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Abstract. We introduce Ouroboros (The Ouroboros symbol is an
ancient symbol which represents the notion of cyclicity in many civi-
lizations), a new Key Exchange protocol based on coding theory. The
protocol gathers the best properties of the recent MDPC-McEliece and
HQC protocols for the Hamming metric: simplicity of decoding and secu-
rity reduction, based on a double cyclic structure. This yields a simple,
secure and efficient approach for key exchange. We obtain the same type
of parameters (and almost the same simple decoding) as for MDPC-
McEliece, but with a security reduction to decoding random quasi-cyclic
codes in the Random Oracle Model.
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1 Introduction

Code-based cryptography was introduced with the well-known McEliece cryp-
tosystem in 1978: it is in the spirit of the Merkle-Hellman cryptosystem, where
the main idea consists in masking an easy instance of a hard problem, hoping
that the masking is hard to recover. The McEliece system based on its original
family of codes – namely the binary Goppa codes – is still considered unbro-
ken today, but many variants based on alternative families of codes have been
proposed over the years and have turned out to be flawed, notably the variants
based on the overly structured Reed-Solomon codes. The McEliece system has
two main drawbacks: a very large key size and a security reduction to an ad-hoc
problem, the difficulty of recovering the hidden structure of a decodable code
from the public matrix.
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Over the years, researchers have tried to propose alternative schemes to over-
come these issues. The first line of improvements consists in adding structure
to the public matrix (like cyclicity for instance) in order to decrease the size of
the public key. Several approaches were proposed from 2005 [12], and resulted in
the McEliece variant based on the MDPC family of error-correcting codes [15], a
very efficient family with a very weak structure, compared to classical decodable
families. MDPC-McEliece is in the spirit of the NTRU cryptosystem but relies
on the Hamming distance rather than on the Euclidean distance. In practice the
system has a rather reasonable key-size, but a rather long message-size (compa-
rable to the key-length), it also benefits from a very simple decoding algorithm
(the BitFlip algorithm inherited from LDPC codes). Overall, its two main draw-
backs are the lack of a security reduction to a classical decoding problem and the
fact that the decoding algorithm is only probabilistic, making it hard to obtain
precise probabilities of decryption failure for very low probabilities.

A new approach to code-based public-key encryption that broke completely
with the McEliece paradigm was proposed by Alekhnovich in 2003 [2]. The focus
of this approach is to derive a system with a security reduction to the problem
of decoding random linear codes. This approach was very innovative but lead
to large parameters, exceeding those of McEliece. An Alekhnovich-inspired app-
roach that features cyclicity was recently proposed in [1]. The new scheme com-
bines the advantages of a security reduction with small public-key sizes resulting
from cyclicity and are based on the HQC and RQC (Hamming metric and rank
metric quasi-cyclic) families. In practice for the Hamming metric and HQC codes,
the obtained parameters are a little larger than for MDPC-McEliece, but the
decryption failure is easier to evaluate for very low decryption failure probabili-
ties, and decoding is less simple but still more efficient than for MDPC (decoding
a small BCH code against using the BitFlip algorithm for large lengths).

High Level Overview of Our Contribution. The previous discussion was
mainly focused on encryption algorithms. It is also possible to consider a Key
Exchange protocol derived from an encryption algorithm, simply by consider-
ing that the public key is ephemeral and changed for each use of the protocol.
(This is generally achieved through a Key Encapsulation Mechanism (KEM for
short), this point is discussed in more details in Sect. 4.) In that case it is pos-
sible to accept low but fixed decryption failures (say) 10−5 rather than require
proven decryption failures of 2−λ for a security parameter λ. In that context
the very simple BitFlip algorithm for MDPC decoding has renewed appeal since
the difficulty of estimating the decoding failure probability is not a serious issue
anymore.

Our approach borrows from both MDPC-McEliece and the Alekhnovich app-
roach. In the McEliece paradigm, errors are purposefully added to a codeword,
which the receiver can correct because he has a secret version of the code which
comes with a decoding algorithm. In contrast, the Alekhnovich strategy consists
of creating from a random public code a secret vector that is common to sender
and receiver, except that the sender and the receiver’s versions of this vector dif-
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fer by some noise. The natural follow-up is then to resort to an auxiliary code in
order to remove this noise. In the present work we use the Alekhnovich approach,
except that there is no auxiliary code: the public-key is a random quasi-cyclic
code with no extra structure (contrary to McEliece variants) but the noise that
needs to be removed is decoded through the secret key that happens to generate
an MDPC code.

