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Abstract. An alteration of neuronal morphology is present in cognitive
neurological diseases where learning or memory abilities are affected.
The quantification of this alteration and its evolution by the study of
microscopic images is essential. However, the use of advanced and auto-
matic image processing techniques is currently very limited, focusing on
the analysis of the morphology of isolated neurons. On this article we
present a new methodology, based on texture analysis, to characterize
the global distribution of different neural patterns in immunofluorescence
images of brain tissue sections, where the neurons can be visualized as
they are really distributed. We apply the technique to mice brain tis-
sue section dividing them into two classes: Ts1Cje Down’s syndrome
model and wild type, free of this neurodegenerative disease. Taking into
account CA1 region of the hippocampus, we calculate and compare sev-
eral state of the art texture descriptors that are subsequently classified
using machine learning techniques. Achieving a 95% of accuracy, the
assumption that texture characterization is relevant to quantify globally
morphological alterations in the neurons, seems to be demonstrated.

Keywords: Texture analysis - Down’s syndrome + Pattern recognition -
Machine learning

1 Introduction

One of the cognitive and neurodegenerative diseases that has awaken most inter-
est in the scientific field is Down syndrome (DS). DS, originated by a trisomy
of the human chromosome 21, is the most frequent cause of intellectual genetic
disability. Cognitive neurological diseases, where memory and the learning capa-
bility is affected, along with neurodegenerative diseases present a generalized
neural morphological alteration. This alteration, if correctly quantified, could
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provide useful information, specially when assessing the therapeutic potential of
drugs aimed at recovery of function and neuronal morphology.

Currently, an objective quantification of the so explained alterations is per-
formed by analyzing the dendritic morphology of isolated neurons. One of the
most used techniques to this purpose is the Sholl Analysis [1]. In this method,
the dendritic branching pattern that is, the ratio between the number of inter-
sections of the dendrites per unit area and the distance between them and the
center of the soma, is calculated. In order to perform this kind of analysis, it
is essential to obtain images of isolated neurons. Generally this is achieved by
immunofluorescence imaging of low density neuronal cultures, or by studying a
kind of tissue staining, Golgi staining for instance, that allows the visualization
of just a reduce number of neurons presented in the tissue. This use of neuronal
cultures is widespread in the scientific field, although it is an experimental app-
roach to reality. Despite this, in DS study, these staining techniques have been
proved to be very useful in the morphogenesis of hippocampal neurons of murine
models. As an example, the scientific group led by Dr. Montesinos, director of the
Laboratory of Synaptic Local Translation (SLTL) at the University of Seville,
has detected morphological differences in dendritic arborization among cultured
neurons belonging to T's1Cje mice, a model of DS, and control mice or wild type
(WT), which are free of this neurodegenerative disease [2—6].

On the other hand, staining of tissue sections allows only the visualization
of the dendritic structure of certain neurons, usually 5-10% of the total amount
of neurons present in the tissue. The actual mechanism that causes the staining
of only these neurons remains unknown compromising the results of the studies
based on it.

Opposite to these traditional techniques, we propose studying the den-
dritic pattern in a global way using advanced techniques of image analysis in
immunofluorescence images of histological sections of tissues, where all neurons
can be visualized as they are distributed in reality. These images are rich on tex-
ture information and posses characteristic architectures that could be studied
with pattern recognition methods. An example of an immunofluorescence image
of a murine hippocampus section is shown in Fig. 1, in which different parts can
be differentiated based only on the texture of each of these zones.

Fig. 1. Confocal image of a coronal section of the murine hippocampus region and its
representative areas.
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The present research has focused on the study of immunofluorescence images
of hippocampal sections to study the neuronal texture of control(wild-type) and
trisomic Ts1Cje mice. Due to the morphological difference in cultured isolated
neurons, it seems direct to infer that there will also be an overall morphological
difference on the sections of neuronal tissues. In the particular case of the CA1
region of the hippocampus, these global morphological differences give rise to
patterns that are similar to some well-known patterns present in the traditional
Brodatz database, a key image database widely used by the pattern recognition
community to validate their algorithms. This similarity can be seen in Fig. 2.
However, in most of the images analyzed in this research, the difference between
the texture of the CA1 region in WT and DS images is not as clear or appreciable
at a glance. In order to study the use of texture descriptors as a way to quantify
global morphology, we have designed a series of experiments with the goal of
automatically classify images of the hippocampal CA1 region into two categories,
WT and DS.
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Fig. 2. Representative images of DS-CA1 region (a), WT-CA1 region (b), Brodatz
Straw D15 (c), and Brodatz Grass D9 (d) cases.

