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Abstract. This paper shows that parallel processing is useful for feature
selection in brain-computer interfacing (BCI) tasks. The classification problems
arising in such application usually involve a relatively small number of
high-dimensional patterns and, as curse of dimensionality issues have to be
taken into account, feature selection is an important requirement to build suit-
able classifiers. As the number of features defining the search space is high, the
distribution of the searching space among different processors would contribute
to find better solutions, requiring similar or even smaller amount of execution
time than sequential counterpart procedures. We have implemented a parallel
evolutionary multiobjective optimization procedure for feature selection, based
on the island model, in which the individuals are distributed among different
subpopulations that independently evolve and interchange individuals after a
given number of generations. The experimental results show improvements in
both computing time and quality of EEG classification with features extracted
by multiresolution analysis (MRA), an approach widely used in the BCI field
with useful properties for both temporal and spectral signal analysis.

Keywords: Brain-computer interfaces (BCI) � Feature selection � Island model
based evolutionary algorithms � Multiresolution analysis (MRA) � Parallel
multiobjective optimization

1 Introduction

Many classification tasks in bioinformatics deal with patterns defined by a large
number of features. Moreover, these high-dimensional classification problems have
frequently to be solved with the number of patterns smaller than the number of features,
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thus presenting curse of dimensionality problems [1]. Therefore, feature selection is
usually required in bioinformatics [2] to eliminate redundant and noisy features in order
to improve the accuracy and interpretability of the classifiers.

Among the three different approaches for feature selection (filter, wrapper and
embedded methods) [2], our proposal in this paper corresponds to a wrapper procedure.
Although wrapper approaches use the classifier performance to evaluate the utility of a
given set of features and thus they are classifier-dependent, they are usually recognized
as the preferable approaches whenever they would be feasible [3].

One of the issues to be taken into account in the design of a feasible wrapper-based
feature selection procedure is the number of possible features because the size of the
searching space depends exponentially on that number. In high-dimensional classifi-
cation problems, several hundreds or even thousands of features usually define a very
huge searching space where efficient metaheuristics are required. This paper proposes a
parallel multiobjective evolutionary algorithm, in which the individuals of a population
represent different feature selections, and the fitness of a given individual is determined
through the evaluation of the classifier performance after training it with the corre-
sponding patterns defined by the set of selected features. Parallel processing has been
previously considered to take advantage of high performance computer architectures
for feature selection [4–8]. In [7, 8] feature selection is approached using parallel
multiobjective and cooperative coevolutionary procedures implemented through a
master-worker parallel model. In this paper, we propose an island model to implement
parallel multiobjective feature selection applied to BCI.

In what follows, Sect. 2 describes our approach to feature selection based on
multiobjective optimization and its parallel implementation through the island model.
The application considered in this paper corresponds to BCI tasks related with motor
imagery, where the features of the patterns are obtained by using Multiresolution
Analysis (MRA). The details of the application and the patterns in the database used are
provided in Sect. 3. Finally, Sect. 4 describes the experimental results and the con-
clusions are given in Sect. 5.

2 A Parallel Island Procedure for Multiobjective Feature
Selection

As this paper deals with supervised classification problems in which the labels of the
training and test patterns are known, it would be possible to evaluate the performance
of a classifier from the accuracy obtained after training it (by using the set of training
patterns). Nevertheless, other measures that quantify properties such as the general-
ization capability should be taken into account in order to improve the behavior of the
classifier in a real environment, where patterns that have not been used for training
have to be processed. To tackle these issues, we propose a multiobjective evolutionary
procedure where the selection of features is optimized for both accuracy and gener-
alization capability, both evaluated by using the training patterns.

Figure 1.a shows a scheme of the wrapper method we propose for feature selection
based on a multiobjective optimization procedure that searches a vector of decision
variables x ¼ x1; x2; . . .; xn½ � 2 Rn to optimize a function vector f(x), whose scalar
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values ðf1ðxÞ; f2ðxÞ; . . .; fmðxÞÞ represent the m objectives to optimize. These objec-
tives are usually in conflict, and thus multiobjective optimization should obtain a set of
non-dominated solutions called Pareto optimal solutions that define the Pareto front
(no solution in the Pareto front is worse than the others when all the objectives are
taken into account), from which it is possible to choose the most convenient solution in
specific circumstances. To solve the multiobjective optimization problem we have
implemented an evolutionary algorithm based on the NSGA-II algorithm [9], with
specific individual codification and genetic operators.