A Structured Error for HQC Codes. The approach developed in [1] requires
recovering a codeword of the form mG, where G generates some public code of
length n, from a quantity of the form mG+xr2 −yr1+ε where xr2 −yr1+ε is
of weight O(n), xr2 and yr1 are the cyclic products of small weight vectors, and
ε is an independent small weight vector. The code generated by G is therefore
chosen to be highly decodable, and in the context of HQC is only required to
decode very large errors without taking into account the particular structure
of the error. In fact, the errors induced by the HQC approach are very special,
indeed looking closely at xr2−yr1+ε, and considering the fact that the decoder
knows x and y, it is easy to see that the error has essentially a cyclic structure
induced by x and y, where r1, r2 and ε are the unknowns. Seeing this and taking
into account the particular error structure, it is easy to reformulate the decoding
problem for HQC code into a decoding problem of a quasi-cyclic MDPC code
generated by x and y (known by the decoder). The only difference being the
additional decoding of ε, but our experiments show that the BitFlip algorithm
can be slightly modified in order to keep handling the case where the syndrome
has a small additional error ε.

In practice this new approach based on the cyclic structure of the error,
enables one to keep the security reduction present in HQC-based encryption and
to include the simplicity of the BitFlip decoding algorithm used for MDPC codes
(mildly tweaked). In some sense this new approach enables one to avoid the use
of an external code as in HQC encryption. (The decoding problem is formally
stated in Definition 9.) It comes with a price since it makes the evaluation of
decryption failure probabilities more difficult, but the algorithm is especially
well suited to Key Exchange for which failures are tolerated. In this paper we
show that in practice our parameters are almost the same as those of MDPC-
McEliece but with a security reduction to decoding quasi-cyclic random binary
codes.

We prove that our protocol satisfies the passively secure requirement for
KEMs – namely INDistinguishability under Chosen Plaintext Attacks (IND-
CPA) – in the Random Oracle Model, with a reduction to a decisional form of
the decoding problem for random QC-codes.

Our Contributions. To sum up: by considering the special structure of the
error vector in the HQC approach our contributions show the following:

• it is possible to obtain a scheme based on the simple BitFlip decoder, with the
IND-CPA property and with a security reduction to a decisional version of
the decoding problem for random quasi-cyclic codes, whereas MDPC-McEliece
has similar parameters but no such reduction,



Ouroboros: A Simple, Secure and Efficient Key Exchange Protocol 21

• our approach improves on HQC-based encryption since in our new construc-
tion, the weight of the error vector that needs to be decoded has weight
O(

√
n) whereas the error weight is structurally in O(n) for HQC,

• the BitFlip decoder is still usable and decodes efficiently when there is an
additional small error on the given syndrome, and

• by considering the use of ephemeral keys, an efficient key exchange protocol
is obtained with a reasonable probability of failure.

Organization of the Paper. Section 2 gives background, Sect. 3 describes the
new decoding problem, the modified BitFlip algorithm as well as the proposed
Ouroboros protocol, Sect. 4 presents a security proof of this protocol with respect
to the standard model for KEM, and finally Sect. 5 gives examples of parameters.

2 Background

2.1 Coding Theory and Syndrome Decoding Problems

Notation. Throughout this paper, Z denotes the ring of integers and Fq (for
a prime q ∈ Z) a finite field, typically F2 for Hamming codes. Additionally, we
denote by ω(·) the Hamming weight of a vector i.e. the number of its non-zero
coordinates, and by Sn

w (F2) the set of words in F
n
2 of weight w. Formally:

Sn
w (F2) = {x ∈ F

n
2 , such that ω(x) = w} .

V denotes a vector space of dimension n over F2 for some positive n ∈ Z.
Elements of V can be interchangeably considered as row vectors or polynomials in
R = F2[X]/(Xn − 1). Vectors/Polynomials (resp. matrices) will be represented
by lower-case (resp. upper-case) bold letters. A prime integer n is said to be
primitive if the polynomial (Xn − 1)/(X − 1) is irreducible in R.

For x,y ∈ V, we define their product similarly as in R, i.e. xy = c ∈ V with

ck =
∑

i+j≡k mod n

xiyj , for k ∈ {0, 1, . . . , n − 1}.

Our new protocol uses cyclic (or circulant) matrices. In the same fashion as
in [1], rot(h) for h ∈ V denotes the circulant matrix whose ith column is the
vector corresponding to hXi mod Xn − 1.

Background on Coding Theory. We now provide some reminders on coding
theory, the SD problem and its quasi-cyclic versions as defined in [1].

Definition 1 (Quasi-Cyclic Codes [15]). For positive integers s, n and k,
a linear code [sn, k] code is said to be Quasi-Cyclic (QC) of order s if ∀c =
(c1, . . . , cs) ∈ C it holds that that (c1X, . . . , csX) ∈ C ( i.e. the code is stable by
a block circular shift of length n).

