that P(x) = Q(x)R(x). Otherwise,
P(x) is called reducible.

We commence with an easy problem.

Example. Let P(x) be an nth-degree polynomial with integer coefficients with the property
that |P(x)| is a prime number for 2n + 1 distinct integer values of the variable x . Prove that
P(x) is irreducible over Z[x].

Solution. Assume the contrary and let P(x) = Q(x)R(x) with Q(x), R(x) ∈ Z[x], Q(x),
R(x) �= ±1. Let k = deg(Q(x)). Then Q(x) = 1 at most k times and Q(x) = −1 at most
n−k times. Also, R(x) = 1 atmost n−k times and R(x) = −1 atmost k times. Consequently,
the product |Q(x)R(x)| is composite except for at most k + (n − k) + (n − k) + k = 2n
values of x . This contradicts the hypothesis. Hence P(x) is irreducible. �

The bound is sharp. For example, P(x) = (x + 1)(x + 5) has |P(−2)| = |P(−4)| = 3,
P(0) = 5, and |P(−6)| = 7.

Probably the most beautiful criterion of irreducibility of polynomials is that discovered
independently by F.G.M. Eisenstein in 1850 and T. Schönemann in 1846. We present it below.
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Eisenstein-Schönemann theorem. Given a polynomial P(x) = anxn +an−1xn−1 +· · ·+a0
with integer coefficients, suppose that there exists a prime number p such that an is not divisible
by p, ak is divisible by p for k = 0, 1, . . . , n − 1, and a0 is not divisible by p2. Then P(x) is
irreducible over Z[x].

Proof. We argue by contradiction. Suppose that P(x) = Q(x)R(x), with Q(x) and R(x) not
identically equal to ±1. Let

Q(x) = bkx
k + bk−1x

k−1 + · · · + b0,

R(x) = cn−k x
n−k + cn−k−1x

n−k−1 + · · · + c0.

Let us look closely at the equalities

i∑
j=0

b jci− j = ai , i = 0, 1, . . . , n,

obtained by identifying the coefficients in the equality P(x) = Q(x)R(x). From the first of
them, b0c0 = a0, and because a0 is divisible by p but not by p2 it follows that exactly one
of b0 and c0 is divisible by p. Assume that b0 is divisible by p and take the next equality
b0c1 + b1c0 = a1. The right-hand side is divisible by p, and the first term on the left is also
divisible by p. Hence b1c0 is divisible by p, and since c0 is not, b1 must be divisible by p.

This reasoning can be repeated to prove that all the bi ’s are divisible by p. It is important
that both Q(x) and R(x) have degrees greater than or equal to 1, for the fact that bk is divisible
by p follows from

bkc0 + bk−1c1 + · · · = ak,

where ak is divisible by p for k < n. The contradiction arises in the equality an = bkcn−k ,
since the right-hand side is divisible by p, while the left-hand side is not. This proves the
theorem.

The first three problems listed below use this result, while the others apply similar ideas.

232. Prove that the polynomial

P(x) = x101 + 101x100 + 102

is irreducible over Z[x].
233. Prove that for every prime number p, the polynomial

P(x) = x p−1 + x p−2 + · · · + x + 1

is irreducible over Z[x].
234. Prove that for every positive integer n, the polynomial P(x) = x2

n + 1 is irreducible
over Z[x].
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235. Prove that for any distinct integers a1, a2, . . . , an the polynomial

P(x) = (x − a1)(x − a2) · · · (x − an) − 1

cannot bewritten as a product of two nonconstant polynomialswith integer coefficients.

236. Prove that for any distinct integers a1, a2, . . . , an the polynomial

P(x) = (x − a1)
2(x − a2)

2 · · · (x − an)
2 + 1

cannot bewritten as a product of two nonconstant polynomialswith integer coefficients.

237. Associate to a prime the polynomial whose coefficients are the decimal digits of the
prime (for example, for the prime 7043 the polynomial is P(z) = 7x3+4x+3). Prove
that this polynomial is always irreducible over Z[x].

238. Let p be a prime number of the form 4k + 3, k an integer. Prove that for any positive
integer n, the polynomial (x2 + 1)n + p is irreducible in the ring Z[x].

239. Let p be a prime number. Prove that the polynomial

P(x) = x p−1 + 2x p−2 + 3x p−3 + · · · + (p − 1)x + p

is irreducible in Z[x].
240. Let P(x) be a monic polynomial in Z[x], irreducible over this ring, and such that

|P(0)| is not the square of an integer. Prove that the polynomial Q(x) defined by
Q(x) = P(x2) is also irreducible over Z[x].

2.2.8 Chebyshev Polynomials

The nth Chebyshev polynomial Tn(x) expresses cos nθ as a polynomial in cos θ . This means
that Tn(x) = cos(n arccos x), for n ≥ 0. These polynomials satisfy the recurrence

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x), for n ≥ 1.

For example, T2(x) = 2x2 − 1, T3(x) = 4x36 − 3x , T4(x) = 8x4 − 8x2 + 1.
One usually calls these the Chebyshev polynomials of the first kind, to distinguish them

from the Chebyshev polynomials of the second kind Un(x) defined by

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x) −Un−1(x), for n ≥ 1

(same recurrence relation but different initial condition). Alternatively, Un(x) can be defined
by the equality

Un(cos θ) = sin(n + 1)θ

sin θ
.

Chebyshev’s theorem. Forfixed n ≥ 1, the polynomial 2−n+1Tn(x) s the unique monic nth-
degree polynomial satisfying

max−1≤x≤1
|2−n+1T (x)| ≤ max−1≤x≤1

|P(x)|,

for any other monic nth-degree polynomial P(x).
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One says that among all monic nth-degree polynomials, 2−n+1Tn(x) has the smallest
variation away from zero on [−1, 1]. This variation is 1

2n−1 . Let us see how Chebyshev’s
theorem applies to a problem from Challenging Mathematical Problems with Elementary
Solutions by A.M. Yaglom and I.M. Yaglom.

Example. Let A1, A2, . . . , An be points in the plane. Prove that on any segment of length l
there is a point M such that

MA1 · MA2 · · · MAn ≥ 2

(
l

4

)n

.

Solution. Rescaling, we can assume that l = 2. Associate complex coordinates to points in
such a way that the segment coincides with the interval [−1, 1]. Then

MA1 · MA2 · · · MAn = |z − z1| · |z − z2| · · · |z − zn| = |P(z)|,

where P(z) is a monic polynomial with complex coefficients, and z ∈ [−1, 1]. Write P(z) =
R(z) + i Q(z), where R(z) is the real part and Q(z) is the imaginary part of the polynomial.
Since z is real, we have |P(z)| ≥ |R(z)|. The polynomial R(z) is monic, so on the interval
[−1, 1] it varies away from zero at least as much as the Chebyshev polynomial. Thus we can
find z in this interval such that |R(z)| ≥ 1

2n−1 . This implies |P(z)| ≥ 2 · 1
2n , and rescaling back

we deduce the existence in the general case of a point M satisfying the inequality from the
statement. �

Stepping aside from the classical picture, let us also consider the families of polynomials
Tn(x) and Un(x) defined by T0(x) = 2, T1(x) = x , Tn+1(x) = xTn(x) − Tn−1(x), and
U0(x) = 1, U1(x) = x , Un+1(x) = xUn(x) − Un−1(x). These polynomials are determined by
the equalities

Tn
(
z + 1

z

)
= zn + 1

zn
and Un

(
z + 1

z

)
=
(
zn+1 − 1

zn+1

)
/

(
z − 1

z

)
.

Also, Tn(x) = 1
2Tn(2x) and Un(x) = Un(2x). Here is a quickie that uses Tn(x).

Example. Let a be a real number such that a + a−1 is an integer. Prove that for any n ≥ 1,
the number an + a−n is an integer.

Solution. An inductive argument based on the recurrence relation shows that Tn(x) is a poly-
nomial with integer coefficients. And since an + a−n = Tn(a + a−1), it follows that this
number is an integer. �

241. Prove that for n ≥ 1,

Tn+1(x) = xTn(x) − (1 − x2)Un−1(x),

Un(x) = xUn−1(x) + Tn(x).
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242. Compute the n × n determinants∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 . . . 0
1 2x 1 0 . . . 0
0 1 2x 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1
0 0 0 0 . . . 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣

and

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x 1 0 0 . . . 0
1 2x 1 0 . . . 0
0 1 2x 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1
0 0 0 0 . . . 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

243. Prove Chebyshev’s theorem for n = 4: namely, show that for any monic fourth-degree
polynomial P(x),

max−1≤x≤1
|P(x)| ≥ max−1≤x≤1

|2−3T4(x)|,
with equality if and only if P(x) = 2−3T4(x).

244. Let r be a positive real number such that 6
√
r + 1

6√r
= 6. Find the maximum value of

4
√
r − 1

4√r
.

245. Let α = 2π
n . Prove that the matrix

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1
cosα cos 2α . . . cos nα

cos 2α cos 4α . . . cos 2nα
...

...
. . .

...

cos(n − 1)α cos 2(n − 1)α . . . cos(n − 1)nα

⎞
⎟⎟⎟⎟⎟⎠

is invertible.

246. Find all quintuples (x, y, z, v,w) with x, y, z, v,w ∈ [−2, 2] satisfying the system of
equations

x + y + z + v + w = 0,

x3 + y3 + z3 + v3 + w3 = 0,

x5 + y5 + z5 + v5 + w5 = −10.

247. Let x1, x2, . . . , xn , n ≥ 2, be distinct real numbers in the interval [−1, 1]. Prove that
1

t1
+ 1

t2
+ · · · + 1

tn
≥ 2n−2,

where tk =
∏
j �=k

|x j − xk |, k = 1, 2, . . . , n.

248. Let n ≥ 3 be an odd integer. Evaluate

n−1
2∑

k=1

sec
2kπ

n
.
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249. For n ≥ 1, prove the following identities:

Tn(x)√
1 − x2

= (−1)n

1 · 3 · 5 · · · (2n − 1)

dn

dxn
(1 − x2)n− 1

2 ,

Un(x)
√
1 − x2 = (−1)n(n + 1)

1 · 3 · 5 · · · (2n + 1)

dn

dxn
(1 − x2)n+ 1

2 .

2.3 Linear Algebra

2.3.1 Operations with Matrices

Anm×nmatrix is an array withm rows and n columns. The standard notation is A = (ai j )i, j ,
where ai j is the entry (element) in the i th row and j th column. We denote by In the n × n
identity matrix (for which ai j = 1 if i = j , and 0 otherwise) and byOn the n × n zero matrix
(for which ai j = 0 for all i, j).

Given the matrix A = (ai j )i, j , At denotes the transpose of A, in which the i, j entry is
a ji , and A denotes the complex conjugate, whose entries are the complex conjugates of the
entries of A. Also, tr A is the trace of A, namely the sum of the elements on the main diagonal:
a11 + a22 + · · · + ann .

