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Abstract. Nowadays, many IT products are created as distributed solu-
tions that consist of many parts, such as mobile applications, web-based
back-ends, as well as APIs that connect various parts of the system. It is
a crucial task to apply a suitable architecture to provide users of mobile
applications with satisfactory operation, especially when the Internet
connection is necessary to get or send some data. The simulation of net-
work architecture and configuration using a high-level model of the sys-
tem described with dedicated Domain-Specific Language (DSL), enabled
by the Timed Colored Petri Nets (TCPNs) formalism is a beneficial app-
roach that could be applied in real case studies. The already proven
research method has been applied to one of the scenarios regarding the
system offered by TITUTO Sp. z o.0. [Ltd.] company (Rzeszow, Poland).
The first obtained results were not sufficiently precise for detailed analy-
sis of the system. Thus, the case study was used to improve the simulation
method in order to more accurately model data transmissions over the
network. After modifications were implemented in the simulation tool,
significantly better results have been received, as discussed in the paper.

Keywords: Simulation - Petri Nets + Performance - Distributed sys-
tem - API - Mobile application

1 Introduction

While preparing a distributed solution, it is an important task to choose a suit-
able architecture that provides sufficient performance and correctly handles sce-
narios with diverse number of users who get or send some data via the Internet.
For this reason, introducing research methods into the process of choosing an
architecture is a beneficial approach. There are several approaches that could
be used for this purpose. One of possible solutions is modeling network to check
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whether the given system architecture and configuration could properly handle
the operation by a specified number of users.

As mentioned in the title of this paper, it is based on the real case study. It is
related to one of the products developed by TITUTO Sp. z o.0. [Ltd.]' (Rzeszow,
Poland). This company offers a set of own IT products dedicated to hotels and
tour operators. One of solutions, which is analyzed in this paper, is the mobile
trip assistant TOURISER?. It uses smartphones and tablets of trip participants
to present a set of information useful during the organized tour. Of course, the
product consists of many parts forming together the distributed system:

— the mobile applications running on smartphones and tablets with Android,
i0S, and Windows operating systems

— web applications, available via web browser, to manage data presented in the
mobile applications, as well as to perform other tasks

— Application Programming Interface (API) to connect various system parts.

The mobile applications are equipped with a set of features, such as presenta-
tion of a trip program. Of course, they should operate also in the off-line mode,
so it is crucial to provide users with a possibility to download all necessary data,
including textual content, as well as a set of photos and audio recordings. Such a
process is further referred as update. It can be performed by many people simul-
taneously, especially when the update process is forced by the tour guide who
informs the group of trip participants to launch the application to get the latest
data for the current trip. What is more, the update process could be performed
from various devices with diverse performance, as well as using the broad range
of speed of the Internet connection, even with a limited availability.

To provide users with satisfactory update times, ensure that the initial archi-
tecture of the system is sufficient, as well as prepare the product in an expandable
way, the company has decided to cooperate with researchers from Department
of Computer and Control Engineering from Rzeszow University of Technology.
At the beginning, the authors of this paper used the already available tools
and research methods. Unfortunately, while performing experiments, it has been
necessary to introduce modifications in order to improve accuracy of a network
model to present results more proper for the real-world scenario.

In this paper, the detailed analysis of results, together with a set of graphs,
is presented. In the second chapter, the initial approach is described. Then,
the doubts regarding received results are discussed. The fourth chapter shows
the problem of parallel data transfers, together with improving the previously
mentioned model, and estimating the improvement. In the following chapter, the
corrected simulator is applied to the case study with a detailed comparison and
explanation of the received results.