In our case, we will only consider rate 1/s systematic quasi-cyclic codes. The
parity-check matrix of such codes have the convenient shape below.
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Definition 2 (Systematic Quasi-Cyclic Codes of rate 1/s). A QC [sn, n]
code of order s is said to be systematic if it admits a parity-check matrix of the
form

H =

⎡

⎢⎢⎢⎣

In 0 · · · 0 A1

0 In A2

. . .
...

0 · · · In As−1

⎤

⎥⎥⎥⎦

with A1, . . . ,As−1 circulant n × n matrices.

Problems in Coding Theory. Most code-based primitives rely on the Syn-
drome Decoding (SD) problem, which has been proved NP-hard [5]. Even if there
is no such complexity result for Quasi-Cyclic (QC) codes, the general belief is
that the SD remains hard for such matrices. We use the same notations and defin-
itions as [1] for this problem, namely Quasi-Cyclic Syndrome Decoding (QCSD).
The following problems are defined for binary codes in the Hamming metric, but
easily extend to codes over Fq and even to other metrics such as the rank metric.

Definition 3 (SD Distribution). Let n, k, w ∈ N
∗, the SD (n, k, w) Distribu-

tion chooses H $← F
(n−k)×n and x $← Sn

w(F2), and outputs (H, σ(x) = Hx�).

The SD distribution having been defined, we can now define the fundamental
problem for code-based cryptography.

Definition 4 (Search SD Problem). On input (H,y�) ∈ F
(n−k)×n
2 ×F

(n−k)
2

from the SD distribution, the Syndrome Decoding Problem SD(n, k, w) asks to
find x ∈ Sn

w(F2) such that Hx� = y�.

The SD problem has a decisional form, which asks to decide whether the given
sample came from the SD distribution or the uniform distribution:

Definition 5 (Decisional SD Problem). Given (H,y�) $← F
(n−k)×n
2 ×

F
(n−k)
2 , the Decisional SD Problem DSD (n, k, w) asks to decide with non-

negligible advantage whether (H,y�) came from the SD(n, k, w) distribution or
the uniform distribution over F

(n−k)×n
2 × F

(n−k)
2 .

In order to propose reasonable key sizes, we base our proposition on QC codes.
We adapt the previous problems to this configuration.

Definition 6 (s-QCSD Distribution). Let n, k, w, s ∈ N
∗, the s-QCSD

(n, k, w, s) Distribution samples H $← F
(sn−k)×sn
2 , the parity-check matrix of

a QC-code of order s and x = (x1, . . . ,xs)
$← F

sn
2 such that ω(xi) = w, and

outputs (H,Hx�).

Definition 7 ((Search) s-QCSD Problem). For positive integers n, k,
w, s, a random parity check matrix H of a systematic QC code C and y $←
F

sn−k
2 , the Search s-Quasi-Cyclic SD Problem s-QCSD (n, k, w) asks to find

x = (x1, . . . ,xs) ∈ F
sn
2 such that ω(xi) = w, i = 1..s, and y = xH�.
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Assumption 1. The Search s-QCSD problem is hard on average.

Although there is no general complexity result for quasi-cyclic codes, decod-
ing these codes is considered hard by the community. There exist general attacks
which use the cyclic structure of the code [13,19] but these attacks have only a
very limited impact on the practical complexity of the problem. The conclusion
is that in practice, the best attacks are the same as those for non-circulant codes
up to a small factor.

Remark. Since systematic quasi-cyclic codes make up a large proportion of
the whole ensemble of quasi-cyclic codes, restricting the s-QCSD Problem to
systematic codes is not a significant specialisation.

Definition 8 (Decisional s-QCSD Problem). For positive integers n, k,
w, s, a random parity check matrix H of a systematic QC code C and y $← F

sn
2 ,

the Decisional s-Quasi-Cyclic SD Problem s-DQCSD (n, k, w) asks to decide
with non-negligible advantage whether (H,y�) came from the s-QCSD(n, k, w)
distribution or the uniform distribution over F

(sn−k)×sn
2 × F

sn−k
2 .

As for the ring Learning Parity from Noise problem, there is no known reduc-
tion from the search version of s-QCSD problem to its decisional version. The
proof of [4] cannot be directly adapted in the quasi-cyclic case, however the
best known attacks on the decisional version of the problem s-QCSD remain the
direct attacks on the search version of the problem s-QCSD.

2.2 HQC Scheme

We now recall the Hamming Quasi-Cyclic (HQC) Scheme from [1], which shares
some similarities with the proposed protocol. This scheme in turn is inspired
by Alekhnovich’s proposal based on random matrices [2], but is much more effi-
cient due to the use of the cyclic structure. The main differences between HQC,
Alekhnovich’s scheme, and our proposal Ouroboros will be discussed in Sect. 3.3.

