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Abstract. We tackle the problem of template estimation when data
have been randomly transformed under an isometric group action in the
presence of noise. In order to estimate the template, one often mini-
mizes the variance when the influence of the transformations have been
removed (computation of the Fréchet mean in quotient space). The con-
sistency bias is defined as the distance (possibly zero) between the orbit of
the template and the orbit of one element which minimizes the variance.
In this article we establish an asymptotic behavior of the consistency
bias with respect to the noise level. This behavior is linear with respect
to the noise level. As a result the inconsistency is unavoidable as soon
as the noise is large enough. In practice, the template estimation with a
finite sample is often done with an algorithm called max-max. We show
the convergence of this algorithm to an empirical Karcher mean. Finally,
our numerical experiments show that the bias observed in practice can-
not be attributed to the small sample size or to a convergence problem
but is indeed due to the previously studied inconsistency.

1 Introduction

The template estimation is a well known issue in different fields such as statis-
tics on signals [12], shape theory, computational anatomy [6,8,10] etc. In these
fields, the template (which can be viewed as the prototype of our data) can be
(according to different vocabulary) shifted, transformed, wrapped or deformed
due to different groups acting on data. Moreover, due to a limited precision in the
measurement, the presence of noise is almost always unavoidable. These mixed
effects on data lead us to study the consistency of algorithms which claim to
compute the template. A popular algorithm consists in the minimization of the
variance, in other words, the computation of the Fréchet mean in quotient space.
This method has been already proved to be inconsistent [3,7,13]. One way to
avoid the inconsistency is to use another framework, for a instance a Bayesian
paradigm [4]. However, if one does not want to change the paradigm, then one
needs to have a better understanding of the geometrical and statistical origins
of the inconsistency.
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Notation: In this paper, we suppose that observations belong to a Hilbert
space (H, (-,-)), we denote by || - || the norm associated to the dot product (-, ).
We also consider a group of transformation G which acts isometrically on H the
space of observations. This means that x +— ¢ - x is a linear automorphism of
H, such that! ||g-z| = ||z||, ¢’ - (9-2) = (¢'9) -x and e - & = x for all x € H,
g, g € G, where e is the identity element of G.

The generative model is the following: we transform an unknown tem-
plate tg € H with ¢ a random and unknown element of the group G and we add
some noise oe with a positive noise level o, € a standardized noise: E(e) = 0,
E(||€]|?) = 1. Moreover we suppose that € and ¢ are independent random vari-
ables. Finally, the only observable random variable is:

Y=¢'t0+06. (1)

If we assume that the noise is independent and identically distributed on each
pixel or voxel with a standard deviation s, then o = v/Ns, where N is the
number of pixels/voxels.

Quotient Space and Fréchet Mean: The random transformation of the
template by the group leads us to project the observation Y into the quotient
space defined as the set containing all the orbit [z] = {g- =, g € G} for z € H.
Because the action is isometric, the quotient space H/G is equipped with a
pseudometric? defined by:

d = 1 f — . = i f * - .
o([=], [y]) glgGIIx gyl glgGllg x —yl

The quotient pseudometric is the distance between x and 3’ where 3’ is the
registration of y with respect to x. We define the variance of the random orbit [Y]
as the expectation of the square pseudometric between the random orbit [Y] and
the orbit of a point z in H:

F(z) = E(dy([z], [¥Y]) = E(inf [lz —g- Y|?) = E(inf lg - - Y% (@)

Note that F(z) is well defined for all # € H because E(||Y||?) is finite. In order to

estimate the template, one often minimizes this function. If m, € H minimizes

F, then [m,] is called a Fréchet mean of [Y]. The consistency bias, noted CB,

is the pseudometric between the orbit of the template [to] and [m.]: CB =

dg([to], [m4])- If such a m, does not exist, then the consistency bias is infinite.
Questions:

— What is the behavior of the consistency with respect to the noise?
— How to perform such a minimization of the variance? Indeed, in practice we
have only a sample and not the whole distribution.

! Note that in this article, g - « is the result of the action of g on z, and - should not
to be confused with the multiplication of real numbers noted Xx.

