Chapter 2
Omics and System Biology Approaches
in Plant Stress Research

Abstract The continuous development of analytical and experimental technolo-
gies as well as instruments resulted in the development of very specialized experi-
mental approaches that can identify, measure and quantify particular types of
cellular molecules. These technologies are known as “Omics Technologies”. Most
of the omics technologies are high throughput with very fast data generation rates
and humongous outputs. Thus, they are highly dependent on bioinformatics and
computational tools. These technologies have made noticeable contributions to the
current advancements in our understanding of plant biology in general and plant
stress tolerance and response in particular. In this chapter, we will introduce the
main omics technologies employed in plant biology and the bioinformatics plat-
forms associated with them.
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2.1 Introduction

In the last two decades, molecular biology and systems biology experienced unprec-
edented advancements either in the accuracy of the analysis or at their overall scales
(El-Metwally et al. 2014a). At first sight, molecular biology and systems biology look
to be opposites due to the reductionistic nature of molecular biology and the holistic
perspective of systems biology respectively. However, in modern research settings,
both molecular and systems biology complement each other, providing new perspec-
tives in approaching complex topics such as the study of plant stress or the improve-
ment of plant stress responses (Duque et al. 2013). Figure 2.1 shows the common
approaches utilized in plant stress research including omics-based researches.
Genome sequencing represented a landmark in the development of biological
sciences and the methodologies of approaching biological problems. It enhanced our
grasp of biological systems by examining the base of life (i.e. DNA) and allowed an
enriched understanding of gene structures and functions (EI-Metwally et al. 2014a).
Next-generation sequencing (NGS) of the genome elevates the utility of genome
sequencing by providing cheap, fast and easy genome sequencing platforms, though
not without some challenges (EI-Metwally et al. 2013, 2014a). NGS presents a great
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Fig. 2.1 Schematic overview of common approaches in plant stress research

foundation for several other methodologies to be developed as well as several new
approaches for studying biological systems in the so-called post-genomic era (Duque
et al. 2013).

Genomics, transcriptomics, proteomics, proteogenomics and metabolomics are
modern methodologies and approaches that have been recently applied in the study
of plant stress mechanism responses. They provide new insights and open new hori-
zons for understanding stresses and responses as well as the improvement of plant
responses and resistance to stresses (Duque et al. 2013). Due to the large-scale
nature of these approaches, bioinformatics and computational approaches are highly
associated with the above for either developing new data analytical methods, better
visualization or storage in sustainable online resources (Helmy et al. 2011, 2012a,
b, ¢). Figure 2.2 shows the main omics approaches employed in plant stress research,
its primary technologies and expected outcomes.

Since the focus of this book is the integrated omics approaches in plant stress
tolerance, we will introduce the applications of each of the omics and bioinformat-
ics approaches in detail.
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Fig. 2.2 Schematic overview of the main molecular and systems biology approaches and their
technologies as well as expected outcomes in plant biology and stress research

2.2 Genomics

Genomics is the study of all the genes in a given genome including the identification
of gene sequences, intragenic sequences, gene structures and annotations (Duque
et al. 2013). The technology of choice for genomics is genome sequencing that
began with the first generation of methods in the 1970s, followed by the next-
generation sequencing (NGS) technologies in the middle 1990s as well as the more
recent third-generation sequencing technologies (EI-Metwally et al. 2014b, c). The
process involves DNA extraction, amplification using polymerase chain reaction
(PCR) techniques, DNA sequencing and sequence assembly as well as quality
assessment (El-Metwally et al. 2013, 2014a, d). Following DNA sequencing and
assembly, the gene structural and functional annotation takes place revealing invalu-
able information about the biology of the organism in question.
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It would be challenging to list all the contributions of genomics to the study of
the plant stress response and tolerance research. Therefore, we will list the main
applications of genomics in this field. Genomics mainly helped in identifying the
functional relevance of genes involved in abiotic and biotic stress responses in
plants via functional genomic approaches (Cao et al. 2005; Govind et al. 2009;
Ramegowda et al. 2013, 2014). Combined with other techniques, genomics helped
plant breeders create new breeds that can tolerate several biotic and abiotic stresses
and, consequently, have increased crop yields. This includes new breeds for drought
and cold tolerance as well as pathogen resistance (Yadav et al. 2010; Yao et al. 2011;
Le et al. 2012; Chen et al. 2012; Shankar et al. 2013; Wang et al. 2013; Agarwal
et al. 2014). Furthermore, the huge online databases, repositories and archives of
plant genomic information serve as a foundation for transcriptomics, genome engi-
neering and proteogenomics (Matthews et al. 2009; Batley and Edwards 2009;
Mochida and Shinozaki 2010; Jung and Main 2014).