Algorithm 1. Parallel multi-objective feature selection procedure adopted in Fig. 1.b
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Fig. 1. Wrapper approach to feature selection by evolutionary multiobjective optimization:
(a) sequential procedure; (b) island parallel procedure proposed in the paper
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The main contribution of this paper is a parallel implementation of the procedure
summarized in Fig. 1.a based on an island model. This parallel approach, depicted in
Fig. 1.b, distributes the N individuals of the population among the available P pro-
cessors thus defining P subpopulations, each with N/P individuals. The pseudocode
description of the parallel procedure is provided in Algorithm 1. The procedure first
creates P threads with initialization and evaluate N/P individuals of the population (line
01 of Parallel_NSGAII_featureselection). These P threads are synchro-
nized through a barrier in line 02 to perform the evolution of P subpopulations, each
including N/P individuals, according to procedure Island_evolution. As it can be
seen, each thread requires the number of communications (comm), the number of
generations that the corresponding subpopulation has to complete between commu-
nications (genpar), and the randomly selected couples of threads that have to com-
municate after each genpar number of generations (commprof). This parallel
evolutionary multiobjective procedure, whose behavior is different from the sequential
one, allows improvement in the quality of the solutions found by using bigger popu-
lations and/or reduction in computing time.

3 Feature Selection in BCI with Multiresolution Analysis

The high-dimensional classification problem considered in this paper deals with
brain-computer interfacing (BCI) based on the classification of EEG signals corre-
sponding to motor imagery (MI) tasks. This BCI paradigm uses the series of ampli-
fications and attenuations of short duration occasioned by limb movement imagination,
the so called event related desynchronization (ERD) and event related synchronization
(ERS). In [10] several approaches for multiobjective feature selection in a MRA
(Multiresolution Analysis) system for BCI are proposed and evaluated. A MRA system
[11] applies a sequence of successive approximation spaces to describe the target
signal, thus being useful whenever the target signal presents different characteristics
across the approximation spaces. As a specific example of MRA systems, the discrete
wavelet transform (DWT) was applied in [10, 12] to characterize EEGs from motor
imagery (MI) tasks.

The patterns used in this work are built, from EEG trials, by a feature extraction
procedure based on the MRA described in [12]. Each signal obtained from each elec-
trode contains several segments to which a set of wavelets detail and approximation
coefficients are assigned. This way, considering S segments, E electrodes, and L levels
of wavelets, each EEG pattern is characterized by 2 � S � E � L sets of coefficients.
The number of coefficients in each level set depends on the level. In the dataset con-
sidered here, which was recorded in the BCI Laboratory at the University of Essex,
S = 20 segments, E = 15 electrodes, and L = 6 levels. Therefore, 3600 sets of wavelet
coefficients in total in each pattern, with from 4 to 128 coefficients in each set, char-
acterize each pattern: a total of 151200 coefficients. Nevertheless, in [12] only one
feature is assigned to each electrode and each level of approximation and detail. It is
obtained by computing the variance of the coefficient distribution and normalising the
obtained values between 0 and 1. This way, 2 � S � E � L = 3600 features constitute
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each pattern. Anyway, as the number of training patterns for each subject is approxi-
mately 180, it is clear that an efficient procedure for feature selection is required.

In [12] an approach based on the use of several classifiers is considered to reduce
the number of features characterizing the patterns applied to each classifier. Figure 2
describes the structure of the classification procedure based on a set of LDA (linear
discriminant analysis) classifiers, in which a module for majority voting based on all
the LDA outputs provides the final classification output. This way, a set of 2 � S � L
LDA classifiers with the number of inputs equaling the number of electrodes are
adopted, as shown in Fig. 2. This procedure is called OPT0 as the baseline method for
performance comparison [10].