! http://tituto.com.
2 http://touriser.com.
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2 Initial Approach to Analysis

Different approaches are described in the literature as suitable for analyzing dis-
tributed applications and network impact on performance. It is possible to sim-
ulate computer networks behavior in so-called “network simulator” (e.g. widely
used family of ns-2 and ns-3 [1] open-source simulation tools). Another app-
roach involves creating models of network components in one of the formalisms
dedicated to analyze and solve concurrency problems. Among these formalisms
various classes of Petri nets seem to be the most popular, due to their ability to
model activities of concurrent and distributed systems. For example Fuzzy Petri
Nets may be used as a formal representation of a concurrent control algorithm
[2]. Queueing Petri Nets can be used as a performance prediction tool during
the software engineering process of a distributed component-based system [3]
or for response time analysis of distributed web systems [4]. Timed Coloured
Petri Nets are also used for simulation and performance analysis of distributed
internet systems [5]. Another Petri net class, RT'CP-nets are used for model-
ing and analysis of embedded and real-time systems [6]. Analysis of such Petri
net models is possible in strictly formal way [7-9], but also the model can be
simulated to observe behavior of the modeled system [10], and perform statisti-
cal performance analysis. Both ways provide reliable results and can be used to
verify some properties and validate the requirements [11].

In the case considered in this paper, the analysis of application was based
on the method that allows to obtain precise results, as described in [12-14].
The method assumes that a high-level model of application should be created.
The model is then a basis for simulation. It is described with a Domain Specific
Language (DSL) designed especially for this purpose. Reliability of simulation
is ensured by the formalism of Timed Colored Petri Nets (TCPN) [15]. The
concept of connecting a high-level model with TCPN is described in [16] and
also applied in [17].

2.1 DSL Concepts

The DSL allows presenting model of application using concepts of programs that
describe actions performed by processes running on nodes. Each pair of nodes
can be connected through one or more net segments that allow remote commu-
nication. In the model used in this research, there were two programs, namely
describing (1) an API server and (2) mobile clients. There was one instance of
the API server program running in each simulation. The number of processes
that run client programs depended on configuration of specific simulation. Each
process in the simulation run on a separate node.

Network communication between clients and the server was possible through
network segments that modeled server and clients Internet links. Network route
between a client and the server always led through two network segments that
represented (1) the client’s Internet link and (2) the servers Internet link. Thus, it
was possible to model limited bandwidth (1) between the server and the Internet
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(shared between all clients) and (2) that of each client Internet link. The network
links enabled full-duplex communication.

2.2 Processes
The server process served two types of requests, as follows:

1. :config that returned content of the update configuration file. The configura-
tion described all files that should be downloaded during the update.

2. update with specific file name as its parameter. It returned a given file to
the client.

Each file included in the update configuration had its specific size and, therefore,
required a given network transmission time.

A client process, after it was started, sent the :config request to the server
in order to obtain information about files that should be updated. Thereafter,
it downloaded subsequent files from the received list by sending the :update
requests for each of them. Downloading of each file was accompanied with time-
out. If a timeout occurred, it was considered that the whole update process for
this client failed. There was a startup delay between the moment the client pro-
gram started and the moment it begun its update. It was set to a random value
from a specified range. Consequently, all clients did not start their updates at
the same moment in time. It is consistent with the real world behavior, even if
application update is triggered by a person suggesting this update to a group of
people.

2.3 Gathering Statistics

The model was used to gather performance-related statistics about the applica-
tion. The most important factor was the update time for clients. This was mea-
sured for each client as time difference between the moment the client started
update and the moment the last file from the update was received. Excessive
number of simultaneous updates could result in the number of clients not being
able to complete the process and timeout due to the overloaded server network.
Therefore, the number of timeouts during the update processes was the second
parameter measured during simulations.

The simulations were carried out for three types of clients, characterized by
the following bandwidth of Internet link:

:slow — 512 kbps
:normal — 2 Mbps
:fast — 20 Mbps

In accordance with parameters of an exemplary scenario of the analyzed appli-
cation, each client performed an update process consisting of 308 files of diverse
sizes. Total size of each update was almost 70 MB. Network bandwidth for the
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Table 1. Average update time for a client in different configuration of simulation.