HQC uses two types of codes, a decodable [n, k] code which can correct δ
errors and a random double-circulant [2n, n] code. Using the same notation as
before, consider a linear code C over F2 of dimension k and length n (generated by
G ∈ F

k×n
2 ), that can correct up to δ errors via an efficient algorithm C.Decode(·).

The scheme consists of the following four polynomial-time algorithms:

– Setup(1λ): generates the global parameters n = n(1λ), k = k(1λ), δ = δ(1λ),
and w = w(1λ). The plaintext space is F

k
2 . Outputs param = (n, k, δ, w).

– KeyGen(param): generates qr
$← V, matrix Q = (In | rot(qr)), the generator

matrix G ∈ F
k×n
2 of C, sk = (x,y) $← V2 such that ω(x) = ω(y) = w, sets

pk =
(
G,Q, s = sk · Q�)

, and returns (pk, sk).

– Encrypt(pk = (G,Q, s),μ, θ): uses randomness θ to generate ε
$← V, r =

(r1, r2)
$← V2 such that ω(ε), ω(r1), ω(r2) ≤ w, sets v� = Qr� and ρ =

μG+ s · r2 + ε. It finally returns c = (v,ρ), an encryption of μ under pk.
– Decrypt(sk = (x,y), c = (v,ρ)): returns C.Decode(ρ − v · y).
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A key feature of HQC is that the generator matrix G of the code C is publicly
known. In this way, the security of the scheme and the ability to decrypt only
rely on the knowledge of the secret key to remove sufficiently many errors, so
that the code C being used can decode correctly.

3 The Ouroboros Protocol

We begin this Section by restating formally the decoding problem obtained by
providing a noisy input to the classical BitFlip Algorithm. We then describe an
efficient modified BitFlip algorithm which actually solves the stated problem.
Finally we describe our new key exchange protocol: Ouroboros.

3.1 Decoding Cyclic Errors

Our new key exchange protocol requires to decode cyclic errors. We therefore
introduce a new problem that we call the Cyclic Error Decoding (CED) problem.
Essentially, this problem asks to recover information hidden with some noise,
where the noise has a cyclic structure. The problem is defined as follows:

Definition 9 (Cyclic Error Decoding (CED) Problem). Let x,y, r1 and r2
be random vectors of length n and weight w = O(

√
n), and let e be a random

error vector of weight we = cw for some non-negative constant c. Considering
the cyclic products of vectors modulo Xn − 1, the problem is defined as follows:
given (x,y) ∈ (Sn

w(F2))
2 and ec ← xr2 − yr1 + e such that ω(r1) = ω(r2) = w,

the Cyclic Error Decoding problem asks to recover (r1, r2).

One can immediately notice that this problem essentially corresponds to
an instance of the SD problem on matrix H =

(
rot(x)�, rot(y�)

)
, with the

particularity that the syndrome itself is faulty. Alternatively, it can also be
thought of as a correct instance of the same problem, but on the longer matrix
H =

(
rot(x)�, rot(y)�, In

)
.

A Modified BitFlip Algorithm. In the case when we = 0, the problem is
exactly the MDPC problem [15]: now when we �= 0 but remains small, the BitFlip
decoder used for MDPC codes can be directly adapted to this case. The only
difference is that the STOP condition is not that the weight of the recurring
syndrome obtained at each step becomes 0 at some point but rather that its
weight is lower than we (for we �= 0).

We present in Algorithm1 a slightly modified BitFlip algorithm following
[9,15]. Our experiments showed that this Hamming-QC-Decoder algorithm can
correctly perform decoding even when the input of the traditional BitFlip algo-
rithm is a moderately noisy syndrome.

There exist different ways to tune the BitFlip algorithm, the reader is referred
to [9] to see more details. In our version we consider the simple case wherea
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Algorithm 1: Hamming-QC-Decoder(x,y, ec, t, w,we)
Input: x,y, and ec = xr2 − yr1 + e, threshold value t required to flip a bit,

weight w (resp. we) of r1 and r2 (resp. e).
Output: (r1, r2) if the algorithm succeeds, ⊥ otherwise.
(u,v) ← (0,0) ∈ (Fn

2 )
2, H ← (rot(−y)�, rot(x)�

) ∈ F
n×2n
2 , syndrome ← ec;1

while [ω(u) �= w or ω(v) �= w] and ω(syndrome) > we do2
sum ← syndrome×H; /** */3
[f]No modular reduction4
flipped_positions ← 0 ∈ F

2n
2 ;5

for i ∈ [[0, 2n − 1]] do6
if sum[i] ≥ t then7

flipped_positions[i] = flipped_positions[i] ⊕ 1;8

(u,v) = (u,v)⊕ flipped_positions;9

syndrome = syndrome −H × flipped_positions�;10

if ω
(
ec − H × (u,v)�

)
> we then11

return ⊥;12
else13

return (u,v);14

threshold t is used at each step to make a decision on the bit to flip or not. We
run many experiments for different sizes of parameters, in practice the results
obtained show that for the parameters considered the we impacts decoding only
marginally. The main impact is a slightly lower decoding probability.