2 Related Works

Texture is a fundamental parameter in the description of images, as it provides a
measure of properties such as smoothness, roughness and regularity [7]. Unfortu-
nately, the amount of research on texture characterization of biological images is
limited and usually focused on magnetic resonance and fluorescence microscopy
images.

Within texture image research, Haralick texture descriptors [8] are funda-
mental. They consist of 14 texture features derived from the so-called Gray
Level Co-occurrence Matrix (GLCM) matrix. These descriptors have been used
for pattern characterization in fluorescence microscopy images of HELA cells [9]
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as well as to model the texture of H1-60 cell nuclei [10]. They have also been
successfully used in the classification of meniangiomas [11], while in [12] where
significant changes in mean temporal lobe texture have been detected in patients
with Alzheimer’s disease. Recently, other statistical descriptors have been devel-
oped improving the performance of GLCM-based descriptors. For instance, in
[13] texture characterization is performed on the based of the gray level zonal-size
matrix (GLSZM), with an application to the classification of HEp-2 cells.

Other texture descriptor that has been widely accepted in recent years is
the so-called Local Binary Patterns (LBP) introduced in [14] for which there
are different variants. In the case of biomedical images, the most interesting are
Median Binary Pattern [15] and Local Ternary Patterns [16]. An application
of these techniques in combination with other texture-based dispersed scatter
descriptors can classify images taken with confocal fluorescence microscopy by
fibroid lung cancer [17].

Other texture-based methods for image characterization are Gabor filters [18]
and Gauss-Markov models [19]. In [20], texture information using the Gabor filter
bank is used for automated segmentation of neurons in high-content scanning or
High Content Screening (HCS) images.

To our knowledge, the only work in which histological sections of tissue are
globally analyzed is [21]. However, in this article, only orientation and anisotropy
characteristics are studied by tensor structure analysis, obtaining the same mea-
sures that the ones provided by diffusion tensors. On the contrary, our proposal
analyses for the first time different texture descriptors, with the objective of
obtaining new protocols that allow the objective quantification of the global
neuronal morphology.

3 Materials and Methods

This section describes the stages of the proposed method. Initially, we detail
the collection and selection of hippocampal images. Next, we describe the pre-
processing techniques implemented, ending with the description of the different
texture descriptors used in this work. The proposed tool has been developed
with MATLAB®R2015a software (The MathWorks Inc., Natick, MA). A block
diagram of the system is shown in Fig. 3.

Hippocampal Images Dataset. The images were taken at the Center for
Research, Technology and Innovation of the University of Seville (CITIUS) with
a ZEISS LSM 7 DUO spectral confocal spectral scanning microscope. Fifteen
hippocampal histological preparations were imaged, with six of them having a
coronal section. For the histological preparations, the animals were anesthetized
and subsequently perfused with paraformaldehyde to fix the brain tissue. The
brains were then sectioned using a vibratome. Finally the slices were subjected
to labeling of neuronal somatodendritic structures by immunofluorescence, using
specific antibodies against the MAP2 protein. A stack of images composed of
twelve focal planes was taken to each preparation. The images obtained were
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Fig. 3. Block diagram of the proposed method.

in .czi format. These images were converted to .bmp format, a lossless format
that facilitates their processing regardless of the operating system. Subsequently,
within each hippocampus sample, we selected the focal plane of the stack that
had the best contrast and sharpness in the region of interest, and the remaining
planes were discarded from the study to avoid correlated data. Also, we discarded
images of preparations that were not of sufficient quality.

The final dataset consisted of nine images (one of them with a coronal
section), containing a total of ten samples of hippocampus: five of them belonging
to the trisomic class, and five others to the wild type. Each initial hippocampus
image was converted to gray scale. Then, the CA1 area was manually selected.
Finally the selection was rotated in order to visualize the CA1 area horizontally.

3.1 Pre-process

In order to obtain the most relevant texture characteristics, it is necessary to
determine a protocol for the pre-processing of the images in order to normalize
the structural characteristics of the different parts of the brain to be studied.
In the case of the CAl region, it is necessary first to address the elimination
of artifacts, where artifacts are understood as the presence of blood vessels in
the images. These blood vessels appear as elliptical areas characterized by a low
level of gray. The presence of these vessels is not a differentiating characteristic
between DS and WT type, and therefore should not influence the characteriza-
tion of the texture. The solution adopted in our proposal is to detect the vessels
thresholding the image and then restore the detected vessels using the algorithm
Fast Image Inpainting [22]. This algorithm, uses as a mask of the undesired
points the result obtained by the thresholding procedure. Then, values of the
pixels belonging to the mask are replaced propagating the grey level information
of their neighbours in a direction from the edges of the vessels to their inner part.
The pixels values replacement is performed in a way consistent with human per-
ception to avoid blurred patches in the resulting images. Therefore, the inpainted
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vessels are substituted in a way that the new gray value and gradient on that
location extrapolate the gray value and gradient outside the neighbourhood.

