
Reforgeability of Authenticated
Encryption Schemes

Christian Forler1, Eik List2, Stefan Lucks2, and Jakob Wenzel2(B)

1 Beuth Hochschule für Technik Berlin, Berlin, Germany
cforler@beuth-hochschule.de

2 Bauhaus-Universitä Weimar, Weimar, Germany
{eik.list,stefan.lucks,jakob.wenzel}@uni-weimar.de

Abstract. This work pursues the idea of multi-forgery attacks as intro-
duced by Ferguson in 2002. We recoin reforgeability for the complexity
of obtaining further forgeries once a first forgery has succeeded. First,
we introduce a security notion for the integrity (in terms of reforgeabil-
ity) of authenticated encryption schemes: j-Int-CTXT, which is derived
from the notion INT-CTXT. Second, we define an attack scenario called
j-IV-Collision Attack (j-IV-CA), wherein an adversary tries to construct
j forgeries provided a first forgery. The term collision in the name stems
from the fact that we assume the first forgery to be the result from an
internal collision within the processing of the associated data and/or the
nonce. Next, we analyze the resistance to j-IV-CAs of classical nonce-
based AE schemes (CCM, CWC, EAX, GCM) as well as all 3rd-round
candidates of the CAESAR competition. The analysis is done in the
nonce-respecting and the nonce-ignoring setting. We find that none of
the considered AE schemes provides full built-in resistance to j-IV-CAs.
Based on this insight, we briefly discuss two alternative design strategies
to resist j-IV-CAs.

Keywords: Authenticated encryption · CAESAR · Multi-forgery
attack · Reforgeability

1 Introduction
(Nonce-Based) Authenticated Encryption. The goal of authenticated
encryption (AE) schemes is to simultaneously protect authenticity and privacy of
messages. AE schemes with support for Associated Data (AEAD) provide addi-
tional authentication for associated data. The standard security requirement for
AE schemes is to prevent leakage of any information about secured messages
except for their respective lengths. However, stateless encryption schemes would
enable adversaries to detect whether the same associated data and message has
been encrypted before under the current key. Thus, Rogaway proposed nonce-
based encryption [44], where the user must provide an additional nonce for every
message it wants to process – a number used once (nonce). AE schemes that

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 19–37, 2017.
DOI: 10.1007/978-3-319-59870-3_2

20 C. Forler et al.

require a nonce input are called nonce-based authenticated encryption (nAE)
schemes.

Reforgeability. In the cryptographic sense, reforgeability refers to the com-
plexity of finding subsequent forgeries once a first forgery has been found. Thus,
it defines the hardness of forging a ciphertext after the first forgery succeeded.
The first attack known was introduced in 2002 by Ferguson by showing collision
attacks on OCB [45] and a Ctr-CBC-like MAC [17]. He showed that finding a
collision within the message processing of OCB “ leads to complete loss of an
essential function” (referring to the loss of authenticity/integrity).

Later on, in 2005, the term multiple forgery attacks was formed and defined
by McGrew and Fluhrer [35]. They introduced the measure of expected num-
ber of forgeries and conducted a thorough analysis of GCM [34], HMAC [6],
and CBC-MAC [8]. In 2008, Handschuh and Preneel [22] introduced key recov-
ery and universal forgery attacks against several MAC algorithms. The term
Reforgeability was first formally defined by Black and Cochran in 2009, where
they examined common MACs regarding their security to this new measure-
ment [13]. Further, they introduced WMAC, which they argue to be the “best
fit for resource-limited devices”.

Relevance. For a reforgeability attack to work, an adversary must be provided
with a verification oracle in addition to its authentication (and encryption) ora-
cle. In practice, such a setting can, for example, be found when a client tries to
authenticate itself to a server and has multiple tries to log in to a system. Thus,
the server would be the verification oracle for the client.

Obviously, the same argument holds for the case when the data to be send
is of sensitive nature, i.e., the data itself has to be encrypted. Thus, besides the
resistance of MACs to reforgeability, also the resistance of AE schemes is of high
practical relevance.

Since modern and cryptographically secure AE schemes should provide at
least INT-CTXT security in terms of integrity, the first forgery is usually not
trivially found and depends on the size of the tag or the internal state. For that
reason, reforgeability becomes especially essential when considering resource-
constrained devices limited by, e.g., radio power, bandwidth, area, or through-
put. This is not uncommon in the area of low-end applications such as sensor
networks, VoIP, streaming interfaces, or, for example, devices connected to the
Internet of Things (IoT). In these domains, the tag size τ of MACs and AE
schemes is usually quite small, e.g., τ = 64 or τ = 32 bits, or even smaller
(τ = 8 bits) as mentioned by Ferguson in regard to voice systems [18]. There-
fore, even if the AE scheme is secure in the INT-CTXT setting up to τ bits,
it is not unreasonable for an adversary to find a forgery for such a scheme in
general. Nevertheless, even if finding the first forgery requires a large amount
of work, a rising question is, whether it can be exploited to find more forgeries
with significantly less than 2τ queries to an authentication oracle per forgery.
For our analysis, we derive a new security notion j-Int-CTXT, which states
that an adversary who finds the first forgery using t1 queries, can generate j

Reforgeability of Authenticated Encryption Schemes 21

additional forgeries in polynomial time depending on j. In general, the best case
would be to find j additional forgeries using t1 + j queries. Nevertheless, for five
schemes (AES-OTR [37], GCM [34], COLM [3], CWC [29], and OCB [30]),
there already exist forgery attacks in the literature (see [19] for details) leading
to j forgeries using only t1 queries (thus, the j additional authentication queries
are not even required).

Due to the vast number of submissions to the CAESAR competition [10],
cryptanalysis proceeds slowly for each individual scheme. For instance, forgery
attacks on 3rd-round CAESAR candidates have only been published for AES-
COPA [4,32,39], which even might become obsolete since AES-COPA and
ELmD [14] have been merged to COLM [3]. Besides looking at 3rd-round CAE-
SAR candidates, we also analyze other existing and partially widely-used AE
schemes, e.g., GCM, EAX [9], CCM [16], and CWC. Naturally, due to their
longer existence, there exist a lot more cryptanalysis on those schemes in com-
parison to the CAESAR candidates (see [20,27,28,36,42,46] for some examples).
The hope is that an INT-CTXT-secure AE scheme does not lose its security
when considering reforgeability, i.e., j-Int-CTXT.

We briefly introduce what we mean by resistant to j-IV-CAs, whereby we
assume the first forgery to be the results from an internal collision of the process-
ing of the associated data and/or the nonce.