2.3 Transcriptomics

The transcriptome is the RNA expression profile of an organism. Unlike the genome
which remains constant despite age, organ or growth conditions, the transcriptome
is highly dynamic (El-Metwally et al. 2014a). Therefore, the term transcriptomics
refers to the capturing of the RNA expression profile in spatial and temporal bases
in certain plant organs, tissues and cells within particular context (Duque et al.
2013; El-Metwally et al. 2014a). This particular context can be growth or environ-
mental conditions, treatment with certain nutrients or biotic stress conditions. The
RNA/gene expression profiling is mostly accomplished using microarray, RNA
sequencing (RNAseq) through next-generation sequencing (NGS), serial analysis
of gene expression (SAGE) and digital gene expression profiling (Kawahara et al.
2012; Duque et al. 2013; De Cremer et al. 2013).

Transcriptomics mainly helps in finding genes that are associated with altera-
tions in the plant phenotype under different conditions. For instance, transcrip-
tomics can be used in finding candidate genes that contribute to stress tolerance
through the comparison of transcriptomes of the same plant under optimal and
stress conditions (Le et al. 2012; Zhang et al. 2014b). Transcriptomics applications
in plant stress response and tolerance can also include searching for abiotic stress
candidate genes, predicting tentative gene functions and providing a better under-
standing of the plant-pathogen relationship (Kawahara et al. 2012; Jogaiah et al.
2013; De Cremer et al. 2013; Agarwal et al. 2014). The recent increase in the avail-
ability of online resources, databases and archives of transcriptome data allows for
performing novel genome-wide analysis of plant stress responses and tolerances
(Mochida and Shinozaki 2011; Duque et al. 2013; Jogaiah et al. 2013).
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2.4 Proteomics

The proteome is the total expressed protein under certain conditions in a given
organism, organ, cell, tissue or microorganism population (Tyers and Mann 2003).
Similar to the transcriptome, the proteome is highly dynamic and changes based on
temporal and environmental factors. Proteomics are the techniques used in captur-
ing and measuring (or “profiling”) the expressed proteins in a specific context (Tyers
and Mann 2003). There are several types of proteomes that can be measured, and
each of them can reveal particular information about the expressed proteins. The
most common proteomes to be measured in plant stress tolerance and other plant
related studies are the whole proteome and the phosphoproteome (Helmy et al.
2011, 2012b, c). The whole proteome is the quantitative and/or qualitative profiling
of all the expressed proteins in a given sample, while the phosphoproteome is the
quantitative and/or qualitative profiling of the phosphorylated proteins expressed in
a given sample (Nakagami et al. 2012).

The technology of choice for proteomics is mass spectrometry (MS) including
several approaches such as liquid chromatography—mass spectrometry (LC-MS/
MS), Ton Trap—mass spectrometry (IT-MS) and matrix-assisted laser desorption/
ionization—mass spectrometry (MLDI-MS) (Helmy et al. 2011, 2012a; Komatsu
et al. 2014; Shao et al. 2014). These technologies are basically used in measuring
the mass and charge of small protein fragments (or “peptides”) that result from
protein enzymatic digestion with special enzymes called proteases, such as trypsin
(Helmy et al. 2011; Nakagami et al. 2012). The output of a standard MS-based pro-
teomic analysis is a set of peptide fingerprints called MS spectra. MS spectra require
another layer of interpretation to reveal the peptide sequences associated with each
of them, the protein of each peptide and the modification occurring in each protein
after being translated (Tyers and Mann 2003; Helmy et al. 2012¢; Nakagami et al.
2012). Furthermore, several proteomics labs use protein electrophoresis technolo-
gies such as two-dimensional electrophoresis and Difference Gel Electrophoresis
(DIGE) in plant proteomics (Cramer and Westermeier 2012; Duque et al. 2013;
Komatsu et al. 2014; Arentz et al. 2014).

Proteomics is a very informative approach that is used to reveal invaluable infor-
mation when studying plant stress response and tolerance, either in a genome-wide
or sample scale (Nakagami et al. 2012). It can be used to profile all the expressed
proteins in multiple conditions (e.g. optimal, stress and prolonged stress conditions)
and cross compare these different sets to pinpoint the proteins involved in stress
tolerance (Evers et al. 2012; Yan et al. 2014). Quantitative proteomics reveals the
proteins that are differentially expressed under the condition changes, which points
towards its contribution in the stress response process as well (Liu et al. 2015).
Phosphoproteomics is more associated with the identification of proteins activated
and functioning under certain condition. Therefore, it is very useful in identifying
pathways involved in a particular function or process through ascertaining the set of
proteins that are exclusively activated under the condition that triggered this func-
tion. Through phosphoproteomics, proteins and signaling pathways involved in
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response to particular stress can be identified (Sugiyama et al. 2008; Lassowskat
etal. 2014; Zhang et al. 2014a). Both whole proteomics and phosphoproteomics can
be combined in one comprehensive study to provide a better understanding of the
stress in question (Margaria et al. 2013; Yang et al. 2013; Hopff et al. 2013).

