Preface

Why This Course?

This course was designed to supplant the traditional "Calculus for Life Sciences” course generally
required for freshman and sophomore life science students.

The standard course is limited to calculus in one variable and possibly some simple linear
differential equations. It stresses the technical development of the subject.

There is an emerging consensus that a more relevant course would feature

v/ A significant use of real examples from, and applications to, biology. These examples should
come from physiology, neuroscience, ecology, evolution, psychology, and the social sciences.

v/ Much greater emphasis on concepts, and less on technical tricks.

v Learning the rudiments of a programming language sufficient to graph functions, plot data,
and simulate differential equations.

This view has been taken by all the leading voices in US biomedical research. For example,
the Howard Hughes Medical Institute (HHMI) and the Association of American Medical Col-
leges, in their 2009 publication “Scientific Foundations for Future Physicians,” identified key
“Undergraduate Competencies,” which include the ability to

— “Quantify and interpret changes in dynamical systems.”

— “Explain homeostasis in terms of positive or negative feedback.”

— “Explain how feedback mechanisms lead to damped oscillations in glucose levels.”

— “Use the principles of feedback control to explain how specific homeostatic and reproductive

systems maintain the internal environment and identify
- how perturbations in these systems may result in disease and
- how homeostasis may be changed by disease.”

Consider those statements. The phrase “"dynamical systems”
is the key to these competencies. Positive and negative feed-
back are important types of dynamical systems. The HHMI and
Scientific Foundations for Future Physicians AAMC want future physicians to be able to understand the

Gr 2 dynamics of feedback-controlled systems. This is the explicit
theme of this course. We will begin on the first day of class
with an example of a negative-feedback dynamical system, a
predator—prey ecosystem. The central concept of the course is that dynamical systems are mod-
eled by differential equations.
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The differential equations that model positive and negative feedback are typically nonlinear,
and so they cannot be approached by the paper-and-pencil techniques of calculus. They must
be computer-simulated to understand their behaviors.

The same point of view is expressed by the National Research Council of the National Academy
of Sciences, in their “Bio 2010" report. They called for a course in which 3

2
010

— “"Mathematical /computational methods should be taught, but on a need-to
know basis.”

— “The emphasis should not be on the methods per se, but rather on how
the methods elucidate the biology” and which uses

— “ordinary differential equations (made tractable and understandable via Eu- |
ler's method without any formal course in differential equations required).”

—

This is exactly what we do in this text. The emphasis is always: how does the math help us
understand the science? Note especially the Academy’s stress on differential equations “made
tractable and understandable via Euler's method without any formal course in differential equa-
tions required.” That is what this text does; Euler's method is exactly the technique we will use
throughout.

The same emphasis on real examples of nonlinear systems was the theme
of the 2011 report by the US National Science Foundation (NSF), togeth-
er with the American Association for the Advancement of Science (AAAS)
called "Vision and Change in Undergraduate Biology Education.” It said,
“Studying biological dynamics requires a greater emphasis on modeling, com-
putation, and data analysis tools.” They gave examples:

— “the dynamic modeling of neural networks helps biologists
understand emergent properties in neural systems.”
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— "Systems approaches to examining population dynamics in ecology also require sophisticated
modeling.”

— “Advances in understanding the nonlinear dynamics of immune system development have
aided scientists’ understanding of the transmission of communicable diseases.”

We will see each of these examples: neural dynamics, ecological population dynamics, and
immune system dynamics will each be featured as examples in this text.

The UCLA Life Sciences Experience

A course based on these principles has been offered to freshmen Life Sciences students at UCLA
since 2013. There is no prerequisite of any calculus course.

Our approach was to incorporate ALL of the above suggestions into our course and into
this text. We “study nonlinear dynamical systems, featuring positive or negative feedback.” We
“explain how feedback mechanisms lead to phenomena like switch-like oscillations.” We study
examples like “"dynamic modeling of neural networks and dynamics in ecology.” Overall, our
approach is to “use ordinary differential equations, made tractable and understandable via Euler's
method without any formal course in differential equations.” (The quoted phrases are directly
from the above publications.)