In [10] two alternatives for feature selection in BCI with MRA, OPT1 and OPT2,
were evaluated and compared with the performance of OPT0. The alternative OPT2
selects a set of LDAs among the 2 � S � L LDAs in the structure of Fig. 2 through
the multiobjective optimization procedure described in Sect. 2. OPT1 is a simpler
alternative as it uses only one LDA classifier based on a subset of features selected from
all the available features. The two cost functions used in the multiobjective feature
selection in OPT1 and OPT2 take into account the labels assigned to the training
patterns to identify their corresponding classes. Moreover, to characterize the perfor-
mance of the classifier while it has been trained or adjusted for a given set of features
(i.e., an individual of the population), it is important not only to take into account the
accuracy obtained for the training set but also its generalization capabilities, i.e., its
accuracy for unseen instances. Thus, the first cost function is related with the Kappa
index [13] on training dataset, which takes into account the distribution of the per class
error as it is computed as ðp0 � pcÞ=ð1� pcÞ, with p0 equal to the proportion of
coincidences among the classification outputs and the labels of the patterns and pc
being the proportion of patterns on which the coincidence is expected by chance. The
second cost function is the average loss function in a 10-fold cross validation analysis
to the training patterns. This paper proposes and evaluates parallel implementation of
OPT1 and OPT2.
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Fig. 2. EEG classification with multiple LDA classifiers based on majority voting, with one
LDA classifier per segment, per level and, per type (detail and approximation) of wavelet [12]
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4 Experimental Results

The parallel procedures for OPT1 and OPT2 have been implemented by using the
Parallel Computing Toolbox of Matlab® (version 8.3) and executed in a node including
two Intel Xeon E5-2620 processors (providing up to 12 threads) at 2.1 GHz and 32 GB
DDR3 RAM per node. The experiments were conducted using the dataset recorded in
the BCI Laboratory at the University of Essex [12]. For each subject, there is one data file
with data recorded for training (training patterns) and another file with data for evalu-
ation (test patterns). Each data file contains about 180 labelled patterns with data from 20
segments (S = 20), six levels (L = 6) of approximation or detail coefficients (a/d = 2),
and 15 electrodes (E = 15). The labels correspond to three imagined movements of right
hand, left hand, and feet. Each experiment has been repeated ten times in order to
complete an analysis to determine the statistical significance of the observed differences
among alternatives. The results provided in what follows correspond to the EEG data
from subjects 104, 107, and 110 (those achieving the best performance results in [12]).

Table 1 provides the average Kappa index values [13] obtained by the baseline
alternative OPT0 [10], which uses the structure of LDA classifiers [12] shown in
Fig. 2, and those by the option OPT2 [10], which searches for an optimal selection of

Table 1. Comparison of Kappa indexes and execution times of OPT0 and OPT2 with 120
individuals, 50 generations, 5 and 10 generations/communication, 4 and 8 threads on data from
subjects 104, 107, and 110 in the BCI dataset of University of Essex

Sbj. Procedure PCnf. Kappa Time (s.) p-val.

104 OPT0 0.564 ± 0.000 –

OPT2 (50/50) 0.545 ± 0.035 20892 ± 1668
OPT2 (120/50) 0.547 ± 0.040 50135 ± 2222
OPT2 (120/50; 4 thr 10 gen/comm.) PC11 0.523 ± 0.014 13919 ± 325 *0.04
OPT2 (120/50; 8 thr 10 gen/comm.) PC12 0.554 ± 0.019 7966 ± 173 0.34
OPT2 (120/50; 4 thr 5 gen/comm.) PC13 0.515 ± 0.023 13902 ± 378 *0.04
OPT2 (120/50; 8 thr 5 gen/comm.) PC14 0.535 ± 0.034 8095 ± 126 0.75

107 OPT0 0.631 ± 0.000 –

OPT2 (50/50) 0.634 ± 0.019 21167 ± 1134
OPT2 (120/50) 0.652 ± 0.022 50749 ± 1578
OPT2 (120/50; 4 thr 10 gen/comm.) PC11 0.657 ± 0.020 14214 ± 315 1.00
OPT2 (120/50; 8 thr 10 it/comm.) PC12 0.655 ± 0.017 8128 ± 129 0.33
OPT2 (120/50; 4 thr 5 it/comm.) PC13 0.645 ± 0.014 14342 ± 134 0.20
OPT2 (120/50; 8 thr 5 it/comm.) PC14 0.642 ± 0.018 8225 ± 149 0.06