3.2 Description of the Ouroboros Protocol

Our protocol requires a function f which constructs fixed weight vectors of
given weight w from an entry r. In general for code-based protocols one requires
an invertible function f (see [18]), but in our case since we only consider key
exchange, f is not required to be invertible and a simple repetition of a hash
function from the entry r, giving the positions of the ‘1’ is enough to obtain
random vectors of fixed weight. We denote such a function by fw.

Description of the Protocol. Our protocol is described in a generic fashion in
Fig. 1. It uses a hash function Hash : {0, 1}∗ −→ Sn

w(F2). For h a random vector,
Alice constructs a random syndrome s from its secret x,y. Upon reception of
the syndrome s = x+ hy from Alice, Bob constructs its own random syndrome
s = r1 + hr2 from random r1 and r2 of weight w, and also constructs a second
syndrome sε associated with r2 on one side and on the other side to a small
weight vector e composed of two error vectors: the vector ε which will be the
shared secret and the error er obtained from the secret r1, r2. Upon receiving sr
and sε, Alice computes ec = sε − ysr = xr2 − yr1 + er + ε, which corresponds
to the cyclic-error decoding problem with e = er + ε. The value we is taken as
ω(ε) + ω(e), in practice it can be a little smaller, but it does not change the
decoding.
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Fig. 1. Description of our new key exchange protocol. h and s constitute the public
key. h can be recovered by publishing only the λ bits of the seed (instead of the n
coordinates of h).

Having this double error is essential for the security proof. Upon reception of
the two syndromes sr and sε, Alice constructs an instance of the CED problem.
The result of the CED decoder is then used to recover er + ε and the er part of
the error is removed through the knowledge of (r1, r2).

3.3 Comparison with HQC and Alekhnovich

The Ouroboros approach differs fundamentally from the HQC approach concern-
ing the decoding algorithm used. For HQC [1] (and Aleknovich’s approach) the
decoding code C does not depend on the error, the code is fixed and is only
required to decode an error of the form xr2 + yr1 + ε. Since x,y, r1 and r2
have weight in O(

√
n), the code C has to decode O(n) errors. For Ouroboros

we use the special cyclic structure of the error vector so that the code that is
being decoded is necessarily a MDPC type code and the error that one needs to
decode has weight O(

√
n) rather than O(n). Having to decode a smaller weight

error yields better parameters with the Ouroboros approach than with the HQC
approach. However there is a price to pay, the BitFlip decoding algorithm leads
to a probabilistic decoding where the decoding probability is obtained by sim-
ulation and is hard to estimate theoretically, whereas the HQC approach gives
the freedom to choose an auxiliary code for decoding with a decoding failure
probability easier to estimate.

4 Security of the Protocol

In this section we prove the security of our key exchange protocol. Follow-
ing Alekhnovich’s construction, HQC benefits from a security reduction against
passive adversaries. This represents a strong advance compared to the MDPC-
McEliece scheme. We note that the security proof from [1] carries over to our
key exchange protocol.
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Security Model. While encryption schemes and long-term key exchange proto-
cols require strong semantic security against active adversaries, protocols meant
to exchange purely ephemeral session keys (such as Key Encapsulation Mecha-
nisms aka KEMs) are considered secure whenever they provide security against
merely passive adversaries (aka INDistinguishability under Chosen Plaintext
Attacks, or IND-CPA for short). This approach has been followed by several
lattice-based key exchange protocols such as [7,10,11,17], or more recently the
so-called NewHope protocol [3]. Exchanging ephemeral keys through passively
secure KEMS exploits the fact that a (say) 256 bits randomness string chosen by
one party can be sent encrypted using the other party’s (long term) public key
so that both parties end up with shared secret randomness from which they can
derive a secret symmetric key. Passively secure KEMs viewed as key exchanged
protocols are covered by the IND-CPA security model [14]. (It turns out that this
security model has been chosen with a minimal security requirement by Nist in
its post-quantum call for proposal [16].) Therefore, we prove our key exchange
protocol (viewed as a KEM) to be (passively) secure in this IND-CPA model.