2 dg is called a pseudometric because dg([z], [y]) can be equal to zero even if [z] # [y].
If the orbits are closed sets then dg is a distance.
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Contribution: In this article, we provide a Taylor expansion of the con-
sistency bias when the noise level o tends to infinity. As we do not have the
whole distribution, we minimize the empirical variance given a sample. An ele-
ment which minimizes the variance is called an empirical Fréchet mean. We
already know that the empirical Fréchet mean converges to the Fréchet mean
when the sample size tends to infinity [15]. Therefore our problem is reduced to
find an empirical Fréchet mean with a finite but sufficiently large sample. One
algorithm called the max-max algorithm [1] aims to compute such an empirical
Fréchet mean. We establish some properties of the convergence of this algorithm.
In particular, when the group is finite, the algorithm converges in a finite num-
ber of steps to an empirical Karcher mean (a local minimum of the empirical
variance given a sample). This helps us to illustrate the inconsistency in this
very simple framework.

Of course, generally people use a subgroup of diffeomorphisms which acts
non isometrically on data such that images, landmarks etc. We believe that
studying the inconsistency in this simplified framework will help us to better
understand more complex situations. Moreover it is also possible to define and
use isometric actions on curves [9,12] or on surfaces [11] where our work can be
directly applied.

This article is organized as follows: in Sect. 2, we study the presence of the
inconsistency and we establish the asymptotic behavior when the noise parame-
ter o tends to co. In Sect. 3 we detail the max-max algorithm and its properties.
Finally, in Sect. 4 we illustrate the inconsistency with synthetic data.

2 Inconsistency of the Template Estimation

We start with the main theorem of this article which gives us an asymptotic
behavior of the consistency bias when the noise level o tends to infinity. One key
notion in Theorem 1 is the concept of fixed point under the action G: a point
x € H is a fixed point if for all g € G, g -z = x. We require that the support of
the noise € is not included in the set of fixed points. But this condition is almost
always fulfilled. For instance in R™ the set of fixed points under a linear group
action is a null set for the Lebesgue measure (unless the action is trivial -z = x
for all g € G but this situation is irrelevant).

Theorem 1. Let us suppose that the support of the noise € is not included in
the set of fized points under the group action. Let Y be the observable variable
defined in Eq. (1). If the Fréchet mean of [Y] exists, then we have the following
lower and upper bounds of the consistency bias noted CB:

oK —2|lto]| < OB < oK +2to]. (3)

where K = sup E (sup (g v, e>> 18 a constant which depends only on the stan-
loll=1  \geG

dardised noise and on the group action. We have K € (0,1]. The consistency bias
has the following asymptotic behavior when the noise level o tends to infinity:

CB =0K +o0(0) as 0 — +o0. (4)
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It follows from Eq. (3) that K is the consistency bias with a null template o = 0
and a standardised noise ¢ = 1. We can ensure the presence of inconsistency
as soon as the signal to noise ratio verifies @ < % Moreover, if the signal to

noise ratio verifies ”tf‘o” < % then the consistency bias verifies CB > ||to|. In
other words, the Fréchet mean in quotient space is too far from the template:
the template estimation with the Fréchet mean in quotient space is useless in
this case. In [7] the authors also give lower and upper bounds as a function of
o but these bounds are less informative than our current bounds. Indeed, in [7]
the lower bound goes to zero when the template becomes closed to fixed points.
This may suggest that the consistency bias was small for this kind of template,
which is not the case. The proof of Theorem 1 is postponed in Appendix A, the
sketch of the proof is the following:

— K > 0 because the support of € is not included in the set of fixed points under
the action of G.

— K <1 is the consequence of the Cauchy-Schwarz inequality.

— The proof of Inequalities (3) is based on the triangular inequalities:

Il = litol] < €5 = inf flto — g - mull < flto]| + ]l (5)

where m, minimises (2): having a piece of information about the norm of m,
is enough to deduce a piece of information about the consistency bias.

— The asymptotic Taylor expansion of the consistency bias (4) is the direct
consequence of inequalities (3).

Note that Theorem1 is absolutely not a contradiction with [12] where the
authors proved the consistency of the template estimation with the Fréchet mean
in quotient space for all o > 0. Indeed their noise was included in the set of
constant functions which are the fixed points under their group action.