110 OPT0 0.648 ± 0.000 –

OPT2 (50/50) 0.605 ± 0.045 18820 ± 1069
OPT2 (120/50) 0.619 ± 0.021 45156 ± 1991
OPT2 (120/50; 4 thr 10 it/comm.) PC11 0.628 ± 0.030 12986 ± 360 0.08
OPT2 (120/50; 8 thr 10 it/comm.) PC12 0.631 ± 0.020 7866 ± 237 0.26
OPT2 (120/50; 4 thr 5 it/comm.) PC13 0.608 ± 0.034 13064 ± 501 0.15
OPT2 (120/50; 8 thr 5 it/comm.) PC14 0.629 ± 0.026 7863 ± 142 0.42
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LDAs in the structure of Fig. 2. The data in parentheses for the OPT2 alternatives
represent the number of individuals in the population and generations of the evolu-
tionary algorithm and, in the case of parallel executions, the number of threads (4 or 8)
and generations (5 or 10) executed by each subpopulation. The different parallel con-
figurations are noted as PC11 to PC14 in the column PCnf. of Table 1. The sequential
version of OPT2 with 120 individuals and 50 generations for subjects 104, 107 and 110
requires more than twelve hours, and provides solutions with average Kappa indices
equal to 0.547, 0.652 and 0.619, respectively. The parallel versions of OPT2 require less
computing times to achieve similar levels of performance than the sequential imple-
mentation of OPT2 with 120 individuals. The parallel OPT2 implementations also
consume less time than the sequential OPT2 with a population of 50 individuals and
even improve the performance of this sequential version of OPT2 for some subjects.

Table 2. Comparison of Kappa indexes and execution times of OPT0 and OPT1 with 2000
individuals, 50 generations and 100 generations, 5 and 10 generations/communication, 4 and 8
threads on data from subjects 104, 107, and 110 in the BCI dataset of University of Essex

Sbj. Procedure PCnf. Kappa Time (s.) p-val.

104 OPT0 0.564 ± 0.000 –

OPT1 (50/50) 0.510 ± 0.056 4241 ± 375
OPT1 (120/50) 0.515 ± 0.047 10316 ± 461
OPT1 (960/50; 4 thr 10 gen/comm.) PC21 0.653 ± 0.053 23279 ± 770 *0.01
OPT1 (960/100; 4 thr 10 gen/comm.) PC22 0.606 ± 0.053 44787 ± 414 *0.01
OPT1 (960/50; 8 thr 10 gen/comm.) PC23 0.634 ± 0.038 12104 ± 1261 *0.01
OPT1 (960/50; 8 thr 5 gen/comm.) PC24 0.698 ± 0.062 12422 ± 1074 *0.01
OPT1 (960/100; 8thr 10gen/comm.) PC25 0.673 ± 0.039 25751 ± 2000 *0.01
OPT1 (1920/100; 8thr 10gen/comm.) PC26 0.665 ± 0.033 46383 ± 1343 *0.01

107 OPT0 0.631 ± 0.000 –

OPT1 (50/50) 0.560 ± 0.041 4317 ± 188
OPT1 (120/50) 0.580 ± 0.052 10336 ± 340
OPT1 (960/50; 4 thr 10 gen/comm.) PC21 0.613 ± 0.032 22653 ± 428 *0.05
OPT1 (960/100; 4 thr 10 gen/comm.) PC22 0.636 ± 0.037 45039 ± 625 *0.02
OPT1 (960/50; 8 thr 10 gen/comm.) PC23 0.603 ± 0.024 10746 ± 18 0.12
OPT1 (960/50; 8 thr 5 gen/comm.) PC24 0.609 ± 0.023 10778 ± 33 *0.03
OPT1 (960/100; 8thr 10gen/comm.) PC25 0.589 ± 0.028 22537 ± 1059 0.60
OPT1 (1920/100; 8thr 10gen/comm.) PC26 0.638 ± 0.029 45838 ± 975 *0.02