Number of clients of each type Average update time [s]
20 X :slow 1145.91s
20 X :normal 293.56 s
40 x :fast 195.18s

40 x :fast, 20 X :normal, 20 X :slow| 546.33s
80 x :fast, 20 X :normal, 20 X :slow| 675.23s
20 x :fast, 20 X :normal, 20 X :slow| 551.17s

API server was set to 100 Mbps. Simulations were performed for different num-
bers of clients of each type, as shown in Table 1, which presents also an average
update time for a client.

For these configurations, no timeouts were observed and all update processes
finished successfully. The results show that for the considered configuration of
resources the application should behave correctly. The update times for :slow
clients were significant, but such a situation was caused by their own slow Inter-
net links and could not be changed. The update times for other groups of clients
were on the limit of acceptance. This was a result of insufficient bandwidth of
the Internet link of the API server. However, the value used in the experiments
was deliberately low to verify behavior of the application in unfavorable con-
ditions. The real application was supposed to work on a server with 1 Gbps
Internet link. It seemed that the application was not threatened by transmission
timeouts, since the first indicators of too slow Internet link of the API server
were significant client update times. The update times would become unaccept-
ably long before insufficient bandwidth of server link could cause transmission
timeouts.

3 Assessing Simulator Accuracy

3.1 Doubts Concerning Results

The analysis of application provided satisfactory results. However, unlike in case
of previous research [12-14], additional consideration was required for this spe-
cific case. The modeled and simulated application performance proved to signif-
icantly depend on the network transmission efficiency. However, the simulator
used a basic network data transmission model. Data sent between two processes
in a single message were treated as a whole and transmission time over a network
was modeled as a delay computed for the whole data package. If a route between
two nodes consisted of more than a single network segment, a data package was
transmitted over another segment only after it had been completely transmitted
over the previous one.

This approach allowed the very efficient simulation with accuracy sufficient
for applications where data processing had important impact on performance.
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Fig. 1. Network utilization rate for multiple clients of each type.

However, applying this simplified model to the application presented in this
paper required consideration of possible inaccuracies. Therefore, more detailed
results of simulation concerning network usage were analyzed.

Figure 1 presents mean rate of network utilization for individual types of
Internet links for clients and for the API server. At the beginning, the server
link was fully loaded since all the clients performed their update processes. After
the :fast clients finished their update processes, the server’s network utilization
decreased, since the :normal and :slow clients’ Internet links did not allow them
to fill the servers network bandwidth. This was an expected behavior. However,
the rate of network utilization of :normal and :slow clients while the :fast ones still
performed updates raised justified doubts. The results of additional simulations
performed for single clients of each type, presented in the Fig. 2, had the same
characteristics: slower clients did not fill bandwidth of their network links despite
the fact that their share of the server’s network bandwidth should be sufficient
for this.

3.2 Comparison with a Real-World Experiment

The results of the basic simulations with individual clients of each type could be
verified by comparison with the real-world experiments. This would be hardly
feasible for the case in which a larger number of clients is considered.

The experiments were performed on three virtual machines running Linux.
Three clients (fast, normal, and slow) were running on the virtual machines and
downloading data from the host. The operating system’s traffic control capabili-
ties configured with the Linux tc program were used to limit bandwidth available
for the transfers. The server’s bandwidth was limited with Token Bucket Filter
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Fig. 2. Network utilization rate for single clients of each type.

(TBF) attached to outgoing network interface. Incoming traffic for each client
was shaped with a TBF attached to Intermediate Functional Block devices —
virtual network interfaces enabling control of ingress network traffic in Linux.
Consequently, each stream of downloaded data was passing two network seg-
ments with different bandwidth: one on server’s network interface (shared by
all clients) and the other on the clients network interface. The bandwidth of the
server network was set to 5 Mbps and bandwidths for the clients were configured
as follows:

— slow — 0.5 Mbps
— normal — 2 Mbps
— fast — 8 Mbps

Consequently, slower clients were not able to fill the bandwidth of server’s net-
work, and the fast client had a faster network link than the server. This is con-
sistent with the configuration of the original simulations with multiple clients if
the total bandwidth available for each type of clients is considered.