One disadvantage of Theorem 1 is that it ensures the presence of inconsistency
for o large enough but it says nothing when ¢ is small, in this case one can refer
to [13] or [7].

3 Template Estimation with the Max-Max Algorithm

3.1 Max-Max Algorithm Converges to a Local Minima
of the Empirical Variance

Section 2 can be roughly understood as follows: if we want to estimate the tem-
plate by minimising the Fréchet mean with quotient space then there is a bias.
This supposes that we are able to compute such a Fréchet mean. In practice, we
cannot minimise the exact variance in quotient space, because we have only a
finite sample and not the whole distribution. In this section we study the esti-
mation of the empirical Fréchet mean with the max-max algorithm. We suppose
that the group is finite. Indeed, in this case, the registration can always be found
by an exhaustive search. In a compact group acting continuously, the registration
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also exists but is not necessarily computable without approximation. Hence, the
numeric experiments which we conduct in Sect. 4 lead to an empirical Karcher
mean in a finite number of steps.

If we have a sample: Yi,...,Y; of independent and identically distributed
copies of Y, then we define the empirical variance in the quotient space:

I I
1 .
v) =72l Z minle — g I? = 73 migloca —il
(©

The empirical variance is an approximation of the variance, indeed thanks to
the law of large number we have lim;_, o, Fr(z) = F(z) for all z € H. One
element which minimizes globally (respectively locally) F7 is called an empirical
Fréchet mean (respectively an empirical Karcher mean). For x € H and g € G':
g=1(91,...,91) where g; € G for all i € 1..I we define J an auxiliary function by:

I I
1 1 _
= 72 e =g YillP = 33 llgit - w = Vil
i=1 i=1

The max-max algorithms iteratively minimizes the function J in the variable
x € H and in the variable g € G

Algorithm 1. Max-Max algorithm
Require: A starting point mo € H, a sample Y7,...,Y7.
n =0.
while Convergence is not reached do
Minimizing g € GT — J(mn, g): we get g7 by registering Y; with respect to m.,.

Minimizing € H — J(z,g"): we get mn41 = %ZLI gi Y.
n=mn-++1.

end while

m = Mmn

Note that the empirical variance does not increase at each step of the algo-
rithm since: Fr(my,) = J(mp, g") > J(Mni1,9") > J(Mny1, 9" ) = Fr(mans1).
This algorithm is sensitive to the the starting point. However we remark that
mip = % Ele g; - Y; for some g; € G, then without loss of generality, we can start

from my = %E'{:l g; - }/»L for some g; € G.

Proposition 1. As the group is finite, the convergence is reached in a finite
number of steps.

Proof. The sequence (Fj(my))nen is non-increasing. Moreover the sequence
(mp)nen takes value in a finite set which is: {% Zle gi - Yi, gi € G}. There-
fore, the sequence (Fj(my,))nen is stationary. Let n € N such that Fj(m,,) =
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Fr(mp41). Hence the empirical variance did not decrease between step n and
step n + 1 and we have:

Fl(mn) = J(mn,g ) = J(mn_H,g ) = J(mn+1a9 ) = FI(mn+1)a

In Zn In+1

as my, is the unique element which minimizes m — J(m,g ) we conclude that
Mp41 = Mpy. O

s (g™
e N S S (U R
J(m,,,,l,g:’*l) | J(771,,L,g7”71)
|
|
|
I
Ql J(mi,9°7) I
77777 |
QU J(’m,U,SLO) |
J(m1,9°) |
|~ |
T \ |
\ I T
mo mr, ma |, Mne1]Mn >

Fig. 1. Iterative minimization of the function J on the two axis, the horizontal axis
represents the variable in the space H, the vertical axis represents the set of all the
possible registrations G?. Once the convergence is reached, the point (Mn, gn) is the
minimum of the function J on the two axis in green. Is this point the minimum of J on
its whole domain? There are two pitfalls: firstly this point could be a saddle point, it
can be avoided with Proposition 2, secondly this point could be a local (but not global),
this is discussed in Subsect. 4.3. (Color figure online)