After the removal of artifacts it is necessary to study aspects related to
contrast enhancement. The quality of the immunofluorescence images depends
not only on the dynamic range of the measuring instrument, but also on the
expression and distribution of the marker being evaluated, among other factors.
Therefore, the quality of the images under study could vary considerably from
one histological sample to another. To improve contrast we have chosen the con-
trast limited adaptive histogram equalization technique (CLAHE) [23]. Basic
histogram equalization (HE) is a process by which pixels’ values are mapped in
order to obtain an image with the same number of pixels for each gray level. That
procedure usually fails when the image content is not homogeneous. To avoid
this, improving local contrast and edges definiton, adaptive histogram equal-
ization (AHE) performs a basic HE on neighbourhoods of the pixels instead
of considering the whole image at once. The amplification of intensity of the
amount of contrast enhancement depends on the slope of the cumulative distri-
bution of grey level function, that is, it depends on the value of the histogram
at that pixel value. It causes the amplification of noise in homegeneous regions
that tries to be overcomed by CLAHE. This equalization procedure limits de
amount of amplification of AHE to certain levels. An example of application of
the pre-processing techniques in one of the study images is shown in Fig. 4.

Finally, in order to obtain a larger sample size for both WT and DS, each
region of interest was divided into sixteen non-overlapping 50 square blocks. This
procedure is generally adopted by texture analysis techniques.

3.2 Feature Extraction Procedure

In this work we have evaluated two groups of texture descriptors. Firstly, we use
a set descriptors that combines classic ones that have been proven to be efficient
in the past and that are highly validated along to other more recent ones that
exploit the sparseness nature of the texture features (method 1) Secondly we use
Local Binary Patterns (method 2), descriptors with high impact in state of the
art techniques.

Method 1. Classical and Sparse Descriptors. Due to the great robustness
and proved performance for image classification, we have decided to use classic
texture descriptors along with a new set of features that try to take advantage
of the sparsity property of the texture for the characterization of the regions of
interest. The resulting feature vector is therefore formed by:

1. First order statistical descriptors: mean, standard deviation, asymmetry or
skewness coefficient, kurtosis and entropy.

2. The particularization of the fractal dimension called the Hausdorff dimension
[24].

3. Haralick texture descriptors [8] from the co-occurrence matrix.

4. Mean and variance of the sparse texture vector described in [25,26] using a
Gaussian mixture of five components.
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Fig. 4. (a) Original region of interest where Larger blood vessels are highlighted in
yellow, (b) image obtained after applying the algorithm of Fast Image Inpainting and
(c) image obtained after applying the CLAHE algorithm for contrast enhancement.
(Color figure online)

Method 2. Local Binary Patterns. Because of their low computational com-
plexity and their discriminative power, LBP-based texture methods have become
very popular in recent years [27]. Among all of the existing LBP variants, a cir-
cular and rotation-invariant code [14] was selected, with a neighbourhood of
eight pixels and a radius equal to one. For each block, thirty-six LBP codes
were obtained. The characteristic vector was formed by the histogram of these
thirty-six codes.

3.3 Training and Classification

Once the feature vector is constructed for each block of the region of interest, we
proceeded to perform a binary classification step. For each method the following
classifiers were used:

1. Support Vector Machine (SVM) [28]: in its versions of linear, quadratic, cubic
and Gaussian kernel).
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K-Nearest Neighbor (KNN) [29]: in their versions of cosine and cubic distance.
Complex Tree (a single decision tree).

Bagged Tree [30].

Random Forests [31].

G N

We have used an external validation method to assess the quality of all tested
classifiers. For that, we selected for each type of image, DS and WT, 3 complete
CAL1 regions, that are in total 48 blocks, for the training stage of the classifiers,
and 2 CA1 regions, that is 32 blocks, for the test stage. This is mainly due to
the fact that in texture images there may be a high correlation between areas
of the same image, so if we do not use complete CA1 regions, we could get false
results.