We illustrate how matrix multiplication can be used to prove an identity satisfied by the
Fibonacci sequence (F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1, n ≥ 1). The identity we have in
mind has already been discussed in the introductory chapter in the solution to Problem 27;
we put it here in a new perspective.

Example. Prove that

Fm+n+1 = Fm+1Fn+1 + FmFn, for m, n ≥ 0.

Solution. Consider the matrix

M =
(
1 1
1 0

)
.

An easy induction shows that for n ≥ 1,

Mn =
(
Fn+1 Fn

Fn Fn−1

)
.

The equality Mm+n = MmMn written in explicit form is

(
Fm+n+1 Fm+n

Fm+n Fm+n−1

)
=
(
Fm+1 Fm

Fm Fm−1

)(
Fn+1 Fn

Fn Fn−1

)
.

We obtain the identity by setting the upper left corners of both sides equal. �
Here are some problems for the reader.

250. Let M be an n × n complex matrix. Prove that there exist Hermitian matrices A and
B such that M = A + i B. (A matrix X is called Hermitian if Xt = X ).
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251. Do there exist n × n matrices A and B such that AB − BA = In?
252. Let A and B be 2× 2 matrices with real entries satisfying (AB − BA)n = I2 for some

positive integer n. Prove that n is even and (AB − BA)4 = I2.
253. Let A and B be two n × n matrices that do not commute and for which there exist

nonzero real numbers p, q, r such that pAB + qBA = In and A2 = r B2. Prove that
p = q.

254. Let a, b, c, d be real numbers such that c �= 0 and ad − bc = 1. Prove that there exist
u and v such that (

a b
c d

)
=
(
1 −u
0 1

)(
1 0
c 1

)(
1 −v
0 1

)
.

255. Compute the nth power of the m × m matrix

Jm(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, λ ∈ C.

256. Let A and B be n × n matrices with real entries satisfying

tr(AAt + BBt) = tr(AB + At Bt).

Prove that A = Bt .

2.3.2 Determinants

The determinant of an n×n matrix A = (ai j )i, j , denoted by det A or |ai j |, is the volume taken
with sign of the n-dimensional parallelepiped determined by the row (or column) vectors
of A. Formally, the determinant can be introduced as follows. Let e1 = (1, 0, . . . , 0),
e2 = (0, 1, . . . , 0), . . ., en = (0, 0, . . . , 1) be the canonical basis of Rn . The exterior algebra
of Rn is the vector space spanned by products of the form ei1 ∧ ei2 ∧ . . . ∧ eik , where the
multiplication ∧ is distributive with respect to sums and is subject to the noncommutativity
rule ei ∧e j = −e j ∧ei for all i, j (which then implies ei ∧ei = 0, for all i). If the row vectors
of the matrix A are r1, r2, . . . , rn , then the determinant is defined by the equality

r1 ∧ r2 ∧ · · · ∧ rn = (det A)e1 ∧ e2 ∧ · · · ∧ en.

The explicit formula is

det A =
∑

σ

sign(σ )a1σ(1)a2σ(2) · · · anσ(n),

with the sum taken over all permutations σ of {1, 2, . . . , n}.
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To compute the determinant of a matrix, one applies repeatedly the row operation that
adds to one row a multiple of another until the matrix either becomes diagonal or has a row
of zeros. In the first case this transforms the parallelepiped determined by the row vectors
into a right parallelepiped in standard position without changing its volume, as suggested in
Figure 13.

Figure 13

But it is not our purpose to teach the basics. We insist only on nonstandard tricks and
methods. A famous example is the computation of the Vandermonde determinant.

Example. Let x1, x2, . . . , xn be arbitrary numbers (n ≥ 1). Compute the determinant

∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣
.

Solution. The key idea is to view xn as a variable and think of the determinant as an (n−1)st-
degree polynomial in xn . The leading coefficient is itself a Vandermonde determinant of order
n−1, while the n−1 roots are obviously x2, x3, . . . , xn−1. The determinant is therefore equal
to ∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...

xn−2
1 xn−2

2 . . . xn−2
n

∣∣∣∣∣∣∣∣∣
(xn − x1)(xn − x2) · · · (xn − xn−1).

Now we can induct on n to prove that the Vandermonde determinant is equal to

∏
i> j

(xi − x j ).

This determinant is equal to zero if and only if two of the xi ’s are equal. �

We continue with a problem of D. Andrica.

Example. (a) Consider the real numbers ai j , i = 1, 2, . . . , n− 2, j = 1, 2, . . . , n, n ≥ 3, and
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the determinants

Ak =

∣∣∣∣∣∣∣∣∣

1 . . . 1 1 . . . 1
a11 . . . a1,k−1 a1,k+1 . . . a1n
...

. . .
...

...
. . .

...

an−2,1 . . . an−2,k−1 an−2,k+1 . . . an−2,n

∣∣∣∣∣∣∣∣∣
, k ≥ 1.

Prove that
A1 + A3 + A5 + · · · = A2 + A4 + A6 + · · ·

(b) Define

pk =
n−(k+1)∏

i=0

(xn−i − xk), qk =
k−1∏
i=1

(xk − xi ),

where xi , i = 1, 2, . . . , n, are some distinct real numbers. Prove that

n∑
k=1

(−1)k

pkqk
= 0.

(c) Prove that for any positive integer n ≥ 3 the following identity holds:

n∑
k=1

(−1)kk2

(n − k)!(n + k)! = 0.

Solution. We have ∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1
1 1 . . . 1 1
a11 a12 . . . a1,n−1 a1n
a21 a22 . . . a2,n−1 a2n
...

...
. . .

...
...

an−2,1 an−2,2 . . . an−2,n−1 an−2,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Expanding by the first row, we obtain

A1 − A2 + A3 − A4 + · · · = 0.

This implies
A1 + A3 + A5 + · · · = A2 + A4 + A6 + · · · ,

and (a) is proved.
For (b), we substitute ai j = x j

i , i = 1, 2, . . . , n − 2, j = 1, 2, . . . , n. Then

Ak =

∣∣∣∣∣∣∣∣∣

1 . . . 1 1 . . . 1
x1 . . . xk−1 xk+1 . . . xn
...

. . .
...

...
. . .

...

xn−2
1 . . . xn−2

k−1 xn−2
k+1 . . . xn−2

n

∣∣∣∣∣∣∣∣∣
,
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which is a Vandermonde determinant. Its value is equal to

∏
i> j
i, j �=k

(x j − xi ) =
∏

i> j (x j − xi )

pkqk
.

The equality proved in (a) becomes, in this particular case,

n∑
k=1

(−1)k

pkqk
= 0,

as desired.
Finally, if in this we let xk = k2, then we obtain the identity from part (c), and the problem

is solved. �

And here comes a set of problems for the reader.

257. Prove that∣∣∣∣∣∣
(x2 + 1)2 (xy + 1)2 (xz + 1)2

(xy + 1)2 (y2 + 1)2 (yz + 1)2

(xz + 1)2 (yz + 1)2 (z2 + 1)2

∣∣∣∣∣∣ = 2(y − z)2(z − x)2(x − y)2.

258. Let (Fn)n be the Fibonacci sequence. Using determinants, prove the identity

Fn+1Fn−1 − F2
n = (−1)n, for all n ≥ 1.

259. Let p < m be two positive integers. Prove that∣∣∣∣∣∣∣∣∣∣

(m
0

) (m
1

)
. . .

(m
p

)
(m+1

0

) (m+1
1

)
. . .
(m+1

p

)
...

...
. . .

...(m+p
0

) (m+p
1

)
. . .
(m+p

p

)

∣∣∣∣∣∣∣∣∣∣
= 1.

260. Given distinct integers x1, x2, . . ., xn , prove that
∏
i> j

(xi − x j ) is divisible by

1!2! · · · (n − 1)!.
261. Find all numbers in the interval [−2015, 2015] that can be equal to the determinant of

an 11 × 11 matrix with entries equal to 1 or −1.

262. Prove the formula for the determinant of a circulant matrix∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 . . . xn
xn x1 x2 . . . xn−1
...

...
...

. . .
...

x3 x4 x5 . . . x2
x2 x3 x4 . . . x1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1

n−1∏
j=0

(
n∑

k=1

ζ jk xk

)
,

where ζ = e2π i/n .
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263. Let a and b be integers such that a + b = 2014. Prove that the determinant
∣∣∣∣∣∣∣∣

a3 b3 3ab −1
−1 a2 b2 2ab
2b −1 a2 −b2

0 b −1 a

∣∣∣∣∣∣∣∣
is a multiple of 61.

264. Compute the determinant of the n × n matrix A = (ai j )i j , where

ai j =
{

(−1)|i− j | if i �= j,
2 if i = j.

265. Prove that for any integers x1, x2, . . . , xn and positive integers k1, k2, . . . , kn , the deter-
minant ∣∣∣∣∣∣∣∣∣

xk11 xk12 . . . xk1n
xk21 xk22 . . . xk2n
...

...
. . .

...

xkn1 xkn2 . . . xknn

∣∣∣∣∣∣∣∣∣
is divisible by n!.

266. Let A and B be 3 × 3 matrices with real elements such that

det A = det B = det(A + B) = det(A − B) = 0.

Prove that det(x A + yB) = 0 for any real numbers x and y.

Sometimes it is more convenient to work with blocks instead of entries. For that we recall
the rule of Laplace, which is the direct generalization of the row or column expansion. The
determinant is computed by expanding over all k × k minors of some k rows or columns.
Explicitly, given A = (ai j )ni, j=1, when expanding by the rows i1, i2, . . . , ik , the determinant
is given by

det A =
∑

j1< j2<···< jk

(−1)i1+···+ik+ j1+···+ jk MkNk,

where Mk is the determinant of the k× k matrix whose entries are ai j , with i ∈ {i1, i2, . . . , ik}
and j ∈ { j1, j2, . . . , jk}, while Nk is the determinant of the (n − k) × (n − k) matrix whose
entries are ai j with i /∈ {i1, i2, . . . , ik} and j /∈ { j1, j2, . . . , jk}. We exemplify this rule with
a problem from the 4th International Competition in Mathematics for University Students
(1997).

Example. Let M be an invertible 2n × 2n matrix, represented in block form as

M =
(
A B
C D

)
and M−1 =

(
E F
G H

)
.

Show that det M · det H = det A.
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Solution. The idea of the solution is that the relation between determinants should come from
a relation between matrices. To this end, we would like to find three matrices X, Y, Z such
that XY = Z , while det X = det M , det Y = det H , and det Z = det A. Since among M , H ,
and A, the matrix M has the largest dimension, we might try to set X = M and find 2n × 2n
matrices Y and Z . The equality M · M−1 = I2n yields two relations involving H , namely
AF + BH = 0 and CF + DH = In . This suggests that we should use both F and H in the
definition of Y . So we need an equality of the form

(
A B
C D

)( ∗ F
∗ H

)
=
( ∗ 0

∗ In

)
.