• Nonce-Ignoring: We call an nAE scheme resistant to j-IV-CAs if the
required number of queries of a nonce-ignoring j-IV-CA adversary for finding
1 + j forgeries (including the first) is greater than t1 + j, where t1 denotes
the number of queries for finding the first forgery.

• Nonce-Respecting: We call an nAE scheme resistant to j-IV-CAs if the
required number of queries of a nonce-respecting j-IV-CA adversary for find-
ing 1+j forgeries (including the first) is greater than t1 ·j/2, where t1 denotes
the number of queries for finding the first forgery.

Further, we say that an nAE scheme is semi-resistant to j-IV-CAs if the
internal state is of wide size and the scheme itself is not trivially insecure in
terms of j-IV-CA. Thereby, following a similar approach to the wide-pipe mode
introduced for hash functions [33], the internal state of an nAE scheme is at
least twice as big as the output, i.e., the tag value. Such a design is, for example,
given by the widely used Sponge construction [11]. That would make the search
for a generic collision significantly harder than the search for multiple forgeries.
We denote the number of queries required for finding a collision within a wide
internal state by t2. Finally, we call an nAE scheme vulnerable to j-IV-CAs if it
is neither resistant nor semi-resistant to j-IV-CA.

Contribution. This work classifies nonce-based AE schemes depending on
the usage of their inputs to the initialization, encryption, and authentication
process, and categorize the considered AE schemes regarding to that classifi-
cation. To allow for a systematic analysis of the reforgeability of AE schemes,
we introduce the j-IV-Collision Attack based on the introduced security defini-
tion j-Int-CTXT, providing us with expected upper bounds on the hardness of

22 C. Forler et al.

further forgeries (a summary of our results can be found in Table 1). For our
attack, we pursue the idea of the message-block-collision attacks presented
in [17,45]. However, in contrast, we focus on an internal collision within the
processing of the associated data and/or the nonce. In the last section, we provide
two approaches to provide resistance in the sense of reforgeability and j-IV-CAs.
Moreover, in the full version of this work [19], for AES-OTR, COLM, and OCB,
we describe three attacks making multi-forgery attacks more efficient than our
generic approach.

Table 1. Expected #oracle queries required for j forgeries for IV/nonce-based classical
schemes and 3rd-round CAESAR candidates. By t1 and t2, we denote the computa-
tional cost for obtaining the first forgery, where t2 relates to wide-state designs. NR
= nonce-respecting setting; NI = nonce-ignoring setting. Since we obtained the same
results for Deoxys-I and Deoxys-II, we combine them to Deoxys in this table. NR-
NORX (draft) means the nonce-misuse-resistant version of NORX.

Scheme NI NR Scheme NI NR

3rd-round CAESAR candidates
ACORN [47] t1 + j t1 · j/2 Ketje [12] t2 + j t2 · j/2

AEGIS [50] t2 + j t2 · j/2 Keyak [21] t2 + j t2 · j/2

AES-OTR [37] t1 t1 MORUS [48] t2 + j t2 · j/2

AEZv4 [23] t1 + j t1 · j/2 NORX [5] t2 + j t2 · j/2

Ascon [15] t2 + j t2 · j/2 NR-NORX [5] t2 + j t2 · j

CLOC [24] t1 + j t1 · j OCB [30] t1 t1

COLM [3] t1 t1 + j SILC [24] t1 + j t1 · j

Deoxys [26] t1 + j t1 · j Tiaoxin [40] t2 + j t2 · j/2

JAMBU [49] t1 + j t1 · j/2

Classical schemes
CWC [29] t1 t1 CCM [16] t1 + j t1 + j

EAX [9] t1 + j t1 · j GCM [34] t1 t1

Outline. Section 2 provides necessary preliminaries including our security
notions. Section 3 introduces our classification of generic AE schemes. Section 4
presents the j-IV-CA and a generic security analysis. Section 5 contains possible
remedies to j-IV-CAs and Sect. 6 concludes our work.

2 Preliminaries
We use lowercase letters x for indices and integers, uppercase letters X,Y for
binary strings and functions, and calligraphic uppercase letters X ,Y for sets and
combined functions. We denote the concatenation of binary strings X and Y by

Reforgeability of Authenticated Encryption Schemes 23

X ‖Y and the result of their bitwise XOR by X ⊕ Y . We indicate the length of
X in bits by |X|, and write Xi for the i-th block (assuming that X can be split
into blocks of, e.g., n bits). Furthermore, we denote by X � X that X is chosen
uniformly at random from the set X . For an event E, we denote by Pr[E] the
probability of E.

Adversaries and Advantages. An adversary A is an efficient Turing machine
that interacts with a given set of oracles that appear as black boxes to A. We
denote by AO the output of A after interacting with some oracle O. We write
AdvX

F (A) for the advantage A against a security notion X on a function/scheme
F . All probabilities are defined over the random coins of the oracles and those
of the adversary, if any. We write AdvX

F (q, �, t) = maxA{AdvX
F (A)} to refer

to the maximal advantage over all X-adversaries A on a given scheme/function
F that run in time at most t and pose at most q queries consisting of at most
� blocks in total to the available oracles. Wlog., we assume that A never asks
queries to which it already knows the answer, and by O1 ↪→ O2 we denote that
A never queries O2 with the output of O1.

We define as (qE , qD, �, t)-adversary A an adversary that asks at most qE

queries to its first oracle, qD queries to its second oracle, which consist of at
most � blocks in sum, where A runs in time at most t. We define a scheme
Π to be (qE , qD, �, t, ε)-X-secure to a notion X if the maximal advantage of all
(qE , qD, �, t)-X-adversaries on Π is upper bounded by ε. During the query phase,
we say that an adversary A maintains a query history Q collecting all requests
together with their corresponding answer. We write Q|X , if we refer only to all
entries of type X in the query history. For example, Ni /∈ Q|N denotes that the
nonce Ni is not contained in the set of nonces already in the query history.

Nonce-Based AE Schemes. A nonce-based authenticated encryption (nAE)
scheme (with associated data) [43] is a tuple Π = (E ,D) of a deterministic
encryption algorithm E : K×A×N ×M → C×T , and a deterministic decryption
algorithm D : K × A × N × C × T → M ∪ {⊥}, with associated non-empty key
space K, associated data space A ⊆ {0, 1}∗, the non-empty nonce space N , and
M, C ⊆ {0, 1}∗ denote the message and ciphertext space, respectively. We define
a tag space T = {0, 1}τ for a fixed τ ≥ 0. We write EA,N

K (M) and DA,N
K (C, T) as

short forms of E(K,A,N,M) and D(K,A,N,C, T). If a given tuple (A,N,C, T)
is valid, DA,N

K (C, T) returns the corresponding plaintext M , and ⊥ otherwise.
We assume that for all K ∈ K, A ∈ A, N ∈ N , and M ∈ M holds stretch-
preservation: if EA,N

K (M) = (C, T), then |C| = |M | and |T | = τ , correctness: if
EA,N

K (M) = (C, T), then DA,N
K (C, T) = M , and tidiness: if DA,N

K (C, T) = M
=
⊥, then EA,N

K (M) = (C, T), for all C ∈ C and T ∈ T .