This proposition gives us a shutoff parameter in the max-max algorithm: we
stop the algorithm as soon as m, = m,41. Let call m the final result of the
max-max algorithm. It may seem logical that m is at least a local minimum
of the empirical variance. However this intuition may be wrong: let us give a
simple counterexample (but not necessarily realistic), suppose that we observe
Yi,...,Ys, due to the transformation of the group it is possible that Y . | ¥; = 0.
We can start from m; = 0 in the max-max algorithm, as Y; and 0 are already
registered, the max-max algorithm does not transform Y;. At step two, we still
have my = 0, by induction the max-max algorithm stays at 0 even if 0 is not a
Fréchet or Karcher mean of [Y]. Because 0 is equally distant from all the points
in the orbit of Y;, 0 is called a focal point of [¥;]. The notion of focal point is
important for the consistency of the Fréchet mean in manifold [2]. Fortunately,
the situation where m is not a Karcher mean is almost always avoided due to
the following statement.
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Proposition 2. Let m be the result of the mazx-max algorithm. If the registration
of Y; with respect to m is unique, in other words, if m is not a focal point of Y;
for alli € 1.1 then 1 is a local minimum of Fr: [m] is an empirical Karcher
mean of [Y].

Note that, if we call z the registration of y with respect to m, then the registration
is unique if and only if (m,z—g-2) # 0 for all g € G\ {e}. Once the max-
max algorithm has reached convergence, it suffices to test this condition for m
obtained by the max-max algorithm and for Y; for all ¢. This condition is in fact
generic and is always obtained in practice.

Proof. We call g; the unique element in G which register Y; with respect to mn,
for all h € G\ {¢:}, v — g; - Yi|| < ||/ — h; - Y;||. By continuity of the norm we
have for a close enough to m: |ja — g; - Y;|| < ||la — h; - Y| for all h; # g; (note
that this argument requires a finite group). The registrations of Y; with respect
to m and to a are the same:

I
1 . .
Fi(a) = 1Y lla—g;- Yill* = J(a,g) = J(n,g) = Fy (1),
i=1
because m — J(m, g) has one unique local minimum 7. O

3.2 Max-Max Algorithm Is a Gradient Descent of the Variance

In this Subsection, we see that the max-max algorithm is in fact a gradient
descent. The gradient descent is a general method to find the minimum of a
differentiable function. Here we are interested in the minimum of the variance
F: let mg € H and we define by induction the gradient descent of the variance
Mpt1 = My — pVEF(m,), where p > 0 and F the variance in the quotient space.
In [7] the gradient of the variance in quotient space for m a regular point was
computed (m is regular as soon as g - m = m implies g = e), this leads to:

Mp41 = Mp — 2p [mn - E(Q(Yv mn) ) Y)] )

where g(Y,m,,) is the almost-surely unique element of the group which register Y
with respect to m,,. Now if we have a set of data Y7,...,Y, we can approximated
the expectation which leads to the following approximated gradient descent:

I

2
Mpt1 = mn(l - 2p) +pf Zg(Ylvmn) Y
i=1

now by taking p = £ we get my 41 = 7 Ele 9(Y;,my) - Y;. So the approximated
gradient descent with p = % is exactly the max-max algorithm. But the max-
max algorithm is proven to be converging in a finite number of steps which is
not the case for gradient descent in general.
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4 Simulation on Synthetic Data

In this Section®, we consider data in an Euclidean space R equipped with its
canonical dot product (-,-), and G = Z/NZ acts on RY by circular permutation
on coordinates:

(k € Z/NZ, (x1,...,xn) € RY) = (T14k, Tork, - TN4k),

where indexes are taken modulo N. This space models the discretization of
functions with N points. This action is found in [1] and used for neuroelectric
signals in [9]. The registration between two vectors can be made by an exhaustive
research but it is faster with the fast Fourier transform [5].