In a two-quarter sequence, we were able to cover the elements of all seven chapters. We
certainly did not cover every example in this text in two quarters, but we did get to the end of
Chapter 7, and all students learned stability of equilibria via the eigenvalue method, as well as
getting introductions to calculus and linear algebra.


http://dx.doi.org/10.1007/978-3-319-59731-7_7
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In teaching this course, we found it to be important to put aside our preconceptions about
which topics are easy, which are difficult, and the order in which they should be taught. We have
seen students who need to be reminded of the point-slope form of a line learn serious dynamics
and linear algebra. While some algebraic competence remains necessary, students do not need
to be fluent in complex symbolic manipulations to do well in a course based on this book.

Student reaction to the course has been very positive. In the fall of 2016, we registered 840
freshmen and sophomores in the course.

The course has been studied by UCLA education experts, led by Dr. Erin Sanders, who
should be contacted for many interesting results. One of them is that student interest in math
was substantially improved by this course.
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Student interest in math before and after the course. Source: UCLA Office of Instructional
Development, course evaluations from spring 2015, fall 2015, and winter 2016.

Does this course meet medical school requirements? Medical schools, as might be expected
from the publications above, have endorsed this new development. For example, the old require-
ment at Harvard Medical School was called “Mathematics,” and it called for at least “one year
of calculus.” Several years ago, the requirement was changed to “Computational Skills/Mathe-
matics.” It should be read in its entirety, but it says that a “full year of calculus focusing on the
derivation of biologically low-relevance theorems is less important,” and calls for a course that is
“more relevant to biology and medicine than the formerly required, traditional, one-year calculus
course.

Software

In this course, we will use a software package called SageMath to help us plot graphs and
simulate dynamical systems models. SageMath is similar in some ways to the commercial package
Mathematica, but it is free and open source (http://www.sagemath.org for software download
or https://cocalc.com for interactive use).

The syntax of SageMath is very close to the popular scientific computing environment called
Python, so students are learning a syntax they will use for the rest of their scientific lives. Here
is a sample of SageMath in action: the following syntax produced the figure on the next page.

>>> v=[(p, sin(p)) for p in [0..2*pi, step=1]] # generate points list v

>>> pts=points(v, color="black", pointsize=30) # plot points

>>> curv=plot(sin(x), xmin=0, xmax=2xpi,
thickness=2, color="blue") # plot sine curve

>>> tangents=sum([plot(cos(x0)*(x-x0)+y0, xmin=x0-1, xmax=x0+1, color="red",
thickness=1) for (x0,y0) in v]) # plot tangent lines

>>> show(curv+tangents+pts, aspect_ratio=1l) # combine the sine curve, points

# and tangent lines at each point


http://www.sagemath.org
https://cocalc.com
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The power of a programming language is that if we want more tangent lines, a single change
in the parameter from “step=1" to “step=0.2" carries this out.
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Course Roadmaps

There is a variety of courses that can be taught out of this text. At UCLA, we teach a two-
quarter sequence, called Life Sciences 30AB. (Our Life Sciences division includes Ecology and
Evolutionary Biology, Microbiology, Immunology and Molecular Genetics, Molecular Cell and
Developmental Biology, Integrative Biology and Physiology, and Psychology.) The course is
intended to replace the traditional “Calculus for Life Sciences” and is offered to freshmen and
sophomores in Life Sciences, as an alternative to Calculus in fulfillment of two-thirds of the
one-year “Quantitative Reasoning” required of all LS majors.