Security Notions for Reforgeability. In 2004, Bellare et al. introduced
the two security notions Int-PTXT-M and Int-CTXT-M [7]; however, these
notions capture the setting that an adversary can pose multiple verification
queries for a single forgery. In contrast, we are interested in finding multiple (in
general j ≥ 1) forgeries based on multiple verification queries. In the scenario of

24 C. Forler et al.

Algorithm 1. The j-Int-CTXT Experiment.
Experiment j-Int-CTXT
1: K � K
2: Run AE(·),D(·) such that A never queries E ↪→ D
3: if A made j distinct decryption queries (Ai, Ni, Ci, Ti), 1 ≤ i ≤ j such that

DK(Ai, Ni, Ci, Ti) �= ⊥ for all 1 ≤ i ≤ j then return 1

4: return 0

INT-CTXT, an adversary wins if it can find any valid forgery, that is a tuple
(A,N,C, T) for which the decryption returns anything different from the invalid
symbol ⊥ and which has not been previously obtained by A as response of the
encryption oracle. The j-Int-CTXT security notion, as shown in Algorithm 1,
is derived from INT-CTXT in the sense that A now has to provide j distinct
valid forgeries that all have not been obtained from the encryption oracle. In the
following, we define the j-Int-CTXT Advantage of an adversary.

Definition 1 (j-Int-CTXT Advantage). Let Π = (E ,D) be a nonce-based
AE scheme, K � K, and A be a computationally bounded adversary on Π with
access to two oracles E and D such that A never queries E ↪→ D. Then, the
j-Int-CTXT advantage of A on Π defined as

Advj-Int-CTXT
Π (A) := Pr

[
AE,D forges j times

]
,

where “forges” means that DK returns anything other than ⊥ for a query of
A, and “forges j times” means that A provides j distinct decryption queries
(Ai, Ni, Ci, Ti), 1 ≤ i ≤ j such that DK(Ai, Ni, Ci, Ti)
= ⊥ for all 1 ≤ i ≤ j.

We define Advj-Int-CTXT
Π (qE , qD, �, t) for the maximal advantage over all

adversaries A on Π that ask at most qE encryption queries, qD decryption
queries, which sum up to at most � blocks in total, and run in time at most t.

3 Classification of AE Schemes
In our work, we consider AE schemes from a general point of view. Therefore, in
comparison to the classification of Namprempre, Rogaway, and Shrimpton [38],
we introduce one additional optional input to the tag-generation step (a key-
dependent chaining value) and further, we distinguish between the message and
the ciphertext being input to the tag generation.

We classify AE schemes according to their inputs to an initialization function
FIV and a tag-generation function FT . Let K,A,N , IV , T ,M, CV, and C define
the key, associated data, nonce, IV, tag, message, chaining-value, and ciphertext
space, respectively. We define three functions FIV , E , and FT as follows:

FIV : K[×A][×N][×M] → IV,

E : K × IV × M → C[×CV],
FT : K[×CV][×M][×C][×A][×N] → T ,

Reforgeability of Authenticated Encryption Schemes 25

where A,N ,M, CV , C ⊆ {0, 1}∗, T ⊆ {0, 1}τ , and IV ⊆ {0, 1}∗. The expressions
(sets) given in brackets are optional inputs to the corresponding function, e.g.,
the function FIV must be provided with at least one input (the key K ∈ K),
but is able to process up to four inputs (including associated data A ∈ A, nonce
N ∈ N , and message M ∈ M).

Fig. 1. Generic AE scheme as considered in our analysis.

From this, we introduce a generic classification based on which input is used
in FIV and FT . Note that the encryption algorithm E is equal for all classes
described, i.e., it encrypts a message M under a key K and an IV ∈ IV, and
outputs a ciphertext C ∈ C. However, the authors of [38] distinguished between
IV-based (ivE) and nonce-based (nE) encryption schemes. Such a distinction
is covered by our generalized approach since one can simply assume the only
input to FIV to be the nonce (and the key) and making FIV itself the identity
function, i.e., it forwards the nonce N to the encryption function E . Moreover,
AE schemes built from generic composition can be modelled by setting x3 = 0
and assuming FT to be a PRF-secure MAC (see below for the meaning of x3).

In the following, we encode the combination of inputs as a sequence of eight
bits x0, . . . , x7, where each bit denotes whether an input is used (1) or not (0),
resulting in a total of 28 = 256 possible classes. More detailed, the first three bits
x0, x1, x2 denote whether the associated data A, the nonce N , or the message M
is used as input to FIV , respectively. The bits x3, . . . , x7 denote whether a key-
dependent chaining value CV , M , C, A, or N is used as input to FT , respectively
(see Fig. 1 for a depiction of our generic AE scheme). For example, the string
(11010011) represents FIV : K × A × N → IV and FT : K × CV × A × N → T
as it would be the case for, e.g., POET [2], CLOC, and SILC [24]. Further, we
mark a bit position by ‘*’ if we do not care about whether the specific input is
available or not.

Our next step is to significantly reduce the number of possible classes
by disregarding those that are trivially insecure. First, we can simply discard
24 = 16 classes of the form (00 ∗ ∗ ∗ ∗00), where neither the nonce N nor the
associated data A is considered as input. Similarly, we can exclude 6 · 24 = 96
classes which lack the use of either the nonce or the associated data, i.e.,

26 C. Forler et al.

Table 2. Overview of accepted classes. All excluded classes are trivially insecure.

Set of classes Input to FIV Input to FT

(01 ∗ ∗ ∗ ∗10) K × N [×M] K[×CV][×M][×C] × A
(01 ∗ ∗ ∗ ∗11) K × N [×M] K[×CV][×M][×C] × A × N
(11 ∗ ∗ ∗ ∗00) K × A × N [×M] K[×CV][×M][×C]
(11 ∗ ∗ ∗ ∗01) K × A × N [×M] K[×CV][×M][×C] × N
(11 ∗ ∗ ∗ ∗10) K × A × N [×M] K[×CV][×M][×C] × A
(11 ∗ ∗ ∗ ∗11) K × A × N [×M] K[×CV][×M][×C] × A × N

{(01∗∗∗∗00), (01∗∗∗∗01), (10∗∗∗∗00), (10∗∗∗∗10), (00∗∗∗∗01), (00∗∗∗∗10)}.
Finally, since a secure nonce-based AE scheme requires the nonce to influence
at least the encryption step, we can further disregard the 3 · 24 = 48 classes
{(00 ∗ ∗ ∗ ∗11), (10 ∗ ∗ ∗ ∗01), (10 ∗ ∗ ∗ ∗11)} which omit the nonce in the initial-
ization function FIV . As a result, we reduced the number of relevant classes to
96. An overview can be found in Table 2.