We can try

Y =
(
In F
0 H

)
.

The latter has determinant equal to det H , as desired. Also,

Z =
(
A 0
C In

)
.

According to the rule of Laplace, the determinant of Z can be computed by expanding along
the n × n minors from the top n rows, and all of them are zero except for the first. Hence
det Z = det A · det In = det A, and so the matrices X, Y, Z solve the problem. �

267. Show that if

x =
∣∣∣∣ a b
c d

∣∣∣∣ and x ′ =
∣∣∣∣ a

′ b′
c′ d ′

∣∣∣∣ ,
then

(xx ′)2 =

∣∣∣∣∣∣∣∣

ab′ cb′ ba′ da′
ad ′ cd ′ bc′ dc′
bb′ db′ aa′ ca′
bd ′ dd ′ ac′ cc′

∣∣∣∣∣∣∣∣
.

268. Let A, B,C, D be n × n matrices such that AC = CA. Prove that

det

(
A B
C D

)
= det(AD − CB).

269. Let X and Y be n × n matrices. Prove that

det(In − XY ) = det(In − Y X).

Aproperty exploited often in Romanianmathematics competitions states that for any n×n
matrix A with real entries,

det(In + A2) ≥ 0.

The proof is straightforward:
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det(In + A2) = det((In + i A)(In − i A)) = det(In + i A) det(In − i A)

= det(In + i A) det(In + i A) = det(In + i A)det(In + i A).

In this computation the bar denotes the complex conjugate, and the last equality follows from
the fact that the determinant is a polynomial in the entries. The final expression is nonnegative,
being equal to | det(In + i A)|2.

Use this property to solve the following problems, while assuming that all matrices have
real entries.

270. Let A and B be n × n matrices that commute. Prove that if det(A + B) = 0, then
det(Ak + Bk) ≥ 0 for all k ≥ 1.

271. Let A be an n × n matrix such that A + At = On . Prove that

det(In + λA2) ≥ 0,

for all λ ∈ R.

272. Let P(t) be a polynomial of even degree with real coefficients. Prove that the function
f (X) = P(X) defined on the set of n × n matrices is not onto.

273. Let n be an odd positive integer and A an n × n matrix with the property that A2 = On

or A2 = In . Prove that det(A + In) ≥ det(A − In).

2.3.3 The Inverse of a Matrix

An n × n matrix A is called invertible if there exists an n × n matrix A−1 such that AA−1 =
A−1A = In . The inverse of a matrix can be found either by using the adjoint matrix, which
amounts to computing several determinants, or by performing row and column operations.
We illustrate how the latter method can be applied to a problem from the first International
Competition in Mathematics for University Students (1994).

Example. (a) Let A be an n× n symmetric invertible matrix with positive real entries, n ≥ 2.
Show that A−1 has at most n2 − 2n entries equal to zero.
(b) How many entries are equal to zero in the inverse of the n × n matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1
1 2 2 2 . . . 2
1 2 1 1 . . . 1
1 2 1 2 . . . 2
...

...
...

...
. . .

...

1 2 1 2 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
?
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Solution. Denote by ai j and bi j the entries of A, respectively, A−1. Then we have
∑n

i=0 ami

bim = 1, so for fixedm not all the bim’s are equal to zero. For k �= m we have
∑n

i=0 akibim = 0,
and from the positivity of the aki ’s we conclude that at least one bim is negative, and at least
one is positive. Hence every column of A−1 contains at least two nonzero elements. This
proves part (a).

To compute the inverse of the matrix in part (b), we consider the extended matrix (AIn),
and using row operations we transform it into the matrix (In A−1). We start with⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1 1 0 0 0 . . . 0
1 2 2 2 . . . 2 0 1 0 0 . . . 0
1 2 1 1 . . . 1 0 0 1 0 . . . 0
1 2 1 2 . . . 2 0 0 0 1 . . . 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...

1 2 1 2 . . . . . . 0 0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Subtracting the first row from each of the others, then the second row from the first, we obtain⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 2 −1 0 0 . . . 0
0 1 1 1 . . . 1 −1 1 0 0 . . . 0
0 1 0 0 . . . 0 −1 0 1 0 . . . 0
0 1 0 1 . . . 1 −1 0 0 1 . . . 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...

0 1 0 1 . . . . . . −1 0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We continue as follows. First, we subtract the second row from the third, fourth, and so on.
Then we add the third row to the second. Finally, we multiply all rows, beginning with the
third, by −1. This way we obtain⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 2 −1 0 0 . . . 0
0 1 0 0 . . . 0 −1 0 1 0 . . . 0
0 0 1 1 . . . 1 0 1 −1 0 . . . 0
0 0 1 0 . . . 0 0 1 0 −1 . . . 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...

0 0 1 0 . . . . . . 1 0 0 0 . . . −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Now the inductive pattern is clear. At each step we subtract the kth row from the rows
below, then subtract the (k + 1)st from the kth, and finally multiply all rows starting with
the (k + 1)st by −1. In the end we find that the entries of A−1 are b1,1 = 2, bn,n = (−1)n ,
bi,i+1 = bi+1,i = (−1)i , and bi j = 0, for |i − j | ≥ 2. This example shows that equality can
hold in part (a). �

274. For distinct numbers x1, x2, . . . , xn , consider the matrix

A =

⎛
⎜⎜⎜⎝

1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...

xn−1
1 xn−1

2 . . . xn−1
n

⎞
⎟⎟⎟⎠ .
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It is known that det A is the Vandermonde determinant


(x1, x2, . . . , xn) =
∏
i> j

(xi − x j ).

Prove that the inverse of A is B = (bkm)1≤k,m≤n , where

bkm = (−1)k+m
(x1, x2, . . . , xn)
−1
(x1, . . . , xk−1, xk+1, . . . , xn)

× Sn−1(x1, . . . , xk−1, xk+1, . . . , xn).

Here Sn−1 denotes the (n − 1)st symmetric polynomial in n − 1 variables.

275. Let A and B be 2×2 matrices with integer entries such that A, A+B, A+2B, A+3B,
and A + 4B are all invertible matrices whose inverses have integer entries. Prove that
A + 5B is invertible and that its inverse has integer entries.

276. Determine thematrix A knowing that its adjointmatrix (the one used in the computation
of the inverse) is

A∗ =
⎛
⎝m2 − 1 1 − m 1 − m

1 − m m2 − 1 1 − m
1 − m 1 − m m2 − 1

⎞
⎠ , m �= 1,−2.

277. Let A = (ai j )i j be an n×n matrix such that
n∑
j=1

|ai j | < 1 for each i . Prove that In − A

is invertible.

278. Let α = π
n+1 , n > 2. Prove that the n × n matrix

⎛
⎜⎜⎜⎝

sin α sin 2α . . . sin nα

sin 2α sin 4α . . . sin 2nα
...

...
. . .

...

sin nα sin 2nα . . . sin n2α

⎞
⎟⎟⎟⎠

is invertible.

279. Assume that A and B are invertible complex n × n matrices such that i(A†B − B†A)

is positive semidefinite, where X† = X
t
, the transpose conjugate of X . Prove that

A+ i B is invertible. (A matrix T is positive semidefinite if 〈T v, v〉 ≥ 0 for all vectors
v, where 〈v,w〉 = vtw the complex inner product.)

We continue with problems that exploit the ring structure of the set of n × n matrices.
There are some special properties of matrices that do not hold in arbitrary rings. For example,
an n × n matrix A is either a zero divisor (there exist nonzero matrices B and C such that
AB = CA = On), or it is invertible. Also, if a matrix has a left (or right) inverse, then the
matrix is invertible, which means that if AB = In then also BA = In .

A good example is a problem of I.V. Maftei that appeared in the 1982 Romanian Mathe-
matical Olympiad.
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Example. Let A, B,C be n × n matrices, n ≥ 1, satisfying

ABC + AB + BC + AC + A + B + C = On.

Prove that A and B + C commute if and only if A and BC commute.

Solution. If we add In to the left-hand side of the identity from the statement, we recognize
this expression to be the polynomial P(X) = (X + A)(X + B)(X + C) evaluated at the
identity matrix. This means that

(In + A)(In + B)(In + C) = In.

This shows that In + A is invertible, and its inverse is (In + B)(In + C). It follows that

(In + B)(In + C)(In + A) = In,

or

BCA + BC + BA + CA + A + B + C = On.

Subtracting this relation from the one in the statement and grouping the terms appropriately,
we obtain

ABC − BCA = (B + C)A − A(B + C).

The conclusion follows. �

Here are other examples.

280. Let A be an n × n matrix such that there exists a positive integer k for which

kAk+1 = (k + 1)Ak .

Prove that the matrix A − In is invertible and find its inverse.

281. Let A be an invertible n × n matrix, and let B = XY , where X and Y are 1 × n,
respectively, n × 1 matrices. Prove that the matrix A + B is invertible if and only if
α = Y A−1X �= −1, and in this case its inverse is given by

(A + B)−1 = A−1 − 1

α + 1
A−1BA−1.

282. Given two n × n matrices A and B for which there exist nonzero real numbers a and
b such that AB = aA + bB, prove that A and B commute.

283. Let A and B be n×n matrices, n ≥ 1, satisfying AB− B2A2 = In and A3+ B3 = On .
Prove that BA − A2B2 = In .
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2.3.4 Systems of Linear Equations

A system of m linear equations with n unknowns can be written as

Ax = b,

where A is an m × n matrix called the coefficient matrix, and b is an m-dimensional vector.
Ifm = n, the system has a unique solution if and only if the coefficient matrix A is invertible.
If A is not invertible, the system can have either infinitely many solutions or none at all. If
additionally b = 0, then the system does have infinitely many solutions and the codimension
of the space of solutions is equal to the rank of A.

We illustrate this section with two problems that apparently have nothing to do with the
topic. The first was published in Mathematics Gazette, Bucharest, by L. Pîrşan.

Example. Consider the matrices

A =
(
a b
c d

)
, B =

(
α β

γ δ

)
, C =

⎛
⎜⎜⎝
aα bα aγ bγ
aβ bβ aδ bδ
cα dα cγ dγ

cβ dβ cδ dδ

⎞
⎟⎟⎠ ,

where a, b, c, d, α, β, γ, δ are real numbers. Prove that if A and B are invertible, then C is
invertible as well.

Solution. Let us consider the matrix equation AXB = D, where

X =
(
x z
y t

)
and D =

(
m n
p q

)
.

Solving it for X gives X = A−1DB−1, and so X is uniquely determined by A, B, and D.
Multiplying out the matrices in this equation,

(
a b
c d

)(
x z
y t

)(
α β

γ δ

)
=
(
m n
p q

)
,

we obtain (
aαx + bαy + aγ z + bγ t aβx + bβy + aδz + bδt
cαx + dαy + cγ z + dγ t cβx + dβy + cδz + dδt

)
=
(
m n
p q

)
.

