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Abstract. In this paper, the problem of fault-tolerant control (FTC)
is investigated for a class of nonlinear single input and single output
(SISO) systems in the non-strict feedback form. The considered sys-
tem possess unknown nonlinear functions, unmeasured states, unknown
time-varying delays, unknown control direction and actuator faults (bias
and gain faults). Neural networks (NNs) are adopted to approximate
the unknown nonlinear functions. Then, a state observer is constructed
to solve the problem of unmeasured states. In the frame of adaptive
backstepping design technique, by combining with Nussbaum gain func-
tion and Lyapunov-Krasobskii functional theory, an adaptive NNs output
feedback FTC method is developed. It is shown that all signals in the
closed-loop system are proved to be bounded, and the system output can
follow the given reference signal well.

Keywords: Nonstrict-feedback nonlinear systems · Fault-tolerant con-
trol · Adaptive NNs control

1 Introduction

In the past decades, fuzzy systems and NNs have been popularly used in fuzzy
modeling and controller design for uncertain nonlinear systems [1,2]. However,
the results obtained in [1,2] are only suitable for those systems that all the
components of the considered systems are in good operating conditions, i.e.,
the faults did not occur in the considered systems. In practical control systems,
there are usually some faults [1]. These faults will make the stability of the
system decreased, and even affect the safety and reliability of the control system.
Thus, some researches have been done on the problem of FTC for the controlled
system, and a deal of effective adaptive neural networks (NNs) or fuzzy FTC
design methods have been developed [4–6]. Among, [4] investigated the adaptive
NNs FTC problem under the assumption that the states of the systems can
be measured directly. Adaptive fuzzy backstepping output-feedback-based fault-
tolerant method is developed in [5,6] with unmeasured states. It is worth to be
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noticed that the above-mentioned FTC problems are aiming at the systems in
the pure-feedback or strict-feedback forms.

Therefore, the above method cannot be used for non-strict feedback sys-
tems [7]. In general, compared with nonlinear strict-feedback systems (or pure-
feedback systems), non-strict feedback systems have the unknown nonlinear func-
tions, which contain the whole state vector of each subsystems. And also, the
intermediate control functions are the function including whole state vector. If
the control method for strict-feedback systems (or pure-feedback systems) were
adopted with the aim to solve the control design problem for non-strict feedback
systems, the algebraic loop problem may occur. In order to avoid this problem,
the study for non-strict feedback systems has gained considerable interest in the
past years and some considerable efforts have been developed, for example [8–
10]. In addition, the work in [8–10] did not consider the problem of time-varying
delay and unknown control direction. Therefore, they cannot be utilized to deal
with the control design problem considered in this paper.

In this paper, by using NNs and fuzzy state observer to approximate the
unknown nonlinear functions and estimate the unmeasured states, respectively.
Combining with Nussbaum gain function methods, and in the frame of adaptive
backstepping design technique, an adaptive NNs output feedback FTC method
is developed. The proposed method can not only guarantee that all the signals
in the closed-loop system are bounded, but also the system output can follow
the given reference signal well.

2 Problem Formulations and Preliminaries

2.1 Nonlinear System and Actuator Fault Model

Consider an uncertain SISO nonlinear system with actuator faults.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ̇i = fi(τ̄) + τi+1 + hi(y(t − σi(t))), i = 1, . . . , n − 1,
...

τ̇n = fn(τ̄) + guq + hn(y(t − σn(t))),
y = τ1

(1)

where τ̄ = [τ1, · · · , τn]T is a state vector, g denotes an unknown constant, while
hi(y(t − σ(t))) and fi(y) are unknown nonlinear functions, uq denotes the control
input of the system.

Therefore, according to [2,8], The bias and gain faults are as the following
form:

uq(t) = (1 − m)u(t) + ω(t) (2)

where ω(t) denotes a bounded function, which can be given in the next section.
0 ≤ m ≤ 1 denotes the lost control rate, which is an unknown constant.

In this paper, the control objective is to develop an observer-based adaptive
NNs backstepping FTC strategy for the system (1) with bias and gain faults (2),
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which can not only validate the boundeness of the whole signals yr in the closed-
loop system, but also ensure that the system output can follow the given reference
signal y well.

To achieve the above objective, several assumptions are given.

Assumption 1: There exist known constants di, (1 ≤ i ≤ n), such that the
time delays |σi(t)| ≤ di

Assumption 2: hi(·) is a nonlinear function, and it satisfies the following
inequality:

|hi(y(t))|2 ≤ z1(t)Hi(z1(t)) + h̄i(yr(t)) + �i (1 ≤ i ≤ n) (3)

where hi(·) is a bounded function and hi(·) = 0, Hi(·) is a known function, �i

are unknown constants.