IND-CPA. IND-CPA is generally proved through the following game: the adver-
sary A chooses two plaintexts μ0 and μ1 and sends them to the challenger who
flips a coin b ∈ {0, 1}, encrypts μb into ciphertext c and returns c to A. The
encryption scheme is said to be IND-CPA secure if A has a negligible advantage
in deciding which plaintext c encrypts. This game is formally described on the
right (Fig. 2).

Fig. 2. Experiment against the IND-CPA security

The global advantage for polynomial time adversaries (running in time less than
t) is:

AdvindE (λ, t) = max
A≤t

AdvindE,A(λ),

where AdvindE,A(λ) is the advantage the adversary A has in winning game
Expind−b

E,A (λ):

AdvindE,A(λ) =
∣∣∣Pr[Expind−1

E,A (λ) = 1] − Pr[Expind−0
E,A (λ) = 1]

∣∣∣ .

Hybrid Argument. Alternatively (and equivalently by the hybrid argument),
it is possible to construct a sequence of games from a valid encryption of a
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first message μ0 to a valid encryption of another message μ1 and show that
these games are two-by-two indistinguishable. We follow this latter approach
and prove the security of our protocol (viewed as a KEM) similarly to [1]. Our
proof can be thought as similar to [1], without their public code C, and with ε
playing the role of the message being encrypted.

Theorem 1. The protocol presented in Fig. 1 is IND-CPA under the 2-DQCSD
and 3-DQCSD assumptions.

The proof is inspired from [1, Proof of Theorem 1], with some slight dif-
ferences and adjustments. As mentioned at the beginning of this Section, the
standard security model for a key exchange protocol such as Ouroboros (or
NewHope) is the same as passively secure KEMs [14]. In a KEM spirit, our key
exchange protocol can be seen as an ephemeral key encryption protocol where
the (long-term) public key is the syndrome s sent by Alice, and the plaintext (or
shared secret randomness is the value ε encrypted in the ciphertext formed by
sr and sε.

Proof. Instead of directly proving that an PPT adversary only has a negligible
advantage of distinguishing between two encrypted plaintexts, we construct a
sequence of game transitioning from a valid encryption of a plaintext to a valid
encryption of another plaintext. By showing these games to be two-by-two indis-
tinguishable, the Hybrid argument allows us to obtain the claimed result. The
sequence of games starts with a valid encryption of a message ε(0) and ends
with a valid encryption of message ε(1). The aim is to prove that an adversary
distinguishing one game from another can be exploited to break either the 2-
DQCSD or the 3-DQCSD assumption (respectively on [2n, n] or [3n, n] codes) in
polynomial time. Let A be a probabilistic polynomial time adversary against the
IND-CPA of our scheme and consider the following games (A gets the output
ciphertext at the end of each game).

Game G1: This game corresponds to an honest run of the protocol. In partic-
ular, the challenger encrypts ε(0) with x, y, r1 and r2 of small (i.e. correct)
weight w.

Game G2: This game is also an honest run of the protocol, still with the same
plaintext ε(0) but the challenger uses a random er′ $← Sn

cw(F2) instead of
fcw (Hash(r1, r2)).

Game G3: This game differs from G2 in the fact that the challenger uses a
random (i.e. fake) secret x and y random (resulting in a random s). He
proceeds to the rest of the protocol honestly to encrypt ε(0).

Game G4: Similar to G3. Additionally, the challenger samples er′, r1 and r2
at random (resulting in fake sr and sε) to encrypt ε(0).

Game G5: In this game, the challenger creates a fake encryption of another
plaintext ε(1) (presumably but not necessarily different from ε(0)). He chooses
r′
1, r

′
2, er

∗ $← F
n
2 uniformly at random and runs the protocol.

Game G6: Similar to G5, but the challenger encrypts ε(1) using valid, i.e. cor-
rectly weighted, randomness: r′

1 and r′
2 are sampled with the correct weight w,

and er∗ $← Sn
cw(F2) .
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Game G7: In this game, the challenger uses a correctly weighted secret key x,
y to encrypt ε(1) .

Game G8: In this last game, the challenger uses the hash function to encrypt
ε(1), with er∗ ← fcw (Hash (r1, r2)).

First, games G1 and G2 are indistinguishable under the Random Oracle
assumption.

Secondly, games G2 and G3 are indistinguishable under the 2-DQCSD
assumption. Indeed, assume we are given access to an oracle distinguishing these
games. Any 2-DQCSD instance ((In, rot(h)) , s) can be viewed as a public key.
By providing this public key to the distinguishing oracle, we will be told whether
it is valid, which is the configuration of game G2, or not (game G3). But this
very key comes from the QCSD distribution in the former case and from the
uniform distribution in the latter, which yields a 2-DQCSD oracle.