4 j-Int-CTXT-Analysis of nAE Schemes
In this section, we introduce a new attack type called j-IV-Collision Attack
(j-IV-CA) as one possible way to analyze the security of a nonce-based AE
scheme regarding to reforgeability. We provide two variants (1) for the nonce-
ignoring (NI; also known as nonce misuse) and (2) the nonce-respecting (NR)
setting.

4.1 j-IV-Collision Attack
The core idea of a j-IV-CA is to (1) assume a first forgery can be found caused
by an internal collision within the processing of the associated data A and/or
the nonce N and (2) to exploit this collision for efficiently constructing j further
forgeries. Depending on the class of an AE scheme, such a collision can occur
during the invocation of FIV , FT , or both.

Due to the character of the attacks presented in this section, we can derive a
set of classes C0 of nAE schemes for which those attacks are trivially applicable.
For all schemes belonging to that class, it holds that neither the message M , a
message/ciphertext-depending chaining CV , nor the ciphertext C influence the
first collision found by our adversary, e.g., if an adversary tries to construct a
collision for the outputs of FIV , the only possible inputs to FIV are either the
nonce N , the associated data A, or both. Therefore, the set C0 contains the
following 22 classes of AE schemes:

C0 = {(110 ∗ ∗ ∗ 0∗), (01 ∗ 0001∗), (11000011), (11000010)}.

Reforgeability of Authenticated Encryption Schemes 27

Algorithm 2. j-IV-Collision Attack for nonce-ignoring adversaries.
1: Choose an arbitrary fixed message M
2: Q ← ∅
3: for i ← 1 to t1 do
4: Choose (Ai, Ni) with (Ai, Ni) /∈ Q|A,N

5: Query (Ai, Ni, M) and receive (Ci, Ti).
6: Q ← Q ∪ {(Ai, Ni, M, Ci, Ti)}
7: if Ti ∈ Q|T then
8: Store the tuples (Ai, Ni, M, Ci, Ti) and (Ak, Nk, M, Ck, Tk) for which Ti = Tk

9: break
10: for � ← 1 to j do
11: Choose M� /∈ Q|M
12: Query (Ai, Ni, M�) and receive (C′

�, T
′
�)

13: Q ← Q ∪ {(∗, ∗, M�, ∗, ∗)}
14: Output the forgery (Ak, Nk, C′

�, T
′
�)

Nonce-Ignoring Setting The attack for the nonce-ignoring setting is described
in Algorithm 2. An adversary A starts by choosing a fixed arbitrary message M
and pairs (Ai, Ni) not queried before ((Ai, Ni) /∈ Q|A,N , see Line 4). That builds
up a query (Ai, Ni,M) resulting in an oracle answer (Ci, Ti) which is stored by
A in the query history Q. Once a collision of two tag values Ti and Tk (implying
a collision of two pairs (Ai, Ni)
= (Ak, Nk))1 was found (Line 7 of Algorithm 2),
A starts to generate j additionally queries with an effort of O(j) (Lines 10–14).
In Lines 6 and 13, the adversary is collecting all tuples queried so far, where in
Line 13 we are only interested in the values of M�, since these are not allowed
to repeat (see Line 11) by the definition of A.

It is easy to observe that A has to use the same nonce twice, i.e., Ni is chosen
in Line 4 and reused in Line 12 of Algorithm 2. Independent from the number
of queries of finding the j additional forgeries, A always (in the nonce-ignoring
as well as in the nonce-respecting setting) has to find a collision for two pairs
(Ai, Ni)
= (Ak, Nk). That number of queries (denoted by t1 in general, or by t2 if
the scheme employs a wide state of ≥ 2n bits (or ≥ 2τ bits, when referring to the
size of the tag value), see Table 1) always depends on the concrete instantiation
of our generic AE scheme and is usually bounded by at least O(q2/2n) (birthday
bound), where q denotes the number of queries and n the state size in bit. In
Table 4 of Appendix B, the reader can find the security claims of the considered
AE schemes provided by their respective designers.

Nonce-Respecting Setting. The second setting prohibits an adversary from
repeating any value Ni during its encryption queries. Therefore, we introduce a
1 Based on our assumption, the case Ti = Tk can be caused by an internal collision of

the processing of two pairs (Ai, Ni) �= (Ak, Nk). Moreover, since we are considering
the nonce-ignoring setting allowing an adversary for repeating the values Ni, we can
say wlog. That we must have found two associated data values Ai �= Ak leading
to an equal output of the processing of the associated data, e.g., the initialization
vector IV (see Fig. 1).

28 C. Forler et al.

Algorithm 3. j-IV-Collision Attack for nonce-respecting adversaries.
1: Choose an arbitrary fixed message block M
2: Q ← ∅
3: for 1 to j do
4: for i ← 1 to t1 do
5: Choose (Ai, Ni) with (Ai, Ni) /∈ Q|A,N

6: Choose Pi with Pi /∈ Q|P
7: Query (Ai, Ni, M ‖ Pi) and receive (C1

i ‖ CPi
i , Ti).

8: Q ← Q ∪ {(Ai, Ni, C
1
i ‖ CPi

i , Ti)}
9: if C1

i ∈ Q|C1 then
10: A outputs the tuples (Ai, Ni, C

1
i ‖ C

Pk
k , Tk) and (Ak, Nk, C1

k ‖ CPi
i , Ti)

11: for which C1
i = C1

k holds
12: goto Step 4

modified version of the j-IV-CA as proposed above. Such an attack works for
all schemes that allow to observe a collision of the outputs of the IV-generation
step by just looking at the ciphertext blocks. Thus, during the first step, we do
not care about finding the first forgery but only about the collision during FIV

as shown in Algorithm 3. This attacks works also for nAE schemes that consider
the associated data Ai only as input to FT . In such a situation, A would leave
Ai constant (or empty when considering FIV) and would vary only Ni to find a
collision within FIV .

If the number of queries for finding a collision during the processing of the
associated data is given by t1, an adversary requires j · t1 queries in average to
obtain 2 ·j forgeries. Clearly, this attack is weaker than that in the nonce-misuse
setting above, but still reduces the number of queries for finding j forgeries from
j · t1 to 1/2 · (j · t1).