2.2 Neural Network System

In this paper, the unknown nonlinear functions existed in controlled system are
approximated by employing NNs. The general form of neural network system is
f(τ) = ξT φ(τ), where ξ ∈ Rυ, the NN node number υ > 1 and ξ is the parameter
estimation vector. φ(τ) are chosen as the form of Gaussian functions, i.e. Then
ξT φ(τ) can approximate any given function f(τ) in a compact set, i.e.

f(τ) = ξT φ(τ) + δ (4)

where δ is the approximation error with |δ| ≤ δ∗ and δ∗ is an unknown positive
parameter.

2.3 Nussbaum-Type Function

A Nussbaum gain technique-based design method is adopted in this paper, and
Nussbaum-type function N(ς) owns the following characteristics:

lim
m→∞ sup 1

m

∫ m

0
N(ς)dς = ∞

lim
m→∞ sup 1

m

∫ m

0
N(ς)dς = −∞ (5)

Nussbaum common features are ς2 cos(ς), ς2 sin(ς) and exp(ς2) cos(ς2). In
this paper, the form of exp(ς2) cos(ς2) is adopted.

Lemma 1: For system (1), define N(ς) = exp(ς2) cos(ς2),0 ≤ ς < t, there exists a
function V (t) ≥ 0, positive constants C and D, such that the following inequality
holds:

V̇ (t) ≤ −CV (t) +
∑n

i=1
�j [βiN

′(ςi) + 1]ς̇i + D (6)
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3 Design of Fuzzy State Observer

Since the states of the considered systems are partial measurable, a state observer
is needed with the aim to estimate the unmeasured states.

Let η = g(1 − m), xi = τ̄ /η = [τ1/η, τ2/η, · · · τn/η]T , thus the system (1)
becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋi = xi+1 + fi(τ̄)
η + 1

η hi(y(t − σi(t))), i = 1, 2, · · · n − 1
...

ẋn = u(t) + fi(τ̄)
η + 1

η hn(y(t − σn(t)))
ẏ = f1(τ̄) + ηx2 + h1(y(t − σ1(t)))

(7)

According to the transformation from (1) to (7), the coefficient of u(t)
becomes 1, while the coefficient of x2, which is in the last equation of (7), is
η, rather than 1. Hence, the Nussbaum technique should be adopted in this
paper with the aim to erase the effect of η.

Constructing a state observer for system (7) as
{

˙̂xi = −kix̂1 + x̂i+1 + kiy, i = 1, 2, · · · , n − 1
˙̂xn = −knx̂1 + u(t) + kiy

(8)

Let ei = xi − x̂i be the observer errors, where x̂i = [x̂1, · · · x̂n]T . Based on (7)
and (8), we have

ėi = ẋi − ˙̂xi = Aei + B
ω(t)
η

+
F

η
+

h

η
(9)

where F = [f1(τ̄), · · · , fn(τ̄)]T , h = [h1(y(t − σ1(t))), · · · hn(y(t − σn(t)))], B =

[0, · · · , 0
︸ ︷︷ ︸

n−1

1]
T

and A =

⎡

⎢
⎣

−k1
... I(n−1)×(n−1)

−kn 0 · · · 0

⎤

⎥
⎦

According to selecting the appropriate vector [k1, · · · , kn]T , thus the matrix
A can be guaranteed a Hurwitz form. And also, for any given Q = QT > 0, there
exists P = PT > 0 such that

AT P + PA = −Q (10)

Consider a Lyapunov function candidate:

V0 = eT Pe/2 + W0 (11)

where

W0 =
1

2b(1 − σ∗)
‖P‖2e−rt

∑n

i=1

∫ t

t−σ(t)

ermz1(m)(Hi(z1(m)))dm (12)

where b is a known constant. The time derivative of V0 is

V̇0 = −1
2
eT Qe + eT P (B

ω(t)
η

+
F

η
+

h

η
) + Ẇ0 (13)
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Thus, from mean value theorem, the function fi(τ̄) can be represented as
the following formula

fi (τ̄) = yf̄i (τ̄) (14)

According to (4), the nonlinear function ‖P‖2 ∑n
i=1 yf̄2

i (τ̄)/η2 can be
approximated by NNs, one has

‖P‖2
n∑

i=1

yf̄2
i (τ̄)
η2

= Ψ∗T φ(τ̄) + ε (15)

where b′ = berσ and |ω(t)/η| ≤ κ where κ is an unknown constant and |ε| ≤ ε∗,
then we can obtain

V̇0 ≤ −(λmin(Q) − 1
2 − 1

2b′ − b′
2η )‖e‖2 + y(Ψ∗T φ(τ) + ε)

