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Abstract. Multiple classifier systems are used to improve the perfor-
mance of base classifiers. One of the most important steps in the forma-
tion of multiple classifier systems is the integration process in which the
base classifiers outputs are combined. The most commonly used clas-
sifiers outputs are class labels, the ranking list of possible classes or
confidence levels. In this paper, we propose an integration process which
takes place in the “geometry space”. It means that we use the deci-
sion boundary in the integration process. The results of the experiment
based on several data sets show that the proposed integration algorithm
is a promising method for the development of multiple classifiers systems.
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1 Introduction

An ensemble of classifiers (EoC) or multiple classifiers systems (MCSs) [7,10]
have been a very popular research topics during the last two decades. The main
idea of EoC is to employ multiple classifier methods and combine their predic-
tions in order to improve the prediction accuracy. Creating EoC is expected to
enable better classification accuracy than in the case of the use of single classifiers
(also known as base classifiers).

The task of constructing MCSs can be generally divided into three steps:
generation, selection and integration [1]. In the first step a set of base classi-
fiers is trained. There are two ways, in which base classifiers can be learned. The
classifiers, which are called homogeneous are of the same type. However, random-
ness is introduced to the learning algorithms by initializing training objects with
different weights, manipulating the training objects or using different features
subspaces. The classifiers, which are called heterogeneous, belong to different
machine learning algorithms, but they are trained on the same data set. In this
paper, we will focus on homogeneous classifiers which are obtained by applying
the same classification algorithm to different learning sets.

The second phase of building MCSs is related to the choice of a set of clas-
sifiers or one classifier from the whole available pool of base classifiers. If we
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choose one classifier, this process will be called the classifier selection. But if we
choose a subset of base classifiers from the pool, it will be called the ensemble
selection. Generally, in the ensemble selection, there are two approaches: the
static ensemble selection and the dynamic ensemble selection [1]. In the static
classifier selection one set of classifiers is selected to create EoC during the train-
ing phase. This EoC is used in the classification of all the objects from the test
set. The main problem in this case is to find a pertinent objective function for
selecting the classifiers. Usually, the feature space in this selection method is
divided into different disjunctive regions of competence and for each of them a
different classifier selected from the pool is determined. In the dynamic classi-
fier selection, also called instance-based, a specific subset of classifiers is selected
for each unknown sample [2]. It means that we are selecting different EoCs for
different objects from the testing set. In this type of the classifier selection, the
classifier is chosen and assigned to the sample based on different features or dif-
ferent decision regions [4]. The existing methods of the ensemble selection use
the validation data set to create the so-called competence region or level of com-
petence. These competencies can be computed by K nearest neighbours from
the validation data set. In this paper, we will use the static classifier selection
and regions of competence will be designated by the decision boundary of the
base classifiers.

The integration process is widely discussed in the pattern recognition litera-
ture [13,18]. One of the existing way to categorize the integration process is by
the outputs of the base classifiers selected in the previous step. Generally, the
output of a base classifier can be divided into three types [11].

– The abstract level – the classifier ψ assigns the unique label j to a given input
x.

– The rank level – in this case for each input (object) x, each classifier produces
an integer rank array. Each element within this array corresponds to one of
the defined class labels. The array is usually sorted and the label at the top
being the first choice.

– The measurement level – the output of a classifier is represented by a con-
fidence value (CV) that addresses the degree of assigning the class label to
the given input x. An example of such a representation of the output is a
posteriori probability returned by Bayes classifier. Generally, this level can
provide richer information than the abstract and rank levels.

For example, when considering the abstract level, voting techniques [16] are
most popular. As majority voting usually works well for classifiers with a similar
accuracy, we will use this method as a baseline.

In this paper we propose the concept of the classifier integration process
which takes place in the “geometry space”. It means that we use the decision
boundary in the integration process. The decision boundary is another type of
information obtained from the base classifiers. In our approach, the decision
boundary from the selected base classifiers is averaged in each region of compe-
tence separately.
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Geometry reasoning is used in the formation of so-called “geometry-based
ensemble”. The method proposed in [12,14] used characteristic boundary points
to define the decision boundary. Based on the characteristic boundary points,
there is create a set of hyperplanes that are locally optimal from the point of
view of the margin.