2.5 Proteogenomics

Proteogenomics is a comprehensive approach that combines large-scale proteomic
data with genomic and/or transcriptomics data in genome annotation refinement and
the elucidation of novel regulatory mechanisms (Helmy et al. 2012a; Ansong et al.
2008). The proteomics data generated by means of MS-based proteomics is well
known for its high throughput and accuracy. Therefore, it provides a rich source of
translation-level information about the expressed proteins and can be used as a
source of affordable large-scale experimental evidence for several predictions
(Helmy et al. 2012b, c; Ansong et al. 2008; de Groot et al. 2009; Armengaud 2010).
In a standard proteogenomics study, the naturally expressed proteins are identified
using MS-based proteogenomics followed by mapping them back to the genomic or
transcriptomic data (Helmy et al. 2012a; Ansong et al. 2008).

In the last decade, proteogenomics has helped in elevating our understanding
of the biology of plants in general as well as plant stress research in particular.
For instance, a large-scale proteogenomics study of Arabidopsis thaliana identi-
fied 57 new genes and corrected the annotations of hundreds of its genes using
intensive sampling from the Arabidopsis organs under several conditions and in
different life stages (Baerenfaller et al. 2008). Another study reported corrections
and new identifications in about 13% of the annotated genes in Arabidopsis
(Castellana et al. 2008). Furthermore, several major cultivated crops such as
Oryza sativa and Zea mays benefited from proteogenomics studies (Helmy et al.
2011; Castellana et al. 2014).

In plant stress research, the use of proteogenomics provided a deeper
understanding of the major abiotic stress factors including bacteria such as
Bradyrhizobium diazoefficiens (Chapman and Bellgard 2014), fungi such as
Aspergillus niger (the black mold fungus) and Stagonospora nodorum (Wright
et al. 2009; Bringans et al. 2009), insects such as Drosophila melanogaster (Tress
et al. 2008; Loevenich et al. 2009) and nematodes such as Pristionchus pacificus
(Borchert et al. 2010). It also presented new insight into the investigation of the
host-pathogen relationship such as understanding the relationship between the
plant and the phyllosphere bacteria (Delmotte et al. 2009), identifying novel effec-
tors in fungal diseases (Cooke et al. 2014), providing a better understanding of the
host-parasite relationship (Lasonder et al. 2002; Bindschedler et al. 2009) as well
as shedding light on the mechanisms of environmental adaptation and ecological
diversity (de Groot et al. 2009; Denef et al. 2010).
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2.6 Metabolomics

The metabolome is the complete set of metabolites that can be identified in a given
organism, organ, tissue or biological fluid. Thus, metabolomics refers to techniques
and methods used to study the metabolome (Duque et al. 2013). Due to differences
in the chemical and physical properties of the metabolites, a combination of several
analytical and separation techniques is required to obtain the metabolic profile of a
plant or given sample (Jogaiah et al. 2013). Although Capillary Electrophoresis-
liquid-chromatography Mass Spectrometry (CE-MS) is considered the most
advanced metabolomics technology to date (Soga et al. 2002), several other analyti-
cal instruments and separation technologies are employed in metabolomics such as
Gas Chromatography (GC), Mass Spectrometry (MS) and Nuclear Magnetic
Resonance (NMR) (Saito and Matsuda 2010; Duque et al. 2013; Jogaiah et al. 2013).
Plants are able to synthesize a wide spectrum of chemical and biological com-
pounds that are crucial for regulating the response to different types of biotic and
abiotic stress. Therefore, identifying the metabolites produced by the plant under
each stress condition provides a better understanding of the regulation processes as
well as joins the genotype with the phenotype and investigates the changes in phe-
notype that take place under stress conditions (Badjakov et al. 2012). Metabolomics
is usually used in combination with other omics analysis (e.g. transcriptomics or
proteomics) to investigate the correlation between metabolite levels and the expres-
sion level of genes/proteins (Srivastava et al. 2013). A strong correlation between
stress metabolites and a certain gene/protein indicates the role of this gene/protein
in the response process (Urano et al. 2010; Duque et al. 2013; Jogaiah et al. 2013).
Metabolomics is used to provide a better understanding of the stress response and
tolerance process in model plants such as Arabidopsis (Cook et al. 2004) as well as
production crops such as the common bean (Phaseolus vulgaris) (Broughton et al.
2003), poplars (Populus x canescens) (Behnke et al. 2010), cereals (Sicher and
Barnaby 2012) and other food crops (Hernandez et al. 2007; Duque et al. 2013).