4.2 Security Analysis
For all nAE schemes which belong to C0, there exist a straight-forward argument
that they are insecure in the nonce-ignoring setting. A j-IV-CA, as defined in
Algorithm 2, requires an adversary A to choose j pair-wise distinct messages
M1, . . . ,Mj . Beforehand, we assume A to be successful in finding the first forgery
for two distinct pairs (Ai, Ni) and (Ak, Nk) (Lines 3–9 of Algorithm 2) using t1
queries.

Therefore, the j-IV-CA adversary A queries t1 distinct pairs (Ai, Ni)
=
(Ak, Nk), together with a fixed message M , until an internal collision leads to
the case Ti = Tk. Since the event of that very first collision does not depend on
the message, a chaining value, and/or the ciphertext (requirement for an nAE
scheme to be placed in C0), we can always choose a new message and still can
ensure the internal collision for the pairs (Ai, Ni) and (Ak, Nk). Then, A only
has to query (Ai, Ni,M�) for a fresh message M� to the encryption oracle and
receives (C ′

�, T
′
�), where it is trivial to see that the pair (C ′

�, T
′
�) will also be valid

Reforgeability of Authenticated Encryption Schemes 29

for (Ak, Nk,M�). A then only has to repeat this process for j pairwise distinct
messages M�.

In the case of a nonce-respecting adversary (see Algorithm 3), an internal
collision of the processing of ((Ai) and) Ni is detected by observing colliding
ciphertext blocks (see Line 9). Since the attack requires an internal collision
within the IV-generation step and the nonce Ni must not directly influence the
tag-generation step FT , the nonce Ni must be given as input to FIV , but not to
FT . The associated data Ai can be given as input to FIV , FT , or both. Therefore,
the attack described in Algorithm 3 is applicable to all schemes belonging to the
subset {(11 ∗ ∗ ∗ ∗00), (11 ∗ ∗ ∗ ∗00), (01 ∗ ∗ ∗ ∗10)} of C0.

All remaining 74 classes in the set C1 provide resistance to j-IV-CAs from
a theoretical point of view, i.e., with regard to our generalized AE scheme as
shown in Fig. 1.

C1 = {(01 ∗ 0011∗), (01 ∗ 0101∗), (01 ∗ 0111∗), (01 ∗ 1001∗), (01 ∗ 1011∗),
(01 ∗ 1101∗), (01 ∗ 1111∗), (1100011∗), (1100101∗).(1100111∗),
(1101001∗), (1101011∗), (1101101∗), (1101111∗), (111 ∗ ∗ ∗ ∗∗)}

However, in practice, their security highly depends on the specific instanti-
ation of FIV and/or FT . Due to space constraints, the discussion of concrete
instantiations from the class C1 as well as from C0 when considering classical
nAE schemes and 3rd-round CAESAR candidates, is provided in Appendix C.

5 Countermeasures to j-IV-C Attacks
This section describes two possible approaches for providing resistance to
j-IV-CAs in the nonce-respecting (NR) as well as in the nonce-ignoring (NI)
setting.
Independence of FIV and FT . For realizing that approach, the pair (Ai, Ni)
has to be processed twice. Let FIV (Ai, Ni, ∗) be the IV-generation step of an nAE
scheme processing the tuple (Ai, Ni, ∗), where ‘∗’ denotes that FIV can optionally
process the message M . Usually, it is proven that FIV behaves like a PRF. Fur-
ther, let FT (∗, ∗, ∗, Ai, Ni) be the tag-generation step of an AE scheme processing
the tuple (∗, ∗, ∗, Ai, Ni), where the first three inputs can be the chaining value
CV , the message M , and or the ciphertext C2, and there exists a proof show-
ing that FT also behaves like a PRF. Hence, the corresponding scheme would
have the class (11 ∗ ∗ ∗ ∗11) which belongs to C1. If one can guarantee inde-
pendence between FIV and FT , we can say that the outputs of FIV (Ai, Ni, ∗)
and FT (∗, ∗, ∗, Ai, Ni) are independent random values. Based on that assump-
tion, a simple collision of the form FIV (Ai, Ni, ∗) = FIV (Ak, Nk, ∗) (as required
by the j-IV-CA) does not suffice to produce a forgery since it is highly likely
that FT (Ai, Ni, ∗)
= FT (∗, ∗, ∗, Ak, Nk) and vice versa. Therefore, this two-pass

2 Note that at least one of the three inputs must be given since else, the tag would be
independent from the message, which would make the scheme trivially insecure.

30 C. Forler et al.

processing realizes a domain separation between the IV-generation and the tag-
generation step, providing resistance to j-IV-CAs. One way to achieve that goal
can be to invoke the same PRF twice (for FIV and FT) but always guarantee dis-
tinct inputs, e.g., FIV (Ai, Ni, ∗, 1) and FT (∗, ∗, ∗, Ai, Ni, 2). Another approach
would be to just use two independent functions.

Wide-State IV. A second approach requires a PRF-processing of the associ-
ated data FIV which produces a wide-state output τ ← FIV (Ai, Ni) with |τ | > n
bit. For example, for |τ | = 2n, a pair (Ai, Ni) would be processed to two inde-
pendent n-bit values τ1 and τ2. Then, one could use τ1 as initialization vector
to the encryption step and τ2 as initialization vector to the tag-generation step.
Therefore, one can always guarantee domain separation between encryption and
tag generation, while remaining a one-pass AE scheme. One possible instantia-
tion for such a MAC (which can be utilized for the processing of the associated
data) is PMAC2x [31].

6 Conclusion
In this work, we followed on the idea of multi-forgery attacks first described by
Ferguson in 2002 and went on with introducing the j-Int-CTXT notion. Fur-
ther on, we introduced a classification of nonce-based AE schemes depending
of the usage of their inputs to the initialization, encryption, and authentication
process, and categorize them regarding to that classification. To allow a system-
atic analysis of the reforgeability of nonce-based AE schemes, we introduced the
j-IV-Collision Attack, providing us with expected upper bounds on the hardness
of further forgeries. During our analysis, we found that (1) no considered nAE
schemes provides full resistance to j-IV-CA, (2) ACORN, AES-OTR (serial),
Ascon, COLM, JAMBU, Ketje, and NORX belong to the class C0, render-
ing them implicitly vulnerable to j-IV-CAs, and (3) Ascon, Ketje, Keyak,
MORUS, NORX, NR-NORX, and Tiaoxin are semi-resistant to j-IV-CAs
since all of them employ a wide state. This has no impact on the applicability
of a j-IV-CA itself, but a wide state hardens the computation of the internal
collision, e.g., if the internal state is of size 2n (wide state) instead of n, a generic
collision can be found in 2n instead of 2n/2. Finally, we briefly proposed two alter-
native approaches which would render an nAE scheme resistant to j-IV-CAs in
the nonce-respecting as well as the nonce-ignoring setting.