The remainder of this paper is organized as follows. Section 2 presents the
basic concept of the classification problem and EoC. Section 3 describes the
proposed method for the integration base classifiers in the “geometry space”
which have been selected earlier (in particular we use Fisher linear discriminant
method as a base classifier). The experimental evaluation is presented in Sect. 4.
The discussion and conclusions from the experiments are presented in Sect. 5.

2 Basic Concept

Let us consider the binary classification task. It means that we have two class
labels Ω = {0, 1}. Each pattern is characterized by the feature vector x. The
recognition algorithm Ψ maps the feature space x to the set of class labels Ω
according to the general formula:

Ψ(x) ∈ Ω. (1)

Let us assume that k ∈ {1, 2, ...,K} different classifiers Ψ1, Ψ2, . . . , ΨK are
available to solve the classification task. In MCSs these classifiers are called base
classifiers. In the binary classification task, K is assumed to be an odd number.
As a result of all the classifiers’ actions, their K responses are obtained. Usually
all K base classifiers are applied to make the final decision of MCSs. Some
methods select just one base classifier from the ensemble. The output of only
this base classifier is used in the class label prediction for all objects. Another
option is to select a subset of the base classifiers. Then, the combining method
is needed to make the final decision of EoC.

The majority vote is a combining method that works at the abstract level.
This voting method allows counting the base classifiers outputs as a vote for
a class and assigns the input pattern to the class with the majority vote. The
majority voting algorithm is as follows:

ΨMV (x) = arg max
ω

K∑

k=1

I(Ψk(x), ω), (2)

where I(·) is the indicator function with the value 1 in the case of the correct
classification of the object described by the feature vector x, i.e. when Ψk(x) = ω.
In the majority vote method each of the individual classifiers takes an equal part
in building EoC. This is the simplest situation in which we do not need additional
information on the testing process of the base classifiers except for the models
of these classifiers.
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3 Proposed Method

The proposed method is based on the observation that the large majority of
the integration process used the output of a base classifiers. In addition, the
method called “geometry-based ensemble” used characteristic boundary points
not the decision boundary [12,14]. Therefore, we propose the method of inte-
grating (fusion) base classifiers based on their decision boundary. Since the pro-
posed algorithm also uses the selection process, it is called decision-boundary
fusion with selection and labelled ΨDBFS . The proposed method can be gener-
ally divided into five steps.

Step 1: Train each of base classifiers Ψ1, Ψ2, . . . , ΨK using different training sets
by splitting according to the cross-validation rule.

Step 2: Divide the feature space in different separable decision regions. The
regions can be found using points in which the decision boundaries of base
classifiers are equal.

Step 3: Evaluate the base classifiers competence in each decision region based
on the accuracy. The classification accuracy is computed taking into account
the learning set of each base classifier separately.

Step 4: Select l best classifiers from all base classifiers for each decision regions,
where 1 < l < K.

Step 5: Define the decision boundary of the proposed EoC classifier ΨDBFS as an
average decision boundary of the selected in the previous step base classifiers
in the geometry space. The decision boundary of ΨDBFS is defined in each
decision region separately. In this step we make the integration process of the
selected base classifiers.

The decision boundary obtained in step 5 is applied to make the final decision
of the proposed EoC. Graphical interpretation of the proposed method for two-
dimensional data set and three base classifiers is shown in Fig. 1.

The method proposed above may be modified at various stages. For example,
another division of the training set can be made using different subspaces of
the feature space for different base classifiers or by using the bagging method.
Another modification relates to step 2, when the competence regions can be
found using a clustering method [9]. It should also take into account the fact
that the method proposed in step 5 is suitable for linear classifiers.

4 Experimental Studies

In the experiential research 6, benchmark data sets were used. Four of them
come from the KEEL Project and two are synthetic data sets – Fig. 2. The
details of the data sets are included in Table 1. All the data sets constitute two
class problems. In the case of data sets with more than 2 features, the feature
selection process [8,15] was performed to indicate two most informative features.