This is a system in the unknowns x, y, z, t :

aαx + bαy + aγ z + bγ t = m,

aβx + bβy + aδz + bδt = n,

cαx + dαy + cγ z + dγ t = p,

cβx + dβy + cδz + dδt = q.

We saw above that this system has a unique solution, which implies that its coefficient matrix
is invertible. This coefficient matrix is C . �
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The second problem we found in an old textbook on differential and integral calculus.

Example. Given the distinct real numbers a1, a2, a3, let x1, x2, x3 be the three roots of the
equation

u1
a1 + t

+ u2
a2 + t

+ u3
a3 + t

= 1,

where u1, u2, u3 are real parameters. Prove that u1, u2, u3 are smooth functions of x1, x2, x3
and that

det

(
∂ui
∂x j

)
= −(x1 − x2)(x2 − x3)(x3 − x1)

(a1 − a2)(a2 − a3)(a3 − a1)
.

Solution. After eliminating the denominators, the equation from the statement becomes a
cubic equation in t , so x1, x2, x3 are well defined. The parameters u1, u2, u3 satisfy the
system of equations

1

a1 + x1
u1 + 1

a2 + x1
u2 + 1

a3 + x1
u3 = 1,

1

a1 + x2
u1 + 1

a2 + x2
u2 + 1

a3 + x2
u3 = 1,

1

a1 + x3
u1 + 1

a2 + x3
u2 + 1

a3 + x3
u3 = 1.

When solving this system, we might end up entangled in algebraic computations. Thus it is
better instead to take a look at the two-variable situation. Solving the system

1

a1 + x1
u1 + 1

a2 + x1
u2 = 1,

1

a1 + x2
u1 + 1

a2 + x2
u2 = 1,

with Cramer’s rule we obtain

u1 = (a1 + x1)(a1 + x2)

(a1 − a2)
and u2 = (a2 + x1)(a2 + x2)

(a2 − a1)
.

Now we can extrapolate to the three-dimensional situation and guess that

ui =

3∏
k=1

(ai + xk)

∏
k �=i

(ai − ak)
, i = 1, 2, 3.

It is not hard to check that these satisfy the system of equations. Observe that

∂ui
∂x j

=

∏
k �= j

(ai + xk)

∏
j �=i

(ai − a j )
, and so

∂ui
∂x j

= 1

ai + x j
ui , i, j = 1, 2, 3.
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The determinant in question looks again difficult to compute. Some tricks simplify the task.
An observation is that the sum of the columns is 1. Indeed, these sums are

∂u1
∂xi

+ ∂u2
∂xi

+ ∂u3
∂xi

, i = 1, 2, 3,

which we should recognize as the left-hand sides of the linear system. So the determinant
becomes much simpler if we add the first and second rows to the last. Another observation
is that the determinant is a 3-variable polynomial in x1, x2, x3. Its total degree is 3, and it
becomes zero if xi = x j for some i �= j . Consequently, the determinant is a number not
depending on x1, x2, x3 times (x1 − x2)(x2 − x3)(x3 − x1). This number can be determined
by looking just at the coefficient of x22 x3. And an easy computation shows that this coefficient
is equal to 1

(a1−a2)(a2−a3)(a3−a1)
. �

From the very many practical applications of the theory of systems of linear equations,
let us mention the Global Positioning System (GPS). The principle behind the GPS is the
measurement of the distances between the receiver and 24 satellites (in practice some of these
satellites might have to be ignored in order to avoid errors due to atmospheric phenomena).
This yields 24 quadratic equations d(P, Si )2 = r2i , i = 1, 2, . . . , 24, in the three spatial
coordinates of the receiver. Subtracting the first of the equations from the others cancels the
quadratic terms and gives rise to an overdetermined system of 23 linear equations in three
unknowns. Determining the location of the receiver is therefore a linear algebra problem.

284. Solve the system of linear equations

x1 + x2 + x3 = 0,

x2 + x3 + x4 = 0,

. . .

x99 + x100 + x1 = 0,

x100 + x1 + x2 = 0.

285. Find the solutions x1, x2, x3, x4, x5 to the system of equations

x5 + x2 = yx1, x1 + x3 = yx2, x2 + x4 = yx3,

x3 + x5 = yx1, x4 + x1 = yx5,

where y is a parameter.

286. Let a, b, c, d be positive numbers different from1, and x, y, z, t real numbers satisfying
ax = bcd, by = cda, cz = dab, dt = abc. Prove that

∣∣∣∣∣∣∣∣

−x 1 1 1
1 −y 1 1
1 1 −z 1
1 1 1 −t

∣∣∣∣∣∣∣∣
= 0.
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287. Given the system of linear equations

a11x1 + a12x2 + a13x3 = 0,

a21x1 + a22x2 + a23x3 = 0,

a31x1 + a32x2 + a33x3 = 0,

whose coefficients satisfy the conditions

(i) a11, a22, a33 are positive,
(ii) all other coefficients are negative,
(iii) in each equation, the sum of the coefficients is positive,

prove that the system has the unique solution x1 = x2 = x3 = 0.

288. Let P(x) = xn + xn−1 + · · · + x + 1. Find the remainder obtained when P(xn+1) is
divided by P(x).

289. Find all functions f : R \ {−1, 1} → R satisfying

f

(
x − 3

x + 1

)
+ f

(
3 + x

1 − x

)
= x for all x �= ±1.

290. Find all positive integer solutions (x, y, z, t) to the Diophantine equation

(x + y)(y + z)(z + x) = t xyz

such that gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.

291. Wehave n coins of unknownmasses and a balance. We are allowed to place some of the
coins on one side of the balance and an equal number of coins on the other side. After
thus distributing the coins, the balance gives a comparison of the total mass of each
side, either by indicating that the two masses are equal or by indicating that a particular
side is the more massive of the two. Show that at least n − 1 such comparisons are
required to determine whether all of the coins are of equal mass.

292. Let a0 = 0, a1, . . . , an, an+1 = 0 be a sequence of real numbers that satisfy

|ak−1 − 2ak + ak+1| ≤ 1 for k = 1, 2, . . . , n − 1.

Prove that

|ak | ≤ k(n − k + 1)

2
for k = 1, 2, . . . , n − 1.

293. Prove that the Hilbert matrix ⎛
⎜⎜⎜⎝

1 1
2

1
3 . . . 1

n
1
2

1
3

1
4 . . . 1

n+1
...

...
...

. . .
...

1
n

1
n+1

1
n+2 . . . 1

2n−1

⎞
⎟⎟⎟⎠

is invertible. Prove also that the sum of the entries of the inverse matrix is n2.
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2.3.5 Vector Spaces, Linear Combinations of Vectors, Bases

In general, a vector space V over a field of scalars (which in our book will be onlyC,R, orQ)
is a set endowed with a commutative addition and a scalar multiplication that have the same
properties as those for vectors in Euclidean space.

A linear combination of the vectors v1, v2, . . . , vm is a sum c1v1 + c2v2 + · · · + cmvm
with scalar coefficients. The vectors are called linearly independent if a combination of these
vectors is equal to zero only when all coefficients are zero. Otherwise, the vectors are called
linearly dependent. If v1, v2, . . . , vn are linearly independent and if every vector in V is a
linear combination of these vectors, then v1, v2, . . . , vn is called a basis of V . The number
of elements of a basis of a vector space depends only on the vector space, and is called the
dimension of the vector space. We will be concerned only with finite-dimensional vector
spaces. We also point out that if in a vector space there are given more vectors than the
dimension, then these vectors must be linearly dependent.

The rank of amatrix is the dimension of its row vectors, which is the same as the dimension
of the column vectors. A square matrix is invertible if and only if its rank equals its size.

Let us see some examples. The first appeared in the Soviet University Student Mathemat-
ical Competition in 1977.

Example. Let X and B0 be n × n matrices, n ≥ 1. Define Bi = Bi−1X − XBi−1, for i ≥ 1.
Prove that if X = Bn2 , then X = On .

Solution. Because the space of n × n matrices is n2-dimensional, B0, B1, . . . , Bn2 must be
linearly dependent, so there exist scalars c0, c1, . . . , cn2 such that

c0B0 + c1B1 + · · · + cn2B
n2 = On.

Let k be the smallest index for which ck �= 0. Then

Bk = a1Bk+1 + a2Bk+2 + · · · + an2−k Bn2,

where a j = − ck+ j

ck
. Computing Bk+1 = Bk X − XBk , we obtain

Bk+1 = a1Bk+2 + a2Bk+3 + · · · + an2−k Bn2+1,

and inductively

Bk+ j = a1Bk+ j+1 + a2Bk+ j+2 + · · · + an2−k Bn2+ j , for j ≥ 1.

In particular,
Bn2 = a1Bn2+1 + a2Bn2+2 + · · · + an2−k Bn2+k .

But Bn2+1 = Bn2X − XBn2 = X2 − X2 = On , and hence Bn2+ j = On , for j ≥ 1. It follows
that X , which is a linear combination of Bn2+1, Bn2+2, . . ., Bn2+k is the zero matrix. And we
are done. �

The second example was given at the 67th W.L. Putnam Mathematical Competition in
2006, and the solution that we present was posted by C. Zara on the Internet.
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Example. Let Z denote the set of points in R
n whose coordinates are 0 or 1. (Thus Z has 2n

elements, which are the vertices of a unit hypercube in Rn .) Let k be given, 0 ≤ k ≤ n. Find
the maximum, over all vector subspaces V ⊆ R

n of dimension k, of the number of points in
Z ∩ V .

Solution. Let us consider the matrix whose rows are the elements of V ∩ Z . By construction
it has row rank at most k. It thus also has column rank at most k; in particular, there are
k columns such that any other column is a linear combination of these k. It means that the
coordinates of each point of V ∩ Z are determined by the k coordinates that lie in these k
columns. Since each such coordinate can have only two values, V ∩ Z can have at most 2k

elements.
This upper bound is reached for the vectors that have all possible choices of 0 and 1 for

the first k entries, and 0 for the remaining entries. �

294. Prove that every odd polynomial function of degree equal to 2m − 1 can be written as

P(x) = c1

(
x

1

)
+ c2

(
x + 1

3

)
+ c3

(
x + 2

5

)
+ . . . + cm

(
x + m − 1

2m − 1

)
,

where

(
x

m

)
= x(x − 1) · · · (x − m + 1)

n! .

295. Letn be a positive integer and P(x) annth-degree polynomialwith complex coefficients
such that P(0), P(1), . . . , P(n) are all integers. Prove that the polynomial n!P(x) has
integer coefficients.