A Classification of NRS’14 Schemes
This section shows the eleven “favored” nAE schemes considered by [38] and how
we map them according to our classification. From Table 3, one can observe that
the classes (A1, A7) and (A2, A8) have pairwise the same class according to our
generic nAE scheme. That stems from the fact that we do not follow the dis-
tinction of nAE schemes from [38] regarding to whether the message/ciphertext
can be processed in parallel or if the tag can be truncated. For the scheme N3, it

Reforgeability of Authenticated Encryption Schemes 31

Table 3. The eleven “favored” nAE schemes considered by the authors of [38] according
to our classification.

Name & Class [38] Class Sect. 3 Name & Class [38] Class Sect. 3

A1, A1.100111 (01001011) A7, A3.100111 (01001011)
A2, A1.110111 (11001011) A8, A3.110111 (11001011)
A3, A1.101111 (01101011) N1, N1.111 (11100000)
A4, A1.111111 (11101011) N2, N2.111 (01000111)
A5, A2.100111 (01000111) N3, N3.111 (01001011)
A6, A2.110111 (11000111)

holds that E gets the two separate inputs FL(A,N,M) and the nonce N . Since
there is no segregated tag generation for N3 (the tag is part of the ciphertext),
we interpreted FL as FIV and consider FIV to additionally hand over the nonce
N to the encryption E internally in plain.

B Security Claims
In Table 4, we state the security as claimed by the authors of the corresponding
scheme. We denote by τ, n, c, and r the tag length, block length, capacity, and
the rate, respectively.

Table 4. Claimed INT-CTXT bounds. NR = nonce-respecting adversary, NI = nonce-
ignoring adversary, where τ denotes the length of the tag, n the size of the internal
state (usually the block size of the internally used block cipher), and c the capacity for
sponge-based designs.

Scheme NI NR Scheme NI NR

3rd-round CAESAR candidates
ACORN – 2τ JAMBU 22n/2 22n/2

AEGIS – 2τ Ketje – 2min{τ,s}

AES-OTR – 2τ/2 Keyak 2min{c/2,τ} 2min{c/2,τ}

AEZv4 255 255 MORUS – 2128

Ascon – 2τ OCB – 2τ

CLOC 2n/2 2n/2 SILC – 2τ/2

COLM 264 264 NORX – 2|τ |

Deoxys-I – 2τ Tiaoxin – 2128

Deoxys-II 2τ/2 2τ−1

Classical AE schemes
CCM – 2n/2 CWC – 2n/2

EAX – 2n/2 GCM – 2n/2

32 C. Forler et al.

C Concrete Instantiations of C1 and C0

The resistance of the classes in C1 to j-IV-CA regarding to our generalized AE
scheme stems from the fact that the message, and/or a chaining value, and/or the
ciphertext affect the generation of the IV or the tag, i.e., is input to FIV and/or
FT . However, if we move from our generalized approach to concrete instantiations
of these classes, i.e., to existing AE schemes whose structure is defined by a
class in C1, we will see that some of those classes do not provide resistance to
j-IV-CAs. However, AE schemes whose classes belong to C0 are vulnerable to
j-IV-CAs in both the NI and the NR setting. In Table 5, we give an overview
of the resistance the considered AE schemes to j-IV-CAs and we additionally
provide a brief discussion for those cases that are not trivially observable. In
addition to the generic j-IV-CAs in this section, we recall stronger multi-forgery
attacks on OCB, AES-OTR, and COLM from the literature in the full version
of this work [19].

Table 5. j-IV-CA-Resistance of the third-round CAESAR candidates and considered
classical AE schemes, in the nonce-ignoring (NI) and the nonce-respecting (NR) set-
ting. ‘•’ indicates resistance, ‘◦’ vulnerability under certain requirements (e.g., the
scheme employs a wide state), and ‘–’ vulnerability. AES-OTR (ser.) means the serial
and (par.) the parallel mode.

Scheme Class NI NR Scheme Class NI NR

3rd-round CAESAR candidates (C0) 3rd-round CAESAR candidates (C1)
ACORN (11011000) – – AEGIS (11011010) ◦ ◦
AES-OTR (ser.) (11001100) – – AES-OTR (par.) (01001110) – –
Ascon (11010100) ◦ ◦ AEZv4 (11011011) – –
COLM (11011000) – – CLOC (11010101) – •
JAMBU (11011000) – – Deoxys-I (01011001) – •
Ketje (11010000) ◦ ◦ Deoxys-II (01011001) – •
NORX (11010100) ◦ ◦ Keyak (01011010) ◦ ◦
Classical AE schemes (C1) MORUS (11011010) ◦ ◦
CCM (01011011) – • NR-NORX (11110100) ◦ •
CWC (01010110) – – OCB (01001010) – –
EAX (01000111) – • SILC (11010101) – •
GCM (01000111) – – Tiaoxin (11011010) ◦ ◦

AEGIS, MORUS, and Tiaoxin. These schemes provide semi-resistance to
j-IV-CAs in the nonce-respecting and the nonce-ignoring setting. This stems
from the fact that they employ very wide states, which are initialized by nonce
and associated data, and which are more than twice as large as the final
ciphertext stretch; therefore, the search for state collisions is at best a task of

Reforgeability of Authenticated Encryption Schemes 33

sophisticated cryptanalysis, and at worst by magnitudes less efficient than the
trivial search by querying many forgery attempts. As a side effect, the search
for state collisions is restricted to associated data and messages of equal lengths
since their lengths are used in FT (for that reason, we set the bit x6).

CWC and GCM. In the nonce-ignoring setting, forgeries for CWC and GCM
can be obtained with a few queries. The tag-generation procedures of both modes
employ a Carter-Wegman MAC consisting of XORing the encrypted nonce with
an encrypted hash of associated data and ciphertext. The employed hash are
polynomial hashes in both cases, which is well-known to lead to a variety of
forgeries after a few queries when nonces are repeated.

In the nonce-respecting setting, both CWC and GCM possess security proofs
that show that they provide forgery resistance up to the birthday bound (Iwata
et al. [25] invalidated those for GCM and presented revised bounds which still
are bound by the birthday paradox). However, a series of works from the past five
years [1,41,46] illustrated that the algebraic structure of polynomial hashing may
allow to retrieve the hashing key from forgery polynomials with many roots. The
most recent work by Abdelraheem et al. [1] proposes universal forgery attacks
that work on a weak key set. Thus, a nonce-respecting adversary could find the
hash key and possess the power to derive universal forgeries for those schemes,
even with significantly less time than our nonce-respecting attack.