Note that there is no calculus prerequisite; the necessary concepts of calculus are developed
de novo in Chapter 2. In our view, students truly need to understand the notion of the derivative
as sensitivity, and as a linear approximation to a function at a point. We feel that the extensive
technical development of elementary calculus: intermediate value theorem, Rolle's theorem,
L'Hopital’s rule, infinite sequences and series, proofs about limits and the derivation of the
derivatives of elementary functions, are less necessary than the fundamental concepts, which
are critical. A similar point holds for integration, where the analytic calculation of antiderivative
functions has little application at higher levels, while the idea of “adding up the little products”
is truly important.

In the first quarter, we cover all of Chapters 1 and 2, then the basic concepts and selected
examples from Chapters 3 and 4 (equilibrium points and oscillations). Our examples are drawn
roughly 50/50 from ecology and evolutionary biology, on the one hand, and physiology on the
other, so that courses can also be fashioned that focus on the one subject or the other.

The second quarter covers Chapters 5—7. We cover only selected examples in these chapters,
and our goal is to complete the understanding of eigenvalues and eigenvectors (Chapter 6),
and use them to determine the stability of equilibrium points in multidimensional differential
equations (Chapter 7).

We have also used the text as the basis for a one-quarter upper-division course in modeling
physiological systems for physiology majors, many of whom are pre-med. In this course, we
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went quickly through Chapter 1, skipped Chapter 2, and focused on the theory and physiological
examples in Chapters 3, 4, and 5. We did not get to linear algebra (Chapter 6) or its applications
(Chapter 7) in that one-quarter course. A similar one-quarter course could be taught focusing
on the theory and the ecosystem/evolutionary biology examples in Chapters 3, 4, and 5.

Finally, the text can be used as a guide to a first-year graduate course in modeling for students
in the biosciences, neuroscience, etc.

The Math Behind This Text

The text follows what we consider to be a twentieth-century math approach to the subject. The
technical development of calculus in the eighteenth and nineteenth centuries saw differential
equations as pieces of language, which were then to be operated on by paper-and-pencil tech-
niques to produce other pieces of language (the “solutions”). This had worked well for Newton in
the gravitational 2-body problem (1687), and was the paradigm for applied math in the centuries
that followed. The Newtonian program came to a dramatic dead end with the 3-body problem,
an obvious and more valid extension of the 2-body problem. The 3-body problem had proved
analytically intractable for centuries, and in the late nineteenth century, results by Haretu and
Poincaré showed that the series expansions that were the standard technique actually diverged.
Then the discovery by Bruns that no quantitative methods other than series expansions could
resolve the n-body problem meant the end of the line for the Newtonian program of writing a
differential equation and solving it (Abraham and Marsden, 1978).

It was Poincaré’s genius to see that while this represented “calculus: fail,” it was also the
springboard for an entirely new approach that focused on topology and geometry and less on
analytical methods. His groundbreaking paper was called “On the curves defined by a differential
equation,” linking two very different areas: differential equations (language) and curves, which
are geometrical objects. The distinction is critical: solution curves almost always exist (Picard—
Lindelof theorem), but their equations almost never do.

Poincaré went on to redefine the purpose of studying differential equations. With his new
invention, topology, he was able to define qualitative dynamics, which is the study of the forms
of motion that can occur in solutions to a differential equation, and the concept of bifurcation,
which is a change in the topological type of the solution.

The subsequent development of mathematics in the twentieth century saw many previously
intuitive concepts get rigorous definitions as mathematical objects. The most important devel-
opment for this text was the replacement of the vague and unhelpful concept of a differential
equation by the rigorous geometric concept of a vector field, a function from a multidimensional
state space to its tangent space, assigning “change vectors” to every point in state space. (In its
full generality, the state space is a multidimensional differentiable manifold M, and the vector
field is a smooth function from M into its tangent bundle T(M). Here, with a few exceptions,
M is Euclidean n-space R".) It is this concept that drives our entire presentation: a model for
a system generates a differential equation, which is used to set up a vector field on the system
state space. The resulting behavior of the system is to evolve at every point by moving tangent
to the vector field at that point.

We believe that this twentieth-century mathematical concept is not just more rigorous, but
in fact makes for superior pedagogy.
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