296. Let A be the n × n matrix whose i, j entry is i + j for all i, j = 1, 2, . . . , n. What is
the rank of A?

297. For integers n ≥ 2 and 0 ≤ k ≤ n − 2, compute the determinant∣∣∣∣∣∣∣∣∣∣∣

1k 2k 3k . . . nk

2k 3k 4k . . . (n + 1)k

3k 4k 5k . . . (n + 2)k
...

...
...

. . .
...

nk (n + 1)k (n + 2)k . . . (2n − 1)k

∣∣∣∣∣∣∣∣∣∣∣
.

298. Let V be a vector space and let f, f1, f2, . . . , fn be linear maps from V to R. Suppose
that f (x) = 0 whenever f1(x) = f2(x) = · · · = fn(x) = 0. Prove that f is a linear
combination of f1, f2, . . . , fn .

299. Given a set S of 2n − 1 different irrational numbers, n ≥ 1, prove that there exist
n distinct elements x1, x2, . . . , xn ∈ S such that for all nonnegative rational numbers
a1, a2, . . . , an with a1 + a2 + · · · + an > 0, the number a1x1 + a2x2 + · · · + anxn is
irrational.

300. There are given 2n + 1 real numbers, n ≥ 1, with the property that whenever one of
them is removed, the remaining 2n can be split into two sets of n elements that have
the same sum of elements. Prove that all the numbers are equal.
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301. Let V be an infinite set of vectors in R
n containing n linearly independent vectors. A

finite subset S ⊂ V is called crucial if the set V \S contains no n linearly independent
vectors, but every set V \T , with T a subset of S does. Prove there are only finitely
many crucial subsets of V .

2.3.6 Linear Transformations, Eigenvalues, Eigenvectors

A linear transformation between vector spaces is a map T : V → W that satisfies T (α1v1 +
α2v2) = α1T (v1) + α2T (v2) for any scalars α1, α2 and vectors v1, v2. A matrix A defines a
linear transformation by v → Av, and any linear transformation between finite-dimensional
vector spaces with specified bases is of this form. An eigenvalue of a matrix A is a zero of
the characteristic polynomial PA(λ) = det(λIn − A). Alternatively, it is a scalar λ for which
the equation Av = λv has a nontrivial solution v. In this case v is called an eigenvector of the
eigenvalue λ. If λ1, λ2, . . . , λm are distinct eigenvalues and v1, v2, . . . , vm are corresponding
eigenvectors, then v1, v2, . . . , vm are linearly independent. Moreover, if the matrix A is
Hermitian, meaning that A is equal to its transpose conjugate, then v1, v2, . . . , vm may be
chosen to be pairwise orthogonal.

The set of eigenvalues of a matrix is called its spectrum. The reason for this name is
that in quantum mechanics observable quantities are modelled by matrices. Physical spectra,
such as the emission spectrum of the hydrogen atom, become spectra of matrices. Among
all results in spectral theory we stopped at the spectral mapping theorem, mainly because we
want to bring to your attention the method used in the proof.

The spectral mapping theorem. Let A be an n × n matrix with not necessarily distinct
eigenvalues λ1, λ2, . . . , λn, and let P(x) be a polynomial. Then the eigenvalues of the matrix
P(A) are P(λ1), P(λ2), . . . , P(λn).

Proof. To prove this result we will apply a widely used idea (see for example the splitting
principle in algebraic topology). We will first assume that the eigenvalues of A are all distinct.
Then A can be diagonalized by eigenvectors as

⎛
⎜⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎞
⎟⎟⎟⎠ ,

and in the basis formed by the eigenvectors of A, the matrix P(A) assumes the form

⎛
⎜⎜⎜⎝

P(λ1) 0 . . . 0
0 P(λ2) . . . 0
...

...
. . .

...

0 0 . . . P(λn)

⎞
⎟⎟⎟⎠ .

The conclusion is now straightforward. In general, the characteristic polynomial of a matrix
depends continuously on the entries. Problem 229 in Section 2.2.6 proved that the roots of
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a polynomial depend continuously on the coefficients. Hence the eigenvalues of a matrix
depend continuously on the entries.

The set of matrices with distinct eigenvalues is dense in the set of all matrices. To prove
this claim we need the notion of the discriminant of a polynomial. By definition, if the zeros
of a polynomial are x1, x2, . . . , xn , the discriminant is

∏
i< j

(xi − x j )
2. It is equal to zero if

and only if the polynomial has multiple zeros. Being a symmetric polynomial in the xi ’s, the
discriminant is a polynomial in the coefficients. Therefore, the condition that the eigenvalues
of a matrix be not all distinct can be expressed as a polynomial equation in the entries. By
slightly varying the entries, we can violate this condition. Therefore, arbitrarily close to any
matrix there are matrices with distinct eigenvalues.

The conclusion of the spectral mapping theorem for an arbitrary matrix now follows by a
limiting argument. �

We continue with two more elementary examples.

Example. Let A : V → W and B : W → V be linearmaps between finite-dimensional vector
spaces. Prove that the linear maps AB and BA have the same set of nonzero eigenvalues,
counted with multiplicities.

Solution. Choose a basis that identifies V with R
m and W with R

n . Associate to A and B
their matrices, denoted by the same letters. The problem is solved if we prove the equality

det(λIn − AB) = λk det(λIm − BA),

where k is of course n − m. The relation being symmetric, we may assume that n ≥ m.
In this case, complete the two matrices with zeros to obtain two n × n matrices A′ and B ′.
Because det(λIn − A′B ′) = det(λIn − AB) and det(λIn − B ′A′) = λn−m det(λIn − BA),
the problem reduces to proving that det(λIn − A′B ′) = det(λIn − B ′A′). And this is true for
arbitrary n× n matrices A′ and B ′. For a proof of this fact we refer the reader to problem 269
in Section 2.3.2. �

If B = A†, the transpose conjugate of A, then this example shows that AA† and A†A have
the same nonzero eigenvalues. The square roots of these eigenvalues are called the singular
values of A. The second example comes from the first InternationalMathematics Competition
(for university students), 1994.

Example. Let α be a nonzero real number and n a positive integer. Suppose that F and G are
linear maps from R

n into Rn satisfying F ◦ G − G ◦ F = αF .

(a) Show that for all k ≥ 1 one has Fk ◦ G − G ◦ Fk = αkFk .
(b) Show that there exists k ≥ 1 such that Fk = On .

Here F ◦ G denotes F composed with G, and Fk denotes F composed with itself k times.
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Solution. Expand Fk ◦ G − G ◦ Fk using a telescopic sum as follows:

Fk ◦ G − G ◦ Fk =
k∑

i=1

(Fk−i+1 ◦ G ◦ Fi−1 − Fk−i ◦ G ◦ Fi )

=
k∑

i=1

Fk−i ◦ (F ◦ G − G ◦ F) ◦ Fi−1

=
k∑

i=1

Fk−i ◦ αF ◦ Fi−1 = αkFk .

This proves (a). For (b), consider the linear map L(F) = F ◦ G − G ◦ F acting on all n × n
matrices F . Assuming Fk �= On for all k, we deduce from (a) that αk is an eigenvalue of L
for all k. This is impossible since the linear map L acts on an n2-dimensional space, so it can
have at most n2 eigenvalues. This contradiction proves (b). �

302. Let A be a 2 × 2 matrix with complex entries and let C(A) denote the set of 2 × 2
matrices that commute with A. Prove that | det(A + B)| ≥ | det B| for all B ∈ C(A)

if and only if A2 = O2.

303. Let A, B be 2 × 2 matrices with integer entries, such that AB = BA and det B = 1.
Prove that if det(A3 + B3) = 1, then A2 = O2.

304. Consider the n × n matrix A = (ai j ) with ai j = 1 if j − i ≡ 1 (mod n) and ai j = 0
otherwise. For real numbers a and b find the eigenvalues of aA + bAt .

305. Let A be an n × n matrix such that det A = 1 and At A = In . Show that 1 is an
eigenvalue of A.

306. Let A be an n× n matrix that has zeros on the main diagonal and all other entries from
the set {−1, 1}. Is it possible that det A = 0 for n = 2007? What about for n = 2008?

307. Let A be an n × n skew-symmetric matrix (meaning that for all i, j , ai j = −a ji ) with
real entries. Prove that

det(A + xIn) · det(A + yIn) ≥ det(A + √
xyIn)2,

for all x, y ∈ [0,∞).

308. Let A be an n×nmatrix. Prove that there exists an n×nmatrix B such that ABA = A.

309. Consider the angle formed by two half-lines in three-dimensional space. Prove that
the average of the measure of the projection of the angle onto all possible planes in the
space is equal to the angle.

310. A linear map A on the n-dimensional vector space V is called an involution if A2 = I.

(a) Prove that for every involution A on V there exists a basis of V consisting of
eigenvectors of A.

(b) Find the maximal number of distinct pairwise commuting involutions.
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311. Let A be a 3 × 3 real matrix such that the vectors Au and u are orthogonal for each
column vector u ∈ R

3. Prove that

(a) At = −A, where At denotes the transpose of the matrix A;

(b) there exists a vector v ∈ R
3 such that Au = v × u for every u ∈ R

3.

312. Denote by Mn(R) the set of n × n matrices with real entries and let f : Mn(R) → R

be a linear function. Prove that there exists a unique matrix C ∈ Mn(R) such that
f (A) = tr(AC) for all A ∈ Mn(R). In addition, if f (AB) = f (BA) for all matrices
A and B, prove that there exists λ ∈ R such that f (A) = λtrA for any matrix A.

313. Let U and V be isometric linear transformations of Rn , n ≥ 1, with the property that
‖Ux − x‖ ≤ 1

2 and ‖V x − x‖ ≤ 1
2 for all x ∈ R

n with ‖x‖ = 1. Prove that

‖UVU−1V−1x − x‖ ≤ 1

2
,

for all x ∈ R
n with ‖x‖ = 1.

314. For an n × n matrix A denote by φk(A) the symmetric polynomial in the eigenvalues
λ1, λ2, . . . , λn of A,

φk(A) =
∑

i1i2...ik

λi1λi2 · · · λik , k = 1, 2, . . . , n.

For example, φ1(A) is the trace and φn(A) is the determinant. Prove that for two n× n
matrices A and B, φk(AB) = φk(BA) for all k = 1, 2, . . . , n.

2.3.7 The Cayley-Hamilton and Perron-Frobenius Theorems

Wedevote this section to twomore advanced results, which seem to be relevant tomathematics
competitions. All matrices below are assumed to have complex entries.

The Cayley-Hamilton Theorem. Any n × n matrix A satisfies its characteristic equation,
which means that if PA(λ) = det(λIn − A), then PA(A) = On.

Proof. Let PA(λ) = λn +an−1λ
n−1+· · ·+a0. Denote by (λIn − A)∗ the adjoint of (λIn − A)

(the one used in the computation of the inverse). Then

(λIn − A)(λIn − A)∗ = det(λIn − A)In.