AES-OTR and OCB. In the nonce-ignoring setting, these schemes are trivially
insecure, as has been clearly stated by their respective authors. We consider OCB
as an example, a similar attack can be performed on AES-OTR if nonces are
reused. A nonce-ignoring adversary simply performs the following steps:

1. Choose (A,N,M) such that M consists of at least three blocks: M =
(M1,M2, . . .), and ask for their authenticated ciphertext (C1, C2, . . . , T).

2. Choose Δ
= 0n, and derive M ′
1 = M1 ⊕ Δ and M ′

2 = M2 ⊕ Δ. For
M ′ = M ′

1,M
′
2 and M ′

i = Mi, for i ≥ 3, ask for the authenticated cipher-
text (C ′

1, C
′
2, . . . , T) that corresponds to (A,N,M ′).

3. Given the authenticated ciphertext (C ′′, T ′′) for any further message (A, N ,
M ′′) with M ′′ = (M1,M2, . . .), the adversary can forge the ciphertext by
replacing (C ′′

1 , C ′′
2) = (C1, C2) with (C ′

1, C
′
2).

Therefore, the complexities for j forgeries under nonce-ignoring adversaries are
only t1 (and not t1+j, see Table 1). Because of their structure, there exist nonce-
respecting forgery attacks on AES-OTR and OCB that are stronger than our
generic j-IV-CA. Those can be found in the full version of this work [19].

AEZv4. Since AEZv4 does not separate the domains of (Ai, Ni) for IV and
tag generation, our j-IV-CAs work out-of-the box here. More detailed, nonce and
associated data are parsed into a string T1, . . . , Tt of n-bit strings Ti, and simply
hashed in a PHASH-like manner inside AEZ-hash: Δ ←

⊕t
i=1 Ei+2,1

K (Ti), where
E denotes a variant of four-round AES. The adversary can simply ask for the
encryption of approximately 264 tuples (Ai, Ni,M) for fixed M . Obtaining a col-
lision for this hash (requiring birthday-bound complexity) can be easily detected

34 C. Forler et al.

when the message is kept constant over all queries. Given such a hash collision
for (Ai, Ni) and (Ak, Nk), the adversary can directly construct subsequent forg-
eries by asking for the encryption of (Ai, Ni,M

′) and the same ciphertext will
be valid for (Ak, Nk,M ′) for arbitrary M ′.

Deoxys. The nonce-requiring variant of Deoxys, i.e., Deoxys-I, possesses a
similar structure as OCB. Hence, there are trivial multi-forgery attacks with
few queries if nonces repeat:

1. Choose (A,N,M) arbitrarily and ask for (C, T).
2. Choose A′
= A, leave N and M constant and ask for (C ′ = C, T ′). Since the

tag is computed by the XOR of Hash(A) with the encrypted checksum under
the nonce as tweak, the adversary sees the difference in the hash outputs in
the tags: Hash(A) ⊕ Hash(A′) = T ⊕ T ′.

3. Choose (A,N ′,M ′) and ask for (C ′′, T ′′). It instantly follows that for (A′, N ′,
M ′), (C ′′, T ′′′ = T ⊕ T ′ ⊕ T ′′) will be valid.

However, in the nonce-respecting setting, the use of a real tweaked block cipher
that employs the nonce in tweak (instead of the XEX construction as in AES-
OTR and OCB) prevents the attacks shown in [19]; the tag generation seems
surprisingly strong in the sense that an adversary can not detect collisions
between two associated data since the hash is XORed with an output of a fresh
block cipher (because of the nonce is used as tweak) for every query. Therefore,
we indicate that Deoxys-I provides resistance in the nonce-respecting setting.

Deoxys-II is a two-pass mode, i.e., the message is processed twice (1) once
for the encryption process and (2) for the authentication process. In the nonce-
ignoring setting, an adversary can simply fix Ni and vary Ai for finding a collision
for Auth, which renders the scheme vulnerable to j-IV-CAs. Therefore, that kind
of two-pass scheme (in comparison to SIV, where the message is used as input
to FIV), does not implicitly provide resistance to j-IV-CAs.

NORX. The authors of NORX presented a nonce-misuse resistant version of
their scheme in Appendix D of [5]. NR-NORX follows the MAC-then-Encrypt
paradigm, which yields a two-pass scheme similar to SIV. Therefore, NR-NORX
provides at the least resistance to j-IV-CAs in the NR setting, which renders it
stronger than NORX. However, this security comes at the cost of being off-line
and two-pass.

CCM, EAX, CLOC and SILC. The resistance to j-IV-CAs in the nonce-
respecting setting provided by CCM, EAX, CLOC, and SILC stems from sim-
ilar reasons as for Deoxys-II; the tag is generated by the XOR of the MAC
of the nonce with the MAC of the ciphertext and the MAC of the associated
data. Hence, collisions in ciphertext or header can not be easily detected since
the MAC of a fresh nonce is XORed to it.

Reforgeability of Authenticated Encryption Schemes 35

References
1. Abdelraheem, M.A., Beelen, P., Bogdanov, A., Tischhauser, E.: Twisted polyno-

mials and forgery attacks on GCM. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 762–786. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46800-5_29

2. Abed, F., Fluhrer, S., Foley, J., Forler, C., List, E., Lucks, S.,
McGrew, D., Wenzel, J.: The POET Family of On-Line Authenticated Encryption
Schemes (2014). http://competitions.cr.yp.to/caesar-submissions.html

3. Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M.,
Tischhauser, E., Yasuda, K.: COLM v1 (2016). http://competitions.cr.yp.to/
caesar-submissions.html

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
AES-COPA (2014). http://competitions.cr.yp.to/caesar-submissions.html

5. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX (2016). http://competitions.cr.
yp.to/caesar-submissions.html

6. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). doi:10.1007/3-540-68697-5_1

7. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in mes-
sage authentication and authenticated encryption. IACR Cryptology ePrint Arch.
2004, 309 (2004)

8. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

9. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-25937-4_25

10. Bernstein, D.J.: CAESAR Call for Submissions, Final, 27 January 2014. http://
competitions.cr.yp.to/caesar-call.html

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. ECRYPT
Hash Function Workshop (2007)

12. Bertoni, G., Daemen, J., Peeters, M., Van Keer, R., Van Assche, G.: CAESAR sub-
mission, Ketje v2 (2016). http://competitions.cr.yp.to/caesar-submissions.html

13. Black, J., Cochran, M.: MAC reforgeability. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 345–362. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03317-9_21