4.1 Max-Max Algorithm with a Step Function as Template

We display an example of a template and the template estimation with the max-
max algorithm on Fig.2(a). Note that this experiment was already conducted
in [1]. But no explanation of the appearance of the bias was provided. On the
opposite, we know from the precedent Section that the max-max result is an
empirical Karcher mean, and that this result can be obtained in a finite number of

Empirical quotient variance at the template in biue and at the template estim:

template and estimated template with max-max algorithm

— F_I(t_0)
975 —Fim)

-1 . . . . 2e+06 4e+06 8e+06 1e+07

6o+
I: size of the sample

(a) Example of a template (a step func-
tion) and the template estimation with
a sample size 10° in R%*, ¢ is Gaussian
noise and ¢ = 10. At the discontinu-
ity points of the template, we observe a
Gibbs-like phenomena.

(b) Variation of Fr(to) (in blue) and of
Fr(m) (in red) as a function of] the size
of the sample. Since convergence is al-
ready reached, F'(rn), which is the limit
of red curve, is below F'(to): F(to) is the
limit of the blue curve. Due to the incon-
sistency, m is an example of point such
that F'(7h) < F(to).

Fig. 2. Template to and template estimation 1 on Fig. 2(a). Empirical variance at the
template and the template estimation with the max-max algorithm as a function of
the size of the sample on Fig. 2(b). (Color figure online)

3 The code used in this Section is available at http://loic.devilliers.free.fr/ipmi.html.
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steps. Taking 0 = 10 may seem extremely high, however the standard deviation
of the noise at each point is not 10 but ﬁ = 1.25 which is not so high.

The sample size is 10°, and the algorithm stopped after 94 steps, and m the
estimated template (in red on the Fig.2(a)) is not a focal points of the orbits
[Y:], then Proposition 2 applies. We call empirical bias (noted EB) the quotient
distance between the true template and the point m given by the max-max
result. On this experiment we have ELI—B ~ (.11. Of course, one could think that
we estimate the template with an empirical bias due to a too small sample size
which induces fluctuation. To reply to this objection, we keep in memory m
obtained with the max-max algorithm. If there was no inconsistency then we
would have F(tg) < F(m). We do not know the value of the variance F at these
points, but thanks to the law of large number, we know that:

F(ty) = Ilin;on(to) and F(m) = IILIgOFI(m),

Given a sample, we compute Fy(tg) and Fr(7) thanks to the definition of the
empirical variance Fy (6). We display the result on Fig. 2(b), this tends to confirm
that F'(tp) > F(m). In other words, the variance at the template is bigger that
the variance at the point given by the max-max algorithm.

4.2 Max-Max Algorithm with a Continuous Template

Figure 2(a) shows that the main source of the inconsistency was the discontinuity
of the template. We could think that a continuous template leads to consistency.
But it is not the case, even with a large number of observations created from a
continuous template we do not observe a convergence to the template see Fig. 3,

template, estimated template with max-max algorithm, mean of data with the true amount of transformations
2

— template
— max max
mean knowing transformations

TR
T,

L L L L
0 02 04 06 0.8 1

°
o

°

05

-1

Fig. 3. Example of an other template (here a discretization of a continuous function)
and the template estimation with a sample size 10% in R% (in red), € is Gaussian
noise and o = 10. Even with a continuous function the inconsistency appears. In green
we compute the mean of data with the true amount of transformations. (Color figure
online)
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the empirical bias satisfies % = 0.25. If we knew the original transformations
we could invert the transformations on data and take the mean, that is what we
deed in green on Fig.3. We see that with a sample size 102, the mean gives us
almost the good result since we have in that case % = 0.03.

4.3 Does the Max-Max Algorithm Give Us a Global Minimum
or only a Local Minimum of the Variance?

Proposition 2 tells us that the output of the max-max algorithm is a Karcher
mean of the variance, but we do not know that if it is Fréchet mean of the
variance. In other words, is the output a global minimum of the variance? In fact,
F7 has alot of local minima which are not global. Indeed we can use the max-max
algorithm with different starting points and we observe different outputs (which
are all local minima thanks to Proposition 2) with different empirical variance
(result non shown).