The entries of the adjoint matrix (λIn − A)∗ are polynomials in λ of degree at most n − 1.
Splitting the matrix by the powers of λ, we can write

(λIn − A)∗ = Bn−1λ
n−1 + Bn−2λ

n−2 + · · · + B0.

Equating the coefficients of λ on both sides of

(λIn − A)(Bn−1λ
n−1 + Bn−2λ

n−2 + · · · + B0) = det(λIn − A)In,
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we obtain the equations

Bn−1 = In,
−ABn−1 + Bn−2 = an−1In,
−ABn−2 + Bn−3 = an−2In,

. . .

−AB0 = a0In.

Multiply the first equation by An , the second by An−1, the third by An−2, and so on, then add
the n + 1 equations to obtain

On = An + an−1A
n−1 + an−2A

n−2 + · · · + a0In.

This equality is just the desired PA(A) = On . �

As a corollary we prove the trace identity for SL(2,C)matrices. This identity is important
in the study of characters of group representations.

Example. Let A and B be 2 × 2 matrices with determinant equal to 1. Prove that

tr(AB) − (trA)(trB) + tr(AB−1) = 0.

Solution. By the Cayley-Hamilton Theorem,

B2 − (trB)B + I2 = O2.

Multiply on the left by AB−1 to obtain

AB − (trB)A + AB−1 = O2,

and then take the trace to obtain the identity from the statement. �

Five more examples are left to the reader.

315. Let A be a 2 × 2 matrix. Show that if for some complex numbers u and v the matrix
uI2 + vA is invertible, then its inverse is of the form u′I2 + v′A for some complex
numbers u′ and v′.

316. Find the 2 × 2 matrices X with real entries that satisfy the equation

X3 − 3X2 =
(−2 −2

−2 −2

)
.

317. Let A, B,C, D be 2×2matrices. Prove that thematrix [A, B]·[C, D]+[C, D]·[A, B]
is a multiple of the identity matrix (here [A, B] = AB − BA, the commutator of
A and B).
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318. Let A and B be two 2 × 2 matrices that do not commute. Assume that there is
a nonconstant polynomial P(x) with real coefficients such that P(AB) = P(BA).
Prove that there exists a real number a such that P(AB) = aI2.

319. Let A and B be 3 × 3 matrices. Prove that

det(AB − BA) = tr((AB − BA)3)

3
.

320. Show that there do not exist real 2× 2 matrices A and B such that their commutator is
nonzero and commutes with both A and B.

Here is the simplest version of the other result that we had in mind.

The Perron-Frobenius theorem. Any squarematrixwith positive entries has a unique eigen-
vector with positive entries (up to amultiplication by a positive scalar), and the corresponding
eigenvalue has multiplicity one and is strictly greater than the absolute value of any other
eigenvalue.

Proof. The proof uses real analysis. Let A = (ai j )ni, j=1, n ≥ 1. We want to show that there
is a unique v ∈ [0,∞)n , v �= 0, such that Av = λv for some λ. Of course, since A has
positive entries and v has positive coordinates, λ has to be a positive number. Denote by K the
intersection of [0,∞)n with the n − 1-dimensional unit sphere. Reformulating the problem,
we want to show that the function f : K → K , f (v) = Av

‖Av‖ has a fixed point.
Now, there is a rather general result that states that a contractive function on a compact

metric space has a unique fixed point (see Section 3.2.3). Recall that a metric space is a set
X endowed with a function δ : X × X → [0,∞) satisfying

(i) δ(x, y) = 0 if and only if x = y,

(ii) δ(x, y) = δ(y, x) for all x, y ∈ X ,

(iii) δ(x, y) + δ(y, z) ≥ δ(x, z) for all x, y, z ∈ X .

We use the property in the case of a compact set in Rn , where compact sets are characterized
by being closed and bounded. A function f : X → X is contractive if

δ( f (x), f (y)) < δ(x, y), for every x �= y.

With this in mind, we want to find a distance on the set K that makes the function f
defined above contractive. This is the Hilbert metric defined by the formula

δ(v,w) = ln

(
max

i

{
vi
wi

}
/min

i

{
vi
wi

})
,

for v = (v1, v2, . . . , vn) and w = (w1,w2, . . . ,wn) ∈ K . That this satisfies the triangle
inequality δ(u,w) + δ(w, u) ≥ δ(v,w) is a consequence of the inequalities

max
i

{
vi
wi

}
· max

i

{
wi

ui

}
≥ max

i

{
vi
wi

}
,

http://dx.doi.org/10.1007/978-3-319-58988-6_3
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min
i

{
vi
wi

}
· min

i

{
wi

ui

}
≥ min

i

{
vi
wi

}
.

Let us show that f is contractive. If v = (v1, v2, . . . , vn) and w = (w1,w2, . . . ,wn) are in K ,
v �= w, and if αi > 0, i = 1, 2, . . . , n, then

min
i

{
vi
wi

}
<

α1v1 + α2v2 + · · · + αnvn
α1w1 + α2w2 + · · · + αnwn

< max
i

{
vi
wi

}
.

Indeed, to prove the first inequality, add the obvious inequalities

α jw j min
i

{
vi
wi

}
≤ α j v j , j = 1, 2, . . . , n.

Because v �= w and both vectors are on the unit sphere, at least one inequality is strict. The
second inequality follows from

α jw j max
i

{
vi
wi

}
≥ α j v j , j = 1, 2, . . . , n,

where again at least one inequality is strict.
Using this fact, we obtain for all j , 1 ≤ j ≤ n,

a j1v1 + · · · + a jnvn
a j1w1 + · · · + a jnwn

max
i

{
vi
wi

} < 1 <

a j1v1 + · · · + a jnvn
a j1w1 + · · · + a jnwn

min
i

{
vi
wi

} .

Therefore,

max
j

{
a j1v1 + · · · + a jnvn
a j1w1 + · · · + a jnwn

}

max
i

{
vi
wi

} <

min
j

{
a j1v1 + · · · + a jnvn
a j1w1 + · · · + a jnwn

}

min
i

{
vi
wi

} .

It follows that for v,w ∈ K , v �= w, δ( f (v), f (w)) < δ(v,w).
Now, K is closed and but is not bounded in the Hilbert metric; some points are infinitely

far apart. But even if K is not bounded in the Hilbert metric, f (K ) is (prove it!). If we denote
by K0 the closure of f (K ) in the Hilbert metric, then this space is closed and bounded. On
K0, f is contractive, and so it has a unique fixed point. Note that all fixed points of f are
necessarily in K0 (because if f (v) = v, then v = f (v) ∈ f (K )).

We are done with the first half of the proof. Now let us show that the eigenvalue of this
positive vector is larger than the absolute value of any other eigenvalue. Let r(A) be the largest
of the absolute values of the eigenvalues of A and let λ be an eigenvalue with |λ| = r(A). In
general, for a vector v we denote by |v| the vector whose coordinates are the absolute values
of the coordinates of v. Also, for two vectors v,w we write v ≥ w if each coordinate of v is
greater than the corresponding coordinate of w. If v is an eigenvector of A corresponding to
the eigenvalue λ, then |Av| = |λ| · |v|. The triangle inequality implies A|v| ≥ |Av| = r(A)|v|.
It follows that the set

K1 = {v | ‖v‖ = 1, v ≥ 0, Av ≥ r(A)v},
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is nonempty. Because A has positive entries, A(Av − r(A)v) ≥ 0 for v ∈ K1. So A(Av) ≥
r(A)(Av), for v ∈ K1, proving that f (K1) ⊂ K1. Again K1 is closed and f (K1) is bounded,
so we can reason as above to prove that f restricted to K1 has a fixed point, and because
K1 ⊂ K , this is the fixed point that we detected before. Thus r(A) is the unique positive
eigenvalue.

There cannot exist another eigenvalue λ with |λ| = r(A), for otherwise, for a small ε > 0
the matrix A−εIn would still have positive entries, but its positive eigenvalue r(A)−ε would
be smaller than the absolute value of the other eigenvalue contradicting what we just proved.
This concludes the proof of the theorem. �

Nowhere in the book are more appropriate the words of Sir Arthur Eddington: “Proof is
an idol before which the mathematician tortures himself.”

The conclusion of the theorem still holds in the more general setting of irreducible matri-
ces with nonnegative entries (irreducible means that there is no reordering of the rows and
columns thatmakes it block upper triangular). Thismore general formof the Perron-Frobenius
Theorem is currently used by the Internet browser Google to sort the entries of a search. The
idea is the following: Write the adjacency matrix of the Internet with a link highlighted if it
is related to the subject. Then multiply each nonzero entry by a larger or smaller number that
takes into account how important the subject is in that page. The Perron-Frobenius vector of
this new matrix assigns a positive weight to each site on the Internet. The Internet browser
then lists the sites in decreasing order of their weights.

We now challenge you with some problems.

321. Let A be a square matrix whose off-diagonal entries are positive. Prove that the right-
most eigenvalue of A in the complex plane is real and all other eigenvalues are strictly
to its left in the complex plane.

322. Let ai j , i, j = 1, 2, 3, be real numbers such that ai j is positive for i = j and negative
for i �= j . Prove that there exist positive real numbers c1, c2, c3 such that the numbers

a11c1 + a12c2 + a13c3, a21c1 + a22c2 + a23c3, a31c1 + a32c2 + a33c3

are all negative, all positive, or all zero.

323. Let x1, x2, . . . , xn be differentiable (real-valued) functions of a single variable t that
satisfy

dx1
dt

= a11x1 + a12x2 + · · · + a1nxn,

dx2
dt

= a21x1 + a22x2 + · · · + a2nxn,

. . .

dxn
dt

= an1x1 + an2x2 + · · · + annxn,

for some constants ai j > 0. Suppose that for all i , xi (t) → 0 as t → ∞. Are the
functions x1, x2, . . . , xn necessarily linearly independent?
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324. For a positive integer n and any real number c, define (xk)k≥0 recursively by x0 = 0,
x1 = 1, and for k ≥ 0,

xk+2 = cxk+1 − (n − k)xk
k + 1

.

Fix n and then take c to be the largest value for which xn+1 = 0. Find xk in terms of n
and k, 1 ≤ k ≤ n.

2.4 Abstract Algebra

2.4.1 Binary Operations

Abinary operation ∗ on a set S associates to each pair (a, b) ∈ S×S an element a∗b ∈ S. The
operation is called associative if a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S, and commutative
if a ∗ b = b ∗ a for all a, b ∈ S. If there exists an element e such that a ∗ e = e ∗ a = a for
all a ∈ S, then e is called an identity element. If an identity exists, it is unique. In this case,
if for an element a ∈ S there exists b ∈ S such that a ∗ b = b ∗ a = e, then b is called the
inverse of a and is denoted by a−1. If an element has an inverse, the inverse is unique.

Just as a warmup, we present a problem from the 62nd W.L. Putnam Competition, 2001.