Then, games G3 and G4 both involve the encryption of the plaintext ε(0),
which is known to A, who can hence compute:

(
sr

sε − ε(0)

)
=

(
In 0 rot(h)
0 In rot(s)

)
(r1, er′, r2)

�

The syndrome
(
sr, sε − ε(0)

)
follows the QCSD distribution in game G3 and the

uniform distribution over (Fn
2 )

2 in G4. Assume an adversary is able to distinguish
games G3 and G4, then it suffices to provide him with the syndrome and matrix
described above to straightforwardly break the 3-DQCSD assumption.

Next, the outputs from games G4 and G5 follow the exact same distribution:
they are uniformly random (hence making these games indistinguishable from
an information theoretic point of view). Now that the messages being (falsely)
encrypted have been permuted, the rest of the proof consists in proving the indis-
tinguishability with a game involving a valid encryption of this second message.

We can start reintroducing correct values in the ciphertext. Games G5

and G6 are indistinguishable using the same argument as between G3 and G4:(
sr, sε − ε(1)

)
follows a uniform distribution for G5 versus a QCSD distribution

in G6. Therefore an adversary distinguishing these games breaks the 3-DQCSD
assumption.

Then, by reintroducing a (x,y) with correct weight, the argument from the
second step also applies and an adversary distinguishing G6 and G7 can identify
valid keys from invalid ones, hence breaking the 2-DQCSD assumption.

Finally, games G7 and G8 are again indistinguishable in the Random Oracle
Model.

By the hybrid argument, an adversary against the IND-CPA experiment has
an advantage (in the Random Oracle Model) bounded by:

AdvindE,A(λ) ≤ 2
(
Adv2−DQCSD(λ) + Adv3−DQCSD(λ)

)
. 	
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5 Parameter Sets

In this Section, since our Key Exchange protocol is based on an ephemeral
encryption algorithm, we keep the same terminology: the public key corresponds
to the data that Alice sends to Bob, and the message corresponds to the data
sent by Bob to Alice upon receiving Alice’s data. In the following we only give
parameters for classical attacks, quantum safe parameters are derived by taking
the square root of the complexity since the best attacks for our type of para-
meters w � n, it was proven in [8] that all known attacks lead to the exact
same asymptotical complexity: the complexity of the classical Information Set
Decoding (ISD), for which it is possible to apply directly Grover algorithm [6],
and hence to divide the bit security level by 2.

5.1 Parameters

The threshold value t is the most sensitive parameter of both the original BitFlip
algorithm and the modified one depicted in Algorithm 1. A little bit too big
and the algorithm misses correct positions, a little bit too low and it includes
wrong positions. Chaulet and Sendrier recently conduct a study on the worst-
case behaviour of QC-MDPC codes, and gave some hints on how to choose
this threshold value to maximize the error correcting capacity [9]. Based upon
their results, we explored several values for t for our context where there is an
additional error to consider and chose the lowest t (in order to optimize efficiency)
giving a reasonable Decryption Failure Rate (DFR).1

The parameters we obtain are given in Table 1. For our parameters we chose
the weight we in Table 1 of the additional error ε and the weight of er to be w,
so that we = 2w in order to fit with the security reduction.

The security of our system is reduced to either decoding a word of weight 2w
for a [2n, n] or decoding an error of weight 3w for a [3n, n] code. For a [2n, n]
code the attacker knows the weight of the error is (w,w) on each block of the
matrix, a precise analysis is done in [9] and leads to an asymptotic complexity in
22w. For the case [3n, n] the asymptotic complexity is better since the attacker
chooses 2n

3 columns among 2n columns, since the error distribution is (w,w,w)
it leads to a complexity in (32 )

3w = 23 log2(3/2)w � 21.75w, hence a little better
than the attack on the [2n, n] code. Notice also that for the MDPC matrix, the
weight w has to be taken greater than what we consider in our case since in the
case of the MDPC matrix, the attacker can search for all the cyclic permutations
of the small weight vector and profit by a factor n for its attack, when in our case
the factor is only

√
n (see [19]). Finally, for our parameters, in order to avoid

potential attacks based on the polynomial decomposition of Xn−1, we chose n a
primitive prime for F2. Overall Table 1 presents our results, the DFR is obtained
by simulations on random instances with given parameters. The results show
that our parameters are very close to parameters proposed by MDPC but profit
by an IND-CPA security reduction to decoding random quasi-cyclic matrices.
1 This terminology is borrowed from [15]. DFR is the fraction of decoding failures in

a given number of decoding tests.
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Table 1. Parameter sets for Ouroboros