+ b′
2 ‖P‖2

n∑

i=1

κ2 + 1
2b(1−σ∗)‖P‖2

n∑

i=1

z1H1(z1) − rW0 + d∗
0

(16)

where d∗
0 is a constant and d∗

0 ≥ ‖‖2(h̄i(yr(t)) + �i)
/

2b′

4 Neural Networks Control Design

In this section, according to the backstepping technique, an adaptive fuzzy out-
put feedback fault tolerate controller design method will be presented, and the
Lyapunov function stability theory is adopted to verify the stability of the con-
sidered system. The coordinate transformation of n-step backstepping control
design is chosen as

z1 = y − yr, zi = x̂i − αi−1 , (i = 2, · · · n) (17)

where z1 is the system’s tracking error. αi−1 denotes the virtual control input.

Step 1: From (7) and (17), we have

ż1 = f1(τ̄) + ηx2 + h1(y(t − σi(t))) − ẏr (18)

Consider a Lyapunov function candidate:

V1 =
1
2
z21 +

1
2γ1

θ̃21 +
1

2γ2
θ̃22 + W1 + V0 (19)

where γ1 > 0 and γ2 > 0 are design constants, and

W1 =
1

2b(1 − σ∗)
e−rt

∫ t

t−σ1(t)

ermz1(m)(H1(z1(m)))dm (20)

According to (4), we use NN to approximate the unknown nonlinear function
f1(τ̄) as:

f1(τ̄) = Φ∗T ξ(τ̄) + μ1(τ̄) (21)
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Where |μ1(x)| ≤ μ∗. Define θ∗
1 = Ψ∗T

1 Ψ∗
1 , θ∗

2 = Φ∗T
1 Φ∗

1, θ̂1 and θ̂2are used to
estimate θ∗

1 and θ∗
2 , respectively. The estimation error is θ̃i = θ∗

i − θ̂i (i = 1, 2).
The time derivative of V1 is

V̇1 ≤ −(λmin(Q) − 1
2b′ − b′

2η − 1 − η̄2

b′ )‖e‖2 + 1
γ2

θ̃T
2 (γ2

21z2
1

4λ − θ̇2)

+z1( z1
2 + b′η̄z1

4 + b′z1
2 + θ̂1z1

4λ + θ̂2z1
4λ + 1

2b(1−σ∗)z1H1(z1))

+z1
1

2b(1−σ∗)‖P‖2
n∑

i=1

z1Hi(z1) + 1
γ1

θ̃T
1 (γ2

1z2
1

4λ − θ̇1)

+ηz1z2 + ηz1α1 − z1ẏr + d∗
0 + d̄1 + D1 − rW0 − rW1

(22)

where D1 = b′‖P‖2 ∑n
i=1 κ2

/

2+y2/2+θ∗
1+2ε2+μ2

1(τ̄)+2λ and d̄1 = d∗
0

/

‖P‖2.
The virtual control α1 and the parameters adaptive functions θi (i = 1, 2) as:

α1 = Ṅ(ς)[c1z1 − ẏr + z1
2 + b′η̄z1

4 + b′z1
2 + θ̂1z1

4λ + θ̂2z1
4λ

+ n
2b(1−σ∗)H1(z1) + 1

2b(1−σ∗)‖P‖2
n∑

i=1

z1Hi(z1)]
(23)

ϑ̇ = z1
	 [c1z1 − ẏr + z1

2 + b′η̄z1
4 + b′z1

2 + θ̂1z1
4λ + θ̂2z1

4λ

+ n
2b(1−σ∗)H1(z1) + 1

2b(1−σ∗)‖P‖2
n∑

i=1

z1Hi(z1)]
(24)

θ̇1 =
γ2
1z21
4λ

− ρ1θ1, θ̇2 =
γ2
2z21
4λ

− ρ2θ2 (25)

Substituting (23)–(25) into (22) results in

V̇1 ≤ −(λmin(Q) − 1
2b′ − b′

2η − 1 − η̄2

b′ )‖e‖2 + ηz1z2 − c1z
2
1

+�1(ηN ′(ς) + 1)ς̇ − n−1
2b(1−σ∗)z1H1(z1) +

2∑

i=1

ρi

γi
θ̃T

i θ̂i

+d∗
0 + d̄1 + D1 − rW0 − rW1

(26)

Step i : From (8), (9) and (18), we have

żi = zi+1 + αi − kix̂1 − ∂α1
∂y (ΦT

1 ξ(τ) + μ1(τ) + ηx̂i + ηei

+h1(y(t − σ1(t)))) −
i∑

j=1

∂αi−1

∂y
(j−1)
r

y
(j)
r −

2∑

i=1

∂αi−1
∂θi

θ̇i
(27)

where i = 2, 3, · · · n − 1, then construct a Lyapunov function Vi as

Vi = Vi−1 +
1
2
z2i + W1 (28)