110 OPT0 0.648 ± 0.000 –

OPT1 (50/50) 0.450 ± 0.045 3867 ± 164
OPT1 (120/50) 0.450 ± 0.021 9312 ± 253
OPT1 (960/50; 4 thr 10 gen/comm.) PC21 0.569 ± 0.031 22640 ± 461 *0.01
OPT1 (960/100; 4 thr 10 gen/comm.) PC22 0.564 ± 0.065 43796 ± 712 *0.01
OPT1 (960/50; 8 thr 10 gen/comm.) PC23 0.566 ± 0.029 10850 ± 191 *0.01
OPT1 (960/50; 8 thr 5 gen/comm.) PC24 0.569 ± 0.031 12037 ± 1407 *0.01
OPT1 (960/100; 8thr 10gen/comm.) PC25 0.556 ± 0.074 26754 ± 2595 *0.01
OPT1 (1920/100; 8thr 10gen/comm.) PC26 0.551 ± 0.028 45355 ± 1413 *0.01
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Besides the average Kappa index values obtained by the baseline method OPT0,
Table 2 gives the results for the option OPT1 [10], which searches for an optima subset
of features that constitute the inputs to only one LDA classifier. Similarly, the data in
parentheses in Table 2 represent the number of individuals in the population and
generations of the evolutionary algorithm and, in the case of the parallel executions, the
number of threads (4 or 8) and generations (5 or 10) executed by each subpopulation.
The evaluated parallel configurations are noted as PC21 to PC26 in the column PCnf.
of Table 2. The sequential version of OPT1 with 120 individuals and 50 generations
for subjects 104, 107 and 110 requires more than four and a half hours, and provides
solutions with average Kappa indices equal to 0.515, 0.580 and 0.450, respectively. As
can be seen, the parallel versions of OPT1 improve the performance achieved by
sequential implementations of this approach with less individuals in the population, and
requires much less time than the sequential counterpart with the same population size.
Moreover, some parallel configurations of OPT1 reduce the performance differences
with respect to OPT2 or even overcome it for some subjects and parallel configurations.

Tables 1 and 2 also show results about the comparison tests to identify which
alternatives provide statistically different performance, with p-values obtained from
statistical tests with a significance level of 5%. The statistical analysis has been done
through a Kruskal-Wallis test, which provides the intervals of the Kruskal-Wallis rank
for each considered alternative for OPT2 in Table 1 and OPT1 in Table 2. For subjects
104, 107 and 110, the column noted as p-val. in Tables 1 and 2 gives the p-values
obtained after comparing each parallel configuration to the corresponding reference
sequential alternative. That is, the parallel configurations PC11 to PC14 in Table 1
have been compared to the sequential execution of OPT2 with 120 individuals and 50
generations, and the parallel configurations PC21 to PC26 in Table 2 to the sequential
execution of OPT1, also with 120 individuals and 50 generations. A p-value below
0.05 (marked with an asterisk in columns p-val.) means statistically significant dif-
ference. In Table 1, except for PC11 and PC13 for subject 104, the differences in the
Kappa indices attained by the evaluated parallel configurations are not statistically
significant. Therefore, despite the parallel island evolutionary procedure is different
from the sequential evolutionary algorithm, the quality of the results for a given
configuration of individuals in the population and a given number of generations is
similar to the sequential one, while the parallel procedure provides a significant
reduction in the execution time. In the case of PC11 and PC13, the quality of the
solutions found decreases only by less than 6% (respectively, 4.3% and 5.8%).

The average Kappa indices in Table 2 show improvements in the quality of
solutions by all the parallel configurations (PC21 to PC26) for all subjects (104, 107
and 110), with respect to the reference sequential execution of OPT1 with 120 indi-
viduals and 50 generations. These improvements are statistically significant in all the
cases but two, PC23 and PC25 for subject 107, where improvements are 4% and 1.6%
respectively. The sequential OPT2 provides better results than the sequential OPT1.
Moreover, OPT0 provides the best performance for subjects 104 and 110 and a per-
formance close to that of OPT2 for subject 107. It should be taken into account that
OPT0 and OPT2 are based on the classifier structure of Fig. 2, which uses more
features and more complex classifier structure than OPT1 that requires only one LDA
classifier. Table 2 shows that the parallel implementation of OPT1 improves its
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performance compared to the sequential OPT1 and reduces the performance differences
from OPT0 and OPT2. In some cases, it even outperformed OPT0 and OPT2. For
example, for subject 104 PC24 (the best parallel configuration for subject 104 with
OPT1) provides better results than PC12 (the best configuration for subject 104 with
OPT2) and OPT0: 0.698 against 0.554 and 0.564 respectively (a difference statistically
significant with p-value equal to 0.004). For the subjects 107 and 110, OPT0 and OPT2
still achieved better performances than some parallel configurations of OPT1. Never-
theless, the differences among the best average Kappa indices for the sequential OPT0
and OPT2 with respect to the sequential OPT1 are reduced in the parallel configura-
tions of OPT1: from 0.072 (0.652 − 0.580) to 0.019 (0.657 − 0.638) for subject 107,
and from 0.198 (0.648 − 0.450) to 0.079 (0.648 − 0.569) for subject 110.