As observed during the experiment, average bandwidths used by the clients
in two-minute download processes were as follows:

— slow — 0.47 Mbps
— normal — 1.9 Mbps
— fast — 2.2Mbps

The results clearly show that in the analyzed configuration the slower clients
almost fully utilized bandwidths of their own network links. This was a significant
difference in comparison with the simulation results.
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4 Improving Precision of the Network Model

4.1 The Problem of Parallel Data Transfers

A more precise estimation of network transmission time could be achieved by
combining existing simulator with a precise model of Transmission Control Pro-
tocol (TCP). It is even feasible to include crucial parts of the real TCP imple-
mentation into the simulator, as shown in [18]. However, such a solution requires
significant effort not only to modify existing simulator, but also — what is even
more important — to obtain reliable information about details of TCP versions
and configurations of particular servers and clients. The second problem seems
to be especially difficult for real-world business applications. For this reason,
another — less precise, but more practical — solution was chosen.

As already mentioned, the network model in the simulator assumed that
a data package (e.g., a file) was transmitted as a whole, generating a proper
delay for delivery of the data package and occupying a network segment for the
whole transmission time. Consequently, the next data transfer was delayed until
the previous one was finished. Thus, in the simulations described above, data
packages designated for slower clients were frequently delayed on the server link
by other transfers, especially the ones sent to the faster clients. Thus, the slower
client’s network links were idle for some periods of time, waiting for data from
the faster link. Therefore, although the server link was significantly faster than
the links of normal and slow clients, the crude network model prevented the
transfers from filling bandwidths of the slower networks.

This situation does not occur in the real-world scenarios, because transmit-
ted data are divided into segments. Thus, even large data transfers do not delay
the others until they are completed. First, the data transfers over one network
overlap. Second, segments already transmitted over one network are passed to
another one and a single data package (e.g. file) can be concurrently transmit-
ted over more than one of subsequent networks on a route. Thus, faster network
links, even if significantly loaded, usually can transfer sufficient number of data
segments to fill bandwidth of the slower ones ensuring as efficient data transmis-
sion as possible.

4.2 TImproving the Simplified Model

In order to mitigate the problem without including the complete TCP model in
the simulator, an intermediate solution was devised. In order to ensure a lower
grained and more precise simulation of parallel transmissions, the transmitted
data packages (e.g., files) were divided into a number of fragments. Each fragment
was transmitted separately and the simulator reported data reception only after
all fragments were received. This solution also ensured that a single data package
could be transmitted through more than one network on a route. Thus, with a
larger number of smaller data fragments to transfer, the faster network links
should have been able to fill bandwidth of the slower ones even if the faster links
were busy.
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The solution with data fragmentation was implemented in the simulator as
an additional option. The maximum number of fragments for a data package can
be configured for each simulation. The actual number of fragments for a specific
package is selected according to (1), where M is the maximum number of frag-
ments configured for simulation and s is size of the whole data package in bytes.
The value of 1500 is derived from the Maximum Transmission Unit (MTU) for
the most popular Ethernet protocol. Consequently, the fragments are not smaller
than 1500 B and with value of M simulator may be configured to use more or

less fine grained model.
min(M, |s/1500]) (1)

4.3 Estimation of Achieved Improvement

The results provided by the new version of the simulator were again compared
with the results of the experiment described in Sect. 3.2. The maximum number
of fragments was set to different values in order to find a setting that ensured
the sufficient precision. As presented in Fig.3, setting the maximum number
of fragments to 5, significantly improved accuracy of results. Figure4 shows
additional improvement for the maximum number of fragments set to 10, but
in this case the difference is not significant. Similarly, increasing the maximum
number of fragments to 30 did not cause meaningful improvement (Fig. 5).