Similar to α1, the virtual control input αi as:

αi = −cizi + kix̂1 − zi−1 − zi

2 (∂αi−1
∂y )2 − zi

4λ (∂αi−1
∂y )2 +

2∑

j=1

∂αi−1
∂θj

θ̇j

− zi

4λ (∂αi−1
∂y )2x̂2

2 − b′
2 (∂αi−1

∂y )2zi +
i∑

j=1

∂αi−1

∂y
(j−1)
r

y
(j)
r

(29)
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The time derivative of Vi is

V̇i ≤ −(λmin(Q) − 1
2b′ − b′

2β − 1 − η̄2

b′ − (i − 1)λη̄2)‖e‖2 + zizi−1

− n−i
2b(1−σ∗)z1H1(z1) −

i∑

j=1

cjz
2
j +

2∑

i=1

ρi

γi
θ̃T

i θ̂i − rW0

−irW1 + �1(ηN ′(ς) + 1)ϑ̇ + ηz1z2 + d∗
0 + id̄1 + Di

(30)

where Di = Di−1 + λη̄2 + θ∗
2 + μ∗2

i .

Step n: In this step, the actual control input u(t) appears. From (7), (8) and
(17), we have

żn = u(t) − knx̂1 −
n∑

i=1

∂αn−1

y
(i−1)
r

y
(i)
r −

2∑

i=1

∂αn−1
∂θ1

θ̇i − ∂α1
∂y (ΦT

1 ξ(τ)

+μ1(τ) + ηx̂2 + ηe2 + h1(y(t − σ1(t))))
(31)

Construct a Lyapunov function Vn as:

Vn = Vn−1 +
1
2
z2n + W1 (32)

Design the actual controller u(t) as:

u(t) = knx̂1 +
n∑

i=1

∂αn−1

y
(i−1)
r

y
(i)
r +

2∑

i=1

∂αn−1
∂θ1

θ̇i − b′
2 (∂αn−1

∂y )2

− z2
n

4λ (∂αn−1
∂y )2x̂2

2 − z2
n

2 (∂αn−1
∂y )2 − z2

n

4λ (∂αn−1
∂y )2 − cnzn − zn−1

(33)

From (33), one has

V̇n ≤ −(λmin(Q) − 1
2b′ − b′

2η − 1 − η̄2

b′ − (n − 1)λη̄2)‖e‖2

−(cn − 1
2 η̄2)z21 − (cn − 1

2 η̄2)z22 −
2∑

i=1

ρi

γi
θ̃2i −

n−1∑

j=3

cjz
2
j

+
2∑

i=1

ρi

2γi
θ∗2

i + d∗
0 + nd̄1 + Dn − rW0 − nrW1 + �1(ηN ′(ς) + 1)ς̇

(34)

The inequality (34) can be rewritten as

V̇n ≤ −CVn + D (35)

where

C = min{−(λmin(Q) − 1/2b′ − b′/2η − 1 − η̄2/b′ − (n − 1)λη̄2),
2(c1 − η̄2/2), 2(c2 − η̄2/2), 2c3, 2c4 · · · 2cn−1, ρ1/2γ1, ρ2/2γ2} (36)

There exists a constant D̃ such that D̃ ≥ ς1(ηN ′(ς) + 1)ϑ̇, and

D = d∗
0 + nd̄1 + Dn − rW0 − nrW1 + D̃ +

2∑

i=1

ρi

2γi
θ∗2

i (37)
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Integrate the differential inequality (35), we have

V = Vn ≤ e−ct(V (0) − D/C) + D/C (38)

From (38) and Lemma 1, the boundeness of the whole signals in the closed-
loop system can be obtained.

The above design and analysis are summarized in the Theorem1.

Theorem 1: For system (1) with fault, under Assumptions 1, 2 and Lemma 1,
the controller functions (33), state observer (8), the intermediate control func-
tions (23) and (29), and the parameter adaptation functions (25) obtained based
on the above derivations, the following properties can hold: (1) The boundeness
of the whole signals in the closed-loop system can be validated; (2) The system
output can follow the given reference signal well.

5 Conclusions

This paper has presented an observer-based adaptive NNs FTC method. Firstly,
NNs have been utilized for approximating the unknown nonlinear functions,
and the states observers have been constructed for estimating the unmeasured
states. Then, by using the properties of Nussbaum gain function and Lyapunov-
Krasobskii functional theory, and combining with adaptive backstepping design
technique, the problem of FTC with unknown time-varying delays, unmeasured
states, and unknown control direction has been solved. It is shown that not only
all signals in the closed-loop system are proved to be bounded, but the system
output can follow the given reference signal well.
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