Fig. 3. Speedups (a) and efficiencies (b) for different communication profiles and parallel
configurations of OPT2 (PC11 to PC14) for subjects 104, 107 and 110

24 J. Ortega et al.



The parallel approach proposed in this paper reduces the execution time with respect
to the corresponding sequential version in all the cases, as shown in Table 1 (column
Time(s)). Figure 3 shows the speedups (time of the sequential version divided by the
time of a given parallel configuration) and efficiencies (speedups divided by the number
of processors) provided by the parallel configurations PC11 to PC14 in Table 1, with
respect to the sequential execution of OPT2 with 120 individuals and 50 iterations, t
(OPT2)/t(PC11) to t(OPT2)/t(PC14). Two different communication profiles have been
considered in our experiments. In the first communication alternative, each subpopu-
lation independently implements 10 iterations (generations) before communicating with
another subpopulation randomly selected. In the second one, the subpopulations com-
municate more frequently as it happens after 5 generations of independent evolution in
the subpopulations. As shown in Fig. 3, for a given number of threads, the alternative
communicating more frequently (5 iterations/communication) provides lower speedups.
Consequently, the efficiencies observed in Fig. 3.b are slightly lower in the alternatives
communicating more.

The speedups given in Fig. 4 are based on the comparison of execution time for
different parallel configurations of OPT1, as shown in Table 2. In this case, we have not
compared the parallel time with the corresponding sequential time due to their large
values (more than four days in some cases). Figure 4 provides the speedups by using 4
threads with respect to 8 threads, i.e., t(PC21)/t(PC23) and t(PC22)/t(PC25), to compare
parallel configurations with the same configuration of individuals in the population,
iterations and communication profiles, although t(PC21)/t(PC23) corresponds to 50
generations and t(PC22)/t(PC25) to 100. The speedup t(PC21)/t(PC24) compares parallel
configurations with 8 and 4 threads and the same number of generations (50 generations)
but different communication characteristics (10 and 5 generations between communi-
cations respectively). Finally, t(PC26)/t(PC25) compares parallel configuration with the
same number of threads (8 threads), generations (100 generations), and communication
profiles (10 generations between communications) but different number of individuals.
All those considered speedups should have a value near two, as shown in Fig. 4.

Fig. 4. Speedups of different parallel configurations of OPT1 (PC21 to PC22) for subjects 104,
107 and 110
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5 Conclusions

This paper proposes and analyses parallel island implementations of multiobjective
feature selection in BCI tasks with MRA. They are able to improve the quality of the
solutions by using greater populations and reduce processing time as well.

On the one hand, we have shown that, despite the parallel algorithm is not exactly
the same as the sequential one, it decreases the computing time without a statistically
significant reduction in the solution qualities given a number of generations and
individuals in the population. Although the speedups shown in Fig. 3.a correspond to
efficiencies below one (Fig. 3.b), but the efficiency decrease is relatively small. The
scalability behavior of the parallel procedure could be considered adequate for the
number of threads used in our parallel executions.

On the other hand, the parallel procedure makes it possible to improve the quality
of the solutions by using greater populations in the evolutionary algorithm but similar
amount of computing time required by the sequential implementation. It has been
shown that by using populations with as many individuals as the reference population
multiplied by the number of threads used, OPT1using a simple classifier structure is
able to match OPT2 using a complicated classifier structure or even outperform it with
similar or even lower computing times.

In [8], a parallel cooperative multiobjective approach was proposed for feature
selection in high-dimensional EEG data, which not only evolves independent
subpopulations but also assigns different areas of the searching space to different
subpopulations. This approach allows superlinear speedups in some cases although
with some performance loss. The implementation of such approach to distribute the
searching space will be also explored in the present parallel island algorithm for BCI
with MRA, along with its use in the feature selection problem for other applications
and benchmarks to compare with other previous methods.
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