4 Results

The results of classification obtained with the different classifiers for each devel-
oped method are shown in Table 1. The metric used to verify the method studied
is the accuracy in the DS or WT classification. The “Classification Learner” tool
of Matlab 2015 software was used for the simulations.

Table 1. Results of the classification in terms of accuracy (%). The classifier with the
best result has been highlighted in bold for each method.

Method 1 Method 2
Classifier Accuracy (%) | Accuracy (%)
SVM (lineal kernel) 96.88 92.18
SVM (quadratic kernel) | 93.75 90.62
SVM (cubic kernel) 93.75 89.06
SVM (gaussian kernel) | 92.19 90.62
k-NN (cosine distance) |75.00 95.62
k-NN (cubic distance) |93.75 89.06
Complex Tree 76.56 76.56
Bagged Tree 85.94 95.31
Random Forest 89.06 93.75

Among all of the possible combinations, the best result, 96.88%, is obtained
with method 1 (classical and dispersed texture descriptors) using SVM in its
linear kernel version. In the case of method 2, which uses the LBP texture
descriptors, the best result, obtained with k-NN cosine, is slightly lower, 95.62%,
but still constitutes a high success rate.
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5 Discussion

The main objective of this research was to verify the use of texture descriptors
to discern neuronal morphological differences globally in sections of brain tissue
between murine models of Down syndrome and control mouse subjects. For this,
an experiment has been carried out where an image of the region of interest in
DS or WT is classified based only on texture descriptors using several recent
machine learning techniques. Two sets of different texture descriptors have been
used, obtaining high percentages of success with both of the methods studied.
From the results obtained it can be inferred that there is a texture pattern
that characterizes the CA1 region of the hippocampus in murine models of DS
and WT. In addition, the texture of the CA1 hippocampal region of DS mice
is altered in relation to the texture of the same region in control subjects. This
alteration was foreseeable due to the dendritic morphological differences observed
in neurons isolated in culture in previous studies carried out in the Laboratory
of Synaptic Local Translation of the University of Seville. However, having been
able to identify the type of mouse to which a particular image belongs, based
solely on the texture opens a new paradigm of investigation that can be useful
for the study of many cognitive and neurodegenerative diseases.

Despite the good results obtained, we believe that it is necessary to improve
some aspects of this research. In the first place, it would be necessary to have a
larger image base to be able to study the complete CA1 region, without having to
divide it into smaller pieces. We are currently working in collaboration with the
SLTL of the University of Seville to perform a new imaging in new histological
preparations. Secondly, it would be interesting that the selection and trimming of
the ROT (the CA1 region) within each image was done completely automatically.
In this way, we would eliminate a task that is tedious and usually consumes a
lot of time to the specialist.

Finally, in order to develop a more complete investigation, we will analyze
other areas of the brain. By quantifying and characterizing the distribution of
different neuronal patterns in different areas of the nervous system, it will be
possible to extract relevant conclusions at the pre-clinical level about the effect
of certain compounds on the recovery of global neuronal morphology, and thus
contribute to the progress in knowledge scientist of numerous neurodegenerative
diseases.

6 Conclusions

In this research we have proposed a new paradigm of methodology in the investi-
gation of neurodegenerative diseases, through the study of dendritic structures in
complete tissues instead of studying isolated neurons. We can consider that the
work developed has had more than positive results considering that the approach
of the problem was a new line of research totally unknown to date. One of the
key points in obtaining these results is the application of a pre-processing stage
that addresses the elimination of blood vessels as well as the contrast enhance-
ment. The final solution described is the result of an exhaustive study of different
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alternatives until finding the most appropriate solution to the immunofluores-
cence images of hippocampus. All parameters of the algorithms of this stage are
fixed and do not need to be adapted to each of the images, which makes the
procedure completely automatic. On the other hand, we have made a careful
selection of texture parameters that compound the resulting feature vector for
each of the two methods studied. In the case of the first method, classic texture
descriptors were complemented by dispersed descriptors of more recent creation,
and in this way it has been possible to reach excellent results. In the same way,
the LBP descriptor chosen is invariant under rotations something relevant in the
case of our images due to the fact that rotation of the texture pattern should not
be considered as a distinctive feature to distinguish between DS and WT. The
results obtained with this set of descriptors have also been very satisfactory.
Finally, we have made a complete comparison between different classifiers for
the two vectors of characteristics calculated. The best-performing classifiers are
those based on Vector Support Machine for the first method and K-NN Cosine
and Bagged Tree for the second method. We would also like to highlight the
reliability of decision tree-based classifiers such as Random Forest.
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