Example. Consider a set S and a binary operation ∗ on S. Assume that (a ∗ b) ∗ a = b for all
a, b ∈ S. Prove that a ∗ (b ∗ a) = b for all a, b ∈ S.

Solution. Substituting b ∗ a for a, we obtain

((b ∗ a) ∗ b) ∗ (b ∗ a) = b.

The expression in the first set of parentheses is a. Therefore,

a ∗ (b ∗ a) = b,

as desired. �

Often, problems about binary operations look like innocent puzzles, yet they can have
profound implications. This is the case with the following example.

Example. For three-dimensional vectors X = (p, q, t) and Y = (p′, q ′, t ′) define the oper-
ations (p, q, t) ∗ (p′, q ′, t ′) = (0, 0, pq ′ − qp′), and X ◦ Y = X + Y + 1

2 X ∗ Y , where +
denotes the addition in R

3.

(a) Prove that (R3, ◦) is a group.

(b) Let α : (R3, ◦) → (R3, ◦) be a continuous map satisfying α(X ◦ Y ) = α(X) ◦ α(Y ) for
all X, Y (which means that α is a homomorphism). Prove that

α(X + Y ) = α(X) + α(Y ) and α(X ∗ Y ) = α(X) ∗ α(Y ).
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Solution. (a) Associativity can be verified easily, the identity element is (0, 0, 0), and the
inverse of (p, q, t) is (−p,−q,−t).
(b) First, note that X ∗ Y = −Y ∗ X . Therefore, if X is a scalar multiple of Y , then
X ∗ Y = Y ∗ X = 0. In general, if X ∗ Y = 0, then X ◦ Y = X + Y = Y ◦ X . Hence in this
case,

α(X + Y ) = α(X ◦ Y ) = α(X) ◦ α(Y ) = α(X) + α(Y ) + 1

2
α(X) ∗ α(Y )

on the one hand, and

α(X + Y ) = α(Y ◦ X) = α(Y ) ◦ α(X) = α(Y ) + α(X) + 1

2
α(Y ) ∗ α(X).

Because α(X)∗α(Y ) = −α(Y )∗α(X), this implies that α(X)∗α(Y ) = 0. and consequently
α(X+Y ) = α(X)+α(Y ). In particular, α is additive on every one-dimensional space, whence
α(r X) = rα(X), for every rational number r . But α is continuous, so α(sX) = sα(X) for
every real number s. Applying this property we find that for any X, Y ∈ R

3 and s ∈ R,

sα

(
X + Y + 1

2
sX ∗ Y

)
= α

(
sX + sY + 1

2
s2X ∗ Y

)
= α((sX) ◦ (sY ))

= α(sX) ◦ α(sY ) = (sα(X)) ◦ (sα(Y ))

= sα(X) + sα(Y ) + 1

2
s2α(X) ∗ α(Y ).

Dividing both sides by s, we obtain

α

(
X + Y + 1

2
sX ∗ Y

)
= α(X) + α(Y ) + 1

2
sα(X) ∗ α(Y ).

In this equality if we let s → 0, we obtain α(X + Y ) = α(X) + α(Y ). Also, if we let s = 1
and use the additivity we just proved, we obtain α(X ∗ Y ) = α(X) ∗ α(Y ). The problem is
solved. �

Traditionally, X ∗ Y is denoted by [X, Y ] and R
3 endowed with this operation is called

the Heisenberg Lie algebra. Also, R3 endowed with ◦ is called the Heisenberg group. And
we just proved a famous theorem showing that a continuous automorphism of the Heisenberg
group is also an automorphism of the Heisenberg Lie algebra. The Heisenberg group and
algebra are fundamental concepts of quantum mechanics.

325. With the aid of a calculator that can add, subtract, and determine the inverse of a nonzero
number, find the product of two nonzero numbers using at most 20 operations.

326. Invent a binary operation from which +, −, ×, and / can be derived.

327. Afinite set Swith at least four elements is endowedwith an associative binary operation
∗ that satisfies

(a ∗ a) ∗ b = b ∗ (a ∗ a) = b for all a, b ∈ S.

Prove that the set of all elements of the form a ∗ (b ∗ c) with a, b, c distinct elements
of S coincides with S.
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328. Let S be the smallest set of rational functions containing f (x, y) = x and g(x, y) = y
and closed under subtraction and taking reciprocals. Show that S does not contain the
nonzero constant functions.

329. Let ∗ and ◦ be two binary operations on the setM , with identity elements e, respectively,
e′, and with the property that for every x, y, u, v ∈ M ,

(x ∗ y) ◦ (u ∗ v) = (x ◦ u) ∗ (y ◦ v).

Prove that

(a) e = e′;
(b) x ∗ y = x ◦ y, for every x, y ∈ M ;
(c) x ∗ y = y ∗ x , for every x, y ∈ M .

330. Consider a set S and a binary operation ∗ on S such that x ∗ (y ∗ x) = y for all x, y in
S. Prove that each of the equations a ∗ x = b and x ∗ a = b has a unique solution in S.

331. On a set M an operation ∗ is given satisfying the properties

(i) there exists an element e ∈ M such that x ∗ e = x for all x ∈ M ;
(ii) (x ∗ y) ∗ z = (z ∗ x) ∗ y for all x, y, z ∈ M .

Prove that the operation ∗ is both associative and commutative.

332. Prove or disprove the following statement: If F is a finite set with two ormore elements,
then there exists a binary operation ∗ on F such that for all x, y, z ∈ F ,

(i) x ∗ z = y ∗ z implies x = y (right cancellation holds), and
(ii) x ∗ (y ∗ z) �= (x ∗ y) ∗ z (no case of associativity holds).

333. Let ∗ be an associative binary operation on a set S satisfying a ∗ b = b ∗ a only if
a = b. Prove that a ∗ (b ∗ c) = a ∗ c for all a, b, c ∈ S. Give an example of such an
operation.

334. Let S be a set and ∗ a binary operation on S satisfying the laws

(i) x ∗ (x ∗ y) = y for all x, y ∈ S,
(ii) (y ∗ x) ∗ x = y for all x, y ∈ S.

Show that ∗ is commutative but not necessarily associative.

335. Let ∗ be a binary operation on the set Q of rational numbers that is associative and
commutative and satisfies 0∗0 = 0 and (a+c)∗ (b+c) = a ∗b+c for all a, b, c ∈ Q.
Prove that either a ∗ b = max(a, b) for all a, b ∈ Q, or a ∗ b = min(a, b) for all
a, b ∈ Q.

2.4.2 Groups

Definition. A group is a set of transformations (of some space) that contains the identity
transformation and is closed under composition and under the operation of taking the inverse.
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The isometries of the plane, the permutations of a set, the continuous bijections on a closed
bounded interval all form groups.

There is a more abstract, and apparently more general definition, which calls a group a set
G endowed with a binary operation · that satisfies
(i) (associativity) x(yz) = (xy)z for all x, y, z ∈ S;

(ii) (identity element) there is e ∈ G such that for any x ∈ G, ex = xe = x ;

(iii) (existence of the inverse) for every x ∈ G there is x−1 ∈ G such that

xx−1 = x−1x = e.

But Cayley observed the following fact.

Theorem. Any group is a group of transformations.

Proof. Indeed, any group G acts on itself on the left. Specifically, x ∈ G acts as a transfor-
mation of G by y → xy, y ∈ G. �

A group G is called Abelian (after N. Abel) if the operation is commutative, that is, if
xy = yx for all x, y ∈ G. An example of anAbelian group is theKlein four-group, introduced
abstractly as K = {a, b, c, e | a2 = b2 = c2 = e, ab = ac, ac = b, bc = a}, or concretely
as the group of the symmetries of a rectangle (depicted in Figure 14).

b

a

c

Figure 14

A group is called cyclic if it is generated by a single element, that is, if it consists of the
identity element and the powers of some element.

Let us turn to problems and start with one published byL.Daia in theMathematicsGazette,
Bucharest.

Example. A certain multiplicative operation on a nonempty set G is associative and allows
cancellations on the left, and there exists a ∈ G such that x3 = axa for all x ∈ G. Prove that
G endowed with this operation is an Abelian group.

Solution. Replacing x by ax in the given relation, we obtain axaxax = a2xa. Cancelling
a on the left, we obtain x(axa)x = axa. Because axa = x3, it follows that x5 = x3, and
cancelling an x2, we obtain

x3 = x for all x ∈ G.
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In particular, a3 = a, and hence a3x = ax for all x ∈ G. Cancel a on the left to find that

a2x = x for all x ∈ G.

Substituting x by xa, we obtain a2xa = xa, or ax3 = xa, and since x3 = x , it follows that a
commutes with all elements in G. We can therefore write

a2x = a(ax) = a(xa) = (xa)a = xa2,

whence xa2 = a2x = x . This shows that a2 is the identity element of the multiplicative
operation; we denote it by e. The relation from the statement implies x3 = axa = xa2 = xe;
cancelling x , we obtain x2 = e; hence for all x ∈ G, x−1 = x . It follows that G is a group.
It is Abelian by the well-known computation

xy = (xy)−1 = y−1x−1 = yx . �

Here are more examples of the kind.

336. Prove that in order for a set G endowed with an associative operation to be a group, it
suffices for it to have a left identity, and for each element to have a left inverse. This
means that there should exist e ∈ G such that ex = x for all x ∈ G, and for each
x ∈ G, there should exist x ′ ∈ G such that x ′x = e. The same conclusion holds if
“left” is replaced by “right”.

337. Let (G,⊥) and (G, ∗) be two group structures defined on the same set G. Assume that
the two groups have the same identity element and that their binary operations satisfy

a ∗ b = (a ⊥ a) ⊥ (a ⊥ b),

for all a, b ∈ G. Prove that the binary operations coincide and the group they define is
Abelian.

338. Let r, s, t be positive integers that are pairwise relatively prime. If the elements a and
b of an Abelian group with identity element e satisfy ar = bs = (ab)t = e, prove that
a = b = e. Does the same conclusion hold if a and b are elements of an arbitrary
nonAbelian group?

339. A is a subset of a finite group G which contains more than one half of the elements of
G. Prove that every element of G is the product of two elements of A.

340. On the set M = R\{3} the following binary operation is defined:

x ∗ y = 3(xy − 3x − 3y) + m,

where m ∈ R. Find all possible values of m for which (M, ∗) is a group.

341. Assume that a and b are elements of a group with identity element e satisfying
(aba−1)n = e for some positive integer n. Prove that bn = e.
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342. Let G be a group with the following properties:

(i) G has no element of order 2,

(ii) (xy)2 = (yx)2, for all x, y ∈ G.

Prove that G is Abelian.

343. A multiplicative operation on a set M satisfies

(i) a2 = b2, (ii) ab2 = a, (iii) a2(bc) = cb, (iv) (ac)(bc) = ab, for all a, b, c ∈ M .

Define on M the operation
a ∗ b = a(b2b).