5 Discussion and Conclusion

We provided an asymptotic behavior of the consistency bias when the noise level
o tends to infinity, as a consequence, the inconsistency cannot be neglected when
o is large. However we have not answered this question: can the inconsistency
be neglected? When the noise level is small enough, then the consistency bias
is small [7,13], hence it can be neglected. Note that the quotient space is not a
manifold, this prevents us to use a priori the Central Limit theorem for manifold
proved in [2]. But if the Central Limit theorem could be applied to quotient
space, the fluctuations induce an error which would be approximately equal to
\% and if K < %ﬁ, then the inconsistency could be neglected because it is small
compared to fluctuation.

If the Hilbert Space is a functional space, for instance L?([0,1]), in practice,
we never observe the whole function, only a finite number values of this function.
One can model these observable values on a grid. When the resolution of the
grid goes to zero, one can show the consistency [14] by using the Fréchet mean
with the Wasserstein distance on the space of measures rather than in the space
of functions. But in (medical) images the number of pixels or voxels is finite.

Finally, in a future work one needs to study the template estimation with
non isometric action. But we can already learn from this work: in the numerical
experiments we led, we have seen that the template estimated is more detailed
that the true template. The intuition is that the estimated template in com-
putational anatomy with a group of diffeomorphisms is also more detailed. But
the true template is almost always unknown. It is then possible that one think
that the computation of the template succeeded to capture small details of the
template while it is just an artifact due to the inconsistency. Moreover in order
to tackle this question, one needs to have a good modelisation of the noise, for
instance in [12], the observations are curves, what is a relevant noise in the space
of curves?
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A Proof of Theorem 1

Proof. In the proof, we note by S the unit sphere in H. In order to prove that
K > 0, we take x in the support of € such that z is not a fixed point under the
action of G. It exists gg € G such that gy - x # x. We note vy = ﬁ €S, we
have (vg, go - ) = ||z|| > (vo,z) and by continuity of the dot product it exists
r > 0 such that: Vy € B(x,r) (vo,g0-¥y) > (vo,y) as z is in the support of e
we have P(e € B(z,r)) > 0, it follows:

P (Zlelg (vo,g - €) > (v, e>> > 0. (7)

Thanks to Inequality (7) and the fact that sup e (vo, g - €) > (vo, €) we have:

K =sup B (sup (0.9-€)) > B (sup (0. €)) > Bl{10,€) = (. ) =0,

Using the Cauchy-Schwarz inequality: K < sup,cg E(||v] x|e]|) < E(He”g)% =1.
We now prove Inequalities (3). The variance at Av for v € S and A > 0 is:

FOW) =B (inf Jdv =g YI?) = ¥ =238 (sup v 7)) + BVI). (9

Indeed ||g - Y|| = |Y|| thanks to the isometric action. We note 2 = max(z,0)
the positive part of # and h(v) = E(sup,cg (v,9-Y)). The A > 0 which® mini-
mizes (8) is h(v)" and the minimum value of the variance restricted to the half
line RTv is F(h(v)Tv) = E(||[Y]|?) — (h(v)T)2. To find [m,] the Fréchet mean
of [Y], we need to maximize (h(v)*)? with respect to v € S: my, = h(vs)v,
with® v, € argmax,cg h(v). As we said in the sketch of the proof we are
interested in getting a piece of information about the norm of ||my| we have:
[my|| = h(vi) = sup,egh. Let v € S, we have: —||to| < (v,9¢-to) < |[to]l
because the action is isometric. Now we decompose Y = ¢ -ty + o€ and we get:

00) = (sup v )) =B (sup (05 e + {0190 o) )

geG geG

20 < (sup (0.g-0) + al) ) = 0 (sup (0.9-)) + ol

geG geG

)2 & (sup (0. 06) = ltol) =0 (sup (0.9} ) = L.

9eG geG

4 Indeed we know that z € RT +— z? — 2bz + ¢ reaches its minimum at the point
z=>b"and f(bT) =c— (b")2

5 Note that we remove the positive part and the square because argmax h =
argmax (hT)? since h takes a non negative value (indeed h(v) > E((v,¢ - to +¢€)) =
(v, E(¢ - to)) and this last quantity is non negative for at least one v € S).
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By taking the biggest value in these inequalities with respect to v € S, by
definition of K we get:

= lltoll + o K < [lme|| < [toll + o K. (9)

Thanks to (9) and to (5), Inequalities (3) are proved. O
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