14. Datta, N., Nandi, M.: ELmD (2014). http://competitions.cr.yp.to/
caesar-submissions.html

15. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2 (2016). http://
competitions.cr.yp.to/caesar-submissions.html

16. Dworkin, M.J.: SP 800–38C. Recommendation for Block Cipher Modes of Oper-
ation: The CCM Mode for Authentication and Confidentiality. Technical report,
Gaithersburg, MD, United States (2004)

17. Ferguson, N.: Collision Attacks on OCB. Unpublished manuscript (2002). http://
www.cs.ucdavis.edu/rogaway/ocb/links.htm

18. Ferguson, N.: Authentication weaknesses in GCM (2005). http://csrc.nist.gov/
groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf

19. Forler, C., List, E., Lucks, S., Wenzel, J.: Reforgeability of Authenticated Encryp-
tion Schemes. Cryptology ePrint Archive, Report 2017/332 (2017). http://eprint.
iacr.org/2017/332

http://dx.doi.org/10.1007/978-3-662-46800-5_29
http://dx.doi.org/10.1007/978-3-662-46800-5_29
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/3-540-68697-5_1
http://dx.doi.org/10.1007/978-3-540-25937-4_25
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-642-03317-9_21
http://dx.doi.org/10.1007/978-3-642-03317-9_21
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://www.cs.ucdavis.edu/rogaway/ocb/links.htm
http://www.cs.ucdavis.edu/rogaway/ocb/links.htm
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://eprint.iacr.org/2017/332
http://eprint.iacr.org/2017/332

36 C. Forler et al.

20. Fouque, P.-A., Martinet, G., Valette, F., Zimmer, S.: On the security of the
CCM encryption mode and of a slight variant. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 411–428.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-68914-0_25

21. Peeters, M., Bertoni, G., Daemen, J., Van Assche, G., Van Keer, R.: CAESAR sub-
mission, Keyak v2 (2016). http://competitions.cr.yp.to/caesar-submissions.html

22. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–161.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_9

23. Hoang, V.T., Krovetz, T., Rogaway, P.: AEZ v4.2: Authenticated Encryption by
Enciphering (2016). http://competitions.cr.yp.to/caesar-submissions.html

24. Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC and SILC v3 (2016).
http://competitions.cr.yp.to/caesar-submissions.html

25. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_3

26. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41 (2016).
http://competitions.cr.yp.to/caesar-submissions.html

27. Westerlund, M., Mattsson, J.: Authentication Key Recovery on Galois Counter
Mode (GCM). Cryptology ePrint Archive, Report 2015/477 (2015). http://eprint.
iacr.org/2015/477

28. Joux, A.: Authentication Failures in NIST version of GCM. NIST Comment (2006)
29. Kohno, T., Viega, J., Whiting, D.: CWC: a high-performance conventional authen-

ticated encryption mode. In: FSE, pp. 408–426, 2004
30. Krovetz, T., Rogaway, P.: OCB (2016). http://competitions.cr.yp.to/

caesar-submissions.html
31. List, E., Nandi, M.: Revisiting full-PRF-secure PMAC and using it for

beyond-birthday authenticated encryption. In: Handschuh, H. (ed.) CT-RSA
2017. LNCS, vol. 10159, pp. 258–274. Springer, Cham (2017). doi:10.1007/
978-3-319-52153-4_15

32. Jiqiang, L.: On the security of the COPA and marble authenticated encryption
algorithms against (almost) universal forgery attack. IACR Cryptology ePrint
Arch. 2015, 79 (2015)

33. Lucks, S.: A failure-friendly design principle for hash functions. In: Proceedings of
the Advances in Cryptology - ASIACRYPT 2005, 11th International Conference
on the Theory and Application of Cryptology and Information Security, Chennai,
India, December 4–8, 2005, pp. 474–494 (2005)

34. McGrew, D., Viega, J.: The Galois/Counter Mode of Operation (GCM). Submis-
sion to NIST (2004). http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/
gcm/gcm-spec.pdf

35. McGrew, D.A., Fluhrer, S.R.: Multiple forgery attacks against message authenti-
cation codes. IACR Cryptology ePrint Arch. 2005, 161 (2005)

36. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30556-9_27

37. Minematsu, K.: AES-OTR v3.1 (2016). http://competitions.cr.yp.to/
caesar-submissions.html

38. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_15

http://dx.doi.org/10.1007/978-3-540-68914-0_25
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-540-85174-5_9
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-642-32009-5_3
http://competitions.cr.yp.to/caesar-submissions.html
http://eprint.iacr.org/2015/477
http://eprint.iacr.org/2015/477
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-319-52153-4_15
http://dx.doi.org/10.1007/978-3-319-52153-4_15
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-642-55220-5_15

Reforgeability of Authenticated Encryption Schemes 37

39. Nandi, M.: Revisiting security claims of XLS and COPA. Cryptology ePrint
Archive, Report 2015/444 (2015). http://eprint.iacr.org/2015/444

40. Nikolić, I.: Tiaoxin-346 (2016). http://competitions.cr.yp.to/caesar-submissions.
html

41. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 287–304.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3_15

42. Rogaway, P., Wagner, D.: A Critique of CCM. Cryptology ePrint Archive, Report
2003/070 (2003). http://eprint.iacr.org/2003/070

43. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM Conference
on Computer and Communications Security, pp. 98–107 (2002)

44. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4_22

45. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM Conference on Computer
and Communications Security, pp. 196–205 (2001)

46. Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs
and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5_13

47. Hongjun, W.: A Lightweight Authenticated Cipher (v3) (2016). http://
competitions.cr.yp.to/caesar-submissions.html

48. Wu, H., Huang, T.: The Authenticated Cipher MORUS (2016). http://
competitions.cr.yp.to/caesar-submissions.html

49. Wu, H., Huang, T.: The JAMBU Lightweight Authentication Encryption Mode
(v2.1) (2016). http://competitions.cr.yp.to/caesar-submissions.html

50. Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm (v1,1)
(2016). http://competitions.cr.yp.to/caesar-submissions.html

http://eprint.iacr.org/2015/444
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-662-43933-3_15
http://eprint.iacr.org/2003/070
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/978-3-642-34047-5_13
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html

http://www.springer.com/978-3-319-59869-7

	Reforgeability of Authenticated Encryption Schemes
	1 Introduction
	2 Preliminaries
	3 Classification of AE Schemes
	4 j-Int-CTXT-Analysis of nAE Schemes
	4.1 j-IV-Collision Attack
	4.2 Security Analysis

	5 Countermeasures to j-IV-C Attacks
	6 Conclusion
	A Classification of NRS'14 Schemes
	B Security Claims
	C Concrete Instantiations of C1 and C0
	References