Ouroboros parameters
Instance n w we Threshold Security DFR

Low-I 5, 851 47 94 30 80 0.92 · 10−5

Low-II 5, 923 47 94 30 80 2.3 · 10−6

Medium-I 13, 691 75 150 45 128 0.96 · 10−5

Medium-II 14, 243 75 150 45 128 1.09 · 10−6

Strong-I 40, 013 147 294 85 256 4.20 · 10−5

Strong-II 40, 973 147 294 85 256 <10−6

5.2 Optimized Parameters

We saw in the previous subsection that the security reduction lead to attacking
a [3n, n] quasi-cyclic code, for a small weight error of weight 3w more precisely.
We also saw that in that case the decoding complexity was lower than for the
[2n, n] case. Modifying the weight of er does not really change drastically the
decoding capacity of the modified BitFlip algorithm, but it may permit to obtain
a higher complexity attack for the [3n, n] matrix of the security reduction. Hence
it seems a natural idea to increase the weight of er so that in that case we can
still use the modified BitFlip algorithm but the practical security is reduced to
decoding a random [2n, n] code for weight 2w. This is done on the parameters
presented in Table 2.

Notice that without loss of generality for parameters such that w = O(
√

n)
the decoding of vector of length 3n with weights of the form (w,w,w), can be
reduced to decoding vectors of the form (w, aw,w) for a > 1, simply by adding
a random known vector of weight (a − 1)w on the second n-length block to a
(w,w,w) vector, we omit the obvious details of this proof in this short version
of the paper.

Suppose the weight of er is aw (with a > 1) rather than w, then according
to the security reduction, an attacker has to search for a word of the form
(w, aw,w). For this case (w = O(

√
n) � n) the best attacks corresponds to the

classical ISD approach. When the the weight is regular of the form (w,w,w)
the attacker will consider the same number of columns for each block, now for
a weight (w, aw,w) the attacker chooses 2n columns but will consider more
columns where the weight is aw. Let us denote by αn (0 ≤ α ≤ 1) the number
of columns for the first and third block and (2 − 2α)n (with 2 − 2α ≥ 0) the
number of columns for the second block. The asymptotic probability P that the
attacker finds the error columns is hence:

P = (α)w · (2 − 2α)aw · (α)w.

For a = 1 with the conditions 0 ≤ α ≤ 1 and 2 − 2α ≥ 0, we obtain that P
is maximal for α = 2/3 and we recover the complexity in 21.75w, now when a
increases this probability decreases and for a = 2 computations show that the
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Table 2. Optimized parameter sets for Ouroboros in Hamming metric

Ouroboros optimized parameters
Instance n w we Threshold Security DFR

Low-I 4, 813 41 123 27 80 2.23 · 10−5

Low-II 5, 003 41 123 27 80 2.60 · 10−6

Medium-I 10, 301 67 201 42 128 1.01 · 10−4

Medium-II 10, 837 67 201 42 128 <10−7

Strong-I 32, 771 131 393 77 256 <10−4

Strong-II 33, 997 131 393 77 256 <10−7

maximum P induces a complexity in 22w, hence considering the case a = 2.1w
and w(ε) = 0.9w permits to obtain we � 3w for the BitFlip algorithm, and per-
mits to obtain that the best attacks of the system are obtained for decoding
2w errors for a [2n, n] quasi-cyclic code. This permits to obtain better parame-
ters (about 20% better in terms of size of public key) and which are presented
in Table 2. These parameters are very similar to the parameters proposed for
MDPC-McEliece.

6 Conclusion

In this paper we introduced Ouroboros: an efficient, secure and conceptually sim-
ple key exchange protocol based on coding theory. This new protocol benefits
from the security proof of the HQC and RQC family based on the Alekhnovich
approach, and have an IND-CPA security reduction to decoding random quasi-
cyclic codes, moreover because of its inherent double circulant structure it also
benefits from the simple MDPC structure and the simple BitFlip decoding algo-
rithm, for almost the same type of parameters as MDPC codes but with better
parameters than for the HQC protocol (about 40% better for the same DFR).

While the approach is presented only for the Hamming metrics, it is possible
to implement a rank metric analog: Ouroboros-R. The resulting protocol also
yields better parameters (about 20% better) in comparison to the RQC approach
and also to benefits from the simple decoding algorithm of LRPC codes. The
price to pay is a probabilistic decoding, which makes this approach especially
well suited for Key Exchange. Ouroboros-R will be described into more details
in an extended version of this work.

The Ouroboros protocol leads to somewhat higher public key parameters
than the recent lattice-based key exchange NewHope protocol [3] but Ouroboros-
R has the potential to give better parameters than the NewHope protocol.
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