1.00
Vuﬁ'o%‘.w%rvwﬂw rmvvxwvﬂv*vﬁ v77 v rwwwrvﬁvm% R o L
Yo, v i ++++++++++ v
T+ + Vv
+
+
0.75+4 +++7+ ot
+ F .
° + -+
[ +
c ++ [
o
§ . o Server_
= 0.50 + + Fast cllenF
> oo o -+ Normal client
3 ° S e e v Slow client
H
[}
z
L]
0.254
L]
4 ¢ ° ° °® 0 ¢ o o ° o o°
° 00 0’ % o oo o % °e
+..°. T .o.".'o.o. ....o.'.... coe oo
° L] L]
o
0.00 o S A
é 360 560 960 12‘00
Time [s]

Fig. 3. Results of simulations for the maximum number of data fragments set to 5.
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Fig. 4. Results of simulations for the maximum number of data fragments set to 10.
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Fig. 5. Results of simulations for the maximum number of data fragments set to 30.

5 Applying Improved Simulator to the Case Study

The improved simulator was used again to analyze the real case-study appli-
cation in order to check how the more precise simulation affected results. The
simulations were carried out for two values of the maximum number of data
fragments set to 5 and 10. Average update times are summarized in Table 2.
Graphs of the network usage are presented in Figs.6 and 7.
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Table 2. Average update time for a client for different values of the maximum number
of data fragments.

Number of clients of each type Average update time [s]
No fragmentation | 5 fragments | 10 fragments
40 x :fast, 20 X :normal, 20 X :slow | 546.33s 542.26 541.05
80 x :fast, 20 X :normal, 20 X :slow  675.23s 683.10 679.02
20 x :fast, 20 X :normal, 20 X :slow | 551.17s 541.28 540.74
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Fig. 6. Results of simulations for the maximum number of data fragments set to 5.

Comparison of results from Table2 does not show significant differences in
update times for different configurations of simulator. This is due to the fact,
that in average, shorter update time for :slow and :normal clients is compensated
by longer update times for :fast clients. Therefore, analysis of the less aggregated
results of simulation presented in Figs. 6 and 7 more clearly shows differences in
obtained results.

To illustrate these differences between the initial result of simulation (without
fragmentation, Fig.1) and the final one (maximum 10 fragments, Fig.7), such
scenarios are directly compared in Fig. 8. For clarity of the graph, only results
for slow clients are shown.

It is clearly seen that the network utilization rate is higher when fragmen-
tation is considered, especially for the first part, when fast clients were still
downloading the update. Thus, the obtained simulation results more closely cor-
respond to the experiment results described in Sect. 3.2.

For the considered application, the aggregate metrics, i.e., the average client
update time and the number of client timeouts were the required results. These
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Fig. 7. Results of simulations for the maximum number of data fragments set to 10.
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Fig. 8. Comparison of simulation results for slow clients depending on fragmentation.

values were not significantly affected by the basic model of network data trans-
mission, despite of the fact that the application is network-bounded. However,
simulations are frequently used also to observe behavior of a system in a more
detailed way. In such the case, where not only aggregated results are important
and when performance of an application depends mainly on network transmis-
sion time, the more precise network model may be an important improvement

for the simulator.
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6 Summary

Based on the experiments described in the paper, using simulation enabled by
the formalism of Timed Colored Petri Nets (TCPNs) to analyze a high-level
model described with a Domain-Specific Language (DSL) allows to obtain reli-
able results regarding network-related performance of distributed systems. The
aim of the case study presented in this paper was to examine performance of
one of the systems developed and offered by TITUTO Sp. z o.0. [Ltd.] company
(Rzeszow, Poland).

The initial version of the simulation method did not provide satisfactory
results while more detailed analysis of the real-world scenario was performed.
For this reason, the research approach has been adjusted to properly handle
transmission of files over the network, by adding the possibility of dividing them
into fragments. In the paper, a few experiments are described, together with
a detailed analysis of results. At the end, the already checked and described tool
has been enhanced with additional features.
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