Prove that (M, ∗) is a group.

We would like to point out the following property of the set of real numbers.

Kronecker’s theorem. A nontrivial subgroup of the additive group of real numbers is either
cyclic or it is dense in the set of real numbers.

Proof. Denote the group by G. It is either discrete, or it has an accumulation point on the
real axis. If it is discrete, let a be its smallest positive element. Then any other element is of
the form b = ka + α with 0 ≤ α < a. But b and ka are both in G; hence α is in G as well.
By the minimality of a, α can only be equal to 0, and hence the group is cyclic.

If there is a nonconstant sequence (xn)n in G converging to some real number, then
±(xn − xm) approaches zero as n,m → ∞. Choosing the indices m and n appropriately,
we can find a sequence of positive elements in G that converges to 0. Thus for any ε > 0
there is an element c ∈ G with 0 < c < ε. For some integer k, the distance between kc and
(k + 1)c is less than ε; hence any interval of length ε contains some multiple of c. Varying ε,
we conclude that G is dense in the real axis. �

Try to use this result to solve the following problems.

344. Let f : R → R be a continuous function satisfying

f (x) + f (x + √
2) = f (x + √

3) for all x .

Prove that f is constant.

345. Prove that the sequence (sin n)n≥1 is dense in the interval [−1, 1].
346. Show that infinitely many powers of 2 start with the digit 7.

347. Given a rectangle, we are allowed to fold it in two or in three, parallel to one side or the
other, in order to form a smaller rectangle. Prove that for any ε > 0 there are finitely
many such operations that produce a rectangle with the ratio of the sides lying in the
interval (1 − ε, 1 + ε) (which means that we can get arbitrarily close to a square).

348. A set of points in the plane is invariant under the reflections across the sides of some
given regular pentagon. Prove that the set is dense in the plane.

We continue with problems about groups of matrices.
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349. Prove that the group of invertible 4 × 4 matrices with rational entries has no elements
of order 7.

350. Given� a finitemultiplicative group of invertiblematriceswith complex entries, denote
by M the sum of the matrices in �. Prove that det M and trM are integers.

351. Let n be a positive integer. What is the size of the largest multiplicative group of
invertible n × n matrices with integer entries such that for every matrix A in the group
all the entries of A − In are even?

352. For an n × n matrix with complex entries, A, we define its norm to be

‖A‖ = sup
‖x‖≤1

‖Ax‖,

where ‖x‖ denotes the usual norm on Cn (the square root of the sum of the squares of
the absolute values of the coordinates). Let a < 2, and let G be a multiplicative group
of invertible n × n matrices such that

‖A − In‖ ≤ a for all A ∈ G.

Prove that G is finite.

“There is no certainty in sciences where one of the mathematical sciences cannot be
applied, or which are not in relation with this mathematics.” This thought of Leonardo da
Vinci motivated us to include an example of how groups show up in natural sciences.

The groups of symmetries of three-dimensional space play an important role in chemistry
and crystallography. In chemistry, the symmetries ofmolecules give rise to physical properties
such as optical activity. The point groups of symmetries of molecules were classified by A.
Schönflies as follows:

• Cs : a reflection with respect to a plane, isomorphic to Z2,

• Ci : a reflection with respect to a point, isomorphic to Z2,

• Cn: the rotations by multiples of 2π
n about an axis, isomorphic to Zn ,

• Cnv: generated by aCn and aCs with the reflection plane containing the axis of rotation;
in mathematics this is called the dihedral group,

• Cnh: generated by a Cn and a Cs with the reflection plane perpendicular to the axis of
rotation, isomorphic to Cn × C2,

• Dn: generated by a Cn and a C2, with the rotation axes perpendicular to each other,
isomorphic to the dihedral group,

• Dnd : generated by a Cn and a C2, together with a reflection across a plane that divides
the angle between the two rotation axes,

• Dnh: generated by a Cn and a C2 with perpendicular rotation axes, together with a
reflection with respect to a plane perpendicular to the first rotation axis,
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• Sn: improper rotations by multiples of 2π
n , i.e., the group generated by the element

that is the composition of the rotation by 2π
n and the reflection with respect to a plane

perpendicular to the rotation axis,

• Special point groups: C∞v’s and D∞h’s (same as Cnv and Dnh but with all rotations
about the axis allowed), together with the symmetry groups of the five Platonic solids.

When drawing a molecule, we use the convention that all segments represent bonds in
the plane of the paper, all bold arrows represent bonds with the tip of the arrow below the
tail of the arrow. The molecules from Figure 15 have respective symmetry point groups the
octahedral group and C3h .
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Figure 15

353. Find the symmetry groups of the molecules depicted in Figure 16.
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Figure 16

2.4.3 Rings

Rings mimic in the abstract setting the properties of the sets of integers, polynomials, or
matrices.

Definition. Aring is a set R endowedwith two operations + and · (addition andmultiplication)
such that (R,+) is an Abelian group with identity element 0 and the multiplication satisfies

(i) (associativity) x(yz) = (xy)z for all x, y, z ∈ R, and

(ii) (distributivity) x(y + z) = xy + xz and (x + y)z = xz + yz for all x, y, z ∈ R.

A ring is called commutative if the multiplication is commutative. It is said to have identity
if there exists 1 ∈ R such that 1 · x = x · 1 = x for all x ∈ R. An element x ∈ R is called
invertible if there exists x−1 ∈ R such that xx−1 = x−1x = 1.

We consider two examples, the second of which appeared many years ago in the Balkan
Mathematics Competition for university students.



104 2 Algebra

Example. Let x and y be elements in a ring with identity. Prove that if 1 − xy is invertible,
then so is 1 − yx .

Solution. If we naively use the expansion (1 − x)−1 = 1 + x + x2 + x3 + · · · to write
(1 − xy)−1 = 1 + xy + xyxy + xyxyxy + · · ·
(1 − yx)−1 = 1 + yx + yxyx + yxyxyx + · · · ,

we can rearrange the second as

(1 − yx)−1 = 1 + y(1 + xy + xyxy + xyxyxy + · · · )x
So we can gess that if v be the inverse of 1 − xy then 1 + yvx is the inverse of 1 − yx . We
have v(1 − xy) = (1 − xy)v = 1; hence vxy = xyv = v − 1. We compute

(1 + yvx)(1 − yx) = 1 − yx + yvx − yvxyx = 1 − yx + yvx − y(v − 1)x = 1.

A similar verification shows that (1 − yx)(1 + yvx) = 1. It follows that 1 − yx is invertible
and its inverse is 1 + yvx . �

Example. Prove that if in a ring R (not necessarily with identity element) x3 = x for all
x ∈ R, then the ring is commutative.

Solution. For x, y ∈ R, we have

xy2 − y2xy2 = (xy2 − y2xy2)3 = xy2xy2xy2 − xy2xy2y2xy2 − xy2y2xy2xy2

− y2xy2xy2xy2 + y2xy2xy2y2xy2 + y2xy2y2xy2xy2

− y2xy2y2xy2y2xy2 + xy2y2xy2y2xy2.

Using the fact that y4 = y2, we see that this is equal to zero, and hence xy2 − y2xy2 = 0,
that is, xy2 = y2xy2. A similar argument shows that y2x = y2xy2, and so xy2 = y2x for all
x, y ∈ R.

Using this we obtain

xy = xyxyxy = xy(xy)2 = x(xy)2y = x2yxy2 = y3x3 = yx .

This proves that the ring is commutative, as desired. �

We remark that both this and the third problem below are particular cases of the following
result by N. Jacobson:

Jacobson theorem. If a ring (with orwithout identity) has the property that for every element
x there exists an integer n(x) > 1 such that xn(x) = x , then the ring is commutative.

Try your hand at the following problems.

354. Let a, b, c be elements of a ring with identity.
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(a) Show that if In − abc is invertible, then In − cab is invertible.
(b) Can it happen that In − abc is invertible but In − cba is not?

355. Let R be a nontrivial ring with identity, and M = {x ∈ R | x = x2} the set of its
idempotents. Prove that if M is finite, then it has an even number of elements.

356. Let R be a ring with identity such that x6 = x for all x ∈ R. Prove that x2 = x for all
x ∈ R. Prove that any such ring is commutative.

357. Let R be a ring with identity with the property that (xy)2 = x2y2 for all x, y ∈ R.
Show that R is commutative.

358. Let R be a finite ring with unit, having n elements and such that the equation xn = 1
has the unique solution x = 1 in R. Prove that

(a) 0 is the unique nilpotent element of R;
(b) there is a positive integer k ≥ 2 such that the equation xk has n solutions in R.

(x ∈ R is called nilpotent if there is a positive integer m such that xm = 0.)

359. Let R be a finite ring such that 1 + 1 = 0. Prove that the number of solutions to the
equation x2 = 0 is equal to the number of solutions to the equation x2 = 1.

360. Let x and y be elements in a ring with identity and n a positive integer. Prove that if
1 − (xy)n is invertible, then so is 1 − (yx)n .

361. Let R be a ring with the property that if x ∈ R and x2 = 0, then x = 0.

(a) Prove that if x, z ∈ R and z2 = z, then zxz − xz = 0.
(b) Prove that any idempotent of R belongs to the center of R (the center of a ring

consists of those elements that commute with all elements of the ring).

362. Show that if a ring R with identity has three elements a, b, c such that

(i) ab = ba, bc = cb;
(ii) for any x, y ∈ R, bx = by implies x = y;
(iii) ca = b but ac �= b,

then the ring cannot be finite.



http://www.springer.com/978-3-319-58986-2


	2 Algebra
	2.1 Identities and Inequalities
	2.1.1 Algebraic Identities
	2.1.2 x2ge0
	2.1.3 The Cauchy-Schwarz Inequality
	2.1.4 The Triangle Inequality
	2.1.5 The Arithmetic Mean-Geometric Mean Inequality
	2.1.6 Sturm's Principle
	2.1.7 Other Inequalities

	2.2 Polynomials
	2.2.1 A Warmup in One-Variable Polynomials
	2.2.2 Polynomials in Several Variables
	2.2.3 Quadratic Polynomials
	2.2.4 Viète's Relations
	2.2.5 The Derivative of a Polynomial
	2.2.6 The Location of the Zeros of a Polynomial
	2.2.7 Irreducible Polynomials
	2.2.8 Chebyshev Polynomials

	2.3 Linear Algebra
	2.3.1 Operations with Matrices
	2.3.2 Determinants
	2.3.3 The Inverse of a Matrix
	2.3.4 Systems of Linear Equations
	2.3.5 Vector Spaces, Linear Combinations of Vectors, Bases
	2.3.6 Linear Transformations, Eigenvalues, Eigenvectors
	2.3.7 The Cayley-Hamilton and Perron-Frobenius Theorems

	2.4 Abstract Algebra
	2.4.1 Binary Operations
	2.4.2 Groups
	2.4.3 Rings



