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Abstract We develop a