2.7 Bioinformatics

The brief introduction of each of the omics approaches that we provided above
shows that all of them share similar high throughput and large-scale properties.
Furthermore, these approaches can be genome-wide as well as through the combi-
nation of several genomes or several species, which results in producing huge
amounts of data that requires proper handling, analysis, visualization and storage
(El-Metwally et al. 2014e). Therefore, all omics research is tightly bound with
strong bioinformatics and computational tools that perform the various analysis
tasks as well as allow integration between several types of data “multi-omics” and
enable knowledge exchange between different organisms (Shinozaki and Sakakibara
2009; Mochida and Shinozaki 2011; El-Metwally et al. 2014a).



28 2 Omics and System Biology Approaches in Plant Stress Research
2.7.1 Data Handling and Analysis

The primary reason for including informatics analysis and computational tools as
well as associated methods and algorithms in biology is to allow biological data anal-
ysis in an accurate, fast, human-error free and easily reproducible manner (Orozco
et al. 2013). Hence, several bioinformatics tasks became indispensable in biological
research in general and plant stress multi-omics research in particular. This includes
the standard tasks involved in genome sequence assembly (El-Metwally et al. 2013,
20141, g), sequence alignment (Altschul et al. 1990; Tatusova and Madden 1999),
gene prediction (Stanke and Morgenstern 2005), peptides and pertains sequence
identification (MS-spectra interpretation tools) (Eng et al. 1994; Perkins et al. 1999),
gene and protein function prediction (Falda et al. 2012; Yachdav et al. 2014), DNA-
protein and protein-protein interaction prediction (McDowall et al. 2009; Franceschini
et al. 2013), interaction and regulatory networks analysis (Chaouiya 2012) and sev-
eral other essential tasks (Polpitiya et al. 2008; Henry et al. 2014).

2.7.2 Data and Results Visualization

The large amount of data generated by modern analytical and experimental instru-
ments such as genome sequencers and mass spectrometers as well as the informa-
tion resulting from the analysis and processing of this data requires special types of
visualization. Thus, several tools were developed to help visualize the biological
data and results in a manner that would maximize the utility of the data. These
genomic data visualizing tools include Gbrowse, UCSC Genome Browser and
Integrated Genome Viewer (IGV) (Stein et al. 2002; Karolchik et al. 2003; Pang
et al. 2014), proteomics data visualization tools such as PRIDE Inspector and
ConPath (Kim et al. 2008; Wang et al. 2012), proteogenomics data or multi-omics
data visualization tools such as PGFeval, 30mics, Peppy (Helmy et al. 2011, 2012b;
Kuo et al. 2013; Risk et al. 2013), metabolomics visualization tools such as
MultiExperiment Viewer (MeV) (Saeed et al. 2003) and network visualization tools
such as Cytoscape and its associated web versions Cytoscape.js and Cytoscape web
(Shannon et al. 2003; Lopes et al. 2010; Ono et al. 2014).

2.7.3 Data and Results Storage and Maintenance

High throughput data is very fruitful in that we can gain more knowledge from it by
applying different types of analyses or by combining several datasets into one large-
scale comparative analysis. However, this requires the data and results to be sustain-
ably available and accessible to the scientific community (Smalter Hall et al. 2013;
Helmy et al. 2016). Therefore, several types of databases are available online for
depositing and storing the biological data and results. The databases range from
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those that store plant information as classification, growth, production, geographi-
cal distribution (Wilkinson et al. 2012), plant genomic information (Yu et al. 2013;
Zhao et al. 2014), plant transcriptomic information (Priya and Jain 2013), plant
proteomic information (Komatsu and Tanaka 2005; Cheng et al. 2014), plant prote-
ogenomic information (Helmy et al. 2011, 2012b) and plant metabolomic informa-
tion (Deborde and Jacob 2014). Furthermore, some databases are specialized in
storing and maintaining plant stress resistance and tolerance information such as
STIFDB?2, the Arabidopsis stress responsive gene database, QlicRice and the fungal
stress response database (FSRD) (Smita et al. 2011; Borkotoky et al. 2013; Karanyi
et al. 2013; Naika et al. 2013).

In general, several tools provide more than one of the above-mentioned features
such as data analysis and visualization (Eng et al. 1994; Perkins et al. 1999; Cargile
et al. 2004; Helmy et al. 2011) or data visualization and storage (Helmy et al.
2012b). Furthermore, several tools provide these services for multi-omics data and
results (Kuo et al. 2013).
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