In the experiment 3 Fisher linear discriminant classifiers are used as base clas-
sifiers. This means that in the experiment we use an ensemble of the homogenous
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(a) Base classifiers and deci-
sion regions

(b) Decision boundary of the
base classifiers after selection

(c) Decision boundary of the
proposed algorithm

Fig. 1. Example with two-dimensional data set and three base classifiers of the pro-
posed method

(a) Synthetic(1) (b) Synthetic (2)

Fig. 2. Syntectic data sets

base classifiers. Their diversity is created by learning either from subsets of the
training patterns according to 3-cross-validation method. The learning process
was repeated ten times. In each decision region two base classifiers are selected
to perform “Step 5” from the algorithm proposed.

Table 2 shows the results of the classification error and the mean ranks
obtained by the Friedman test for the proposed method ΨDBFS and the
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Table 1. Description of data sets selected for the experiments

Data set Example Attribute Ration (0/1)

Syntectic(1)150 150 2 0.5

Syntectic(1)300 300 2 0.5

Syntectic(1)600 600 2 0.5

Syntectic(2)150 150 2 0.5

Syntectic(2)300 300 2 0.5

Syntectic(2)600 600 2 0.5

Ionosphere 351 34 1.8

Pima Indians diabetes 768 8 1.9

Sonar 208 60 0.87

Ring7400 7400 20 0.5

Ring3700 3700 20 0.5

Ring1850 1850 20 0.5

Table 2. Classification error and mean rank positions for the proposed method ΨDBFS

and the majority voting method without selection ΨMV produced by the Friedman test

Data set ΨMV ΨDBFS

Syntectic(1)150 20.36 19.40

Syntectic(1)300 27.02 25.34

Syntectic(1)600 23.82 22.89

Syntectic(2)150 17.00 17.17

Syntectic(2)300 17.29 16.36

Syntectic(2)600 16.67 15.33

Ionosphere 18.70 19.20

Pima 25.02 25.10

Sonar 24.99 24.52

Ring7400 35.03 33.83

Ring3700 37.15 36.67

Ring1850 39.53 39.36

Mean rank 1.25 1.75

majority voting method without selection ΨMV . The results were compared with
the use of the post-hoc test [17]. This test is useful for pairwise comparisons of
the methods considered. The critical difference (CD) for this test at p = 0.05,
p = 0.1, equals CD = 0.56 and CD = 0.47 respectively. We can conclude that
the post-hoc Nemenyi test detects significant differences between the proposed
algorithm ΨDBFS and ΨMV method at p = 0.10. Additionally, at p = 0.05 the
post-hoc test is not powerful enough to detect any significant differences between
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those algorithms, but the obtained difference between the mean ranks (0.5) is
very close to CD = 0.56. This observation confirms that the algorithm ΨDBFS

proposed in the paper can improve the quality of the classification as compared
to the method without the selection. It should also be noted that the size of the
data set does not allow formulating requests for increasing the data set size and
the difference between considered algorithms.

5 Conclusion

In this paper we have proposed a concept of a classifier integration process taking
place in the “geometry space”. It means that we use the decision boundary in
the integration process but we do not consider information produced by the base
classifiers such as class labels, a ranking list of possible classes or confidence
levels. In the proposed approach the selection process is carried out additionally,
while the decision boundary from the selected base classifiers is averaged in each
region of competence separately.

The experiments have been carried out on six benchmark data sets. The
aim of the experiments was to compare the proposed algorithm ΨDBFS and the
majority voting method without selection ΨMV . The results obtained show an
improvement in the quality of the proposed method with respect to the majority
voting method.

Future work might include another division of a training set using different
subspaces of the feature space for different base classifiers, using the clustering
method to partition the feature space in decision regions or application of the
proposed methods for various practical tasks [3,5,6] in which base classifiers
are used.
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5. Forczmański, P., �Lab ↪edź, P.: Recognition of occluded faces based on multi-subspace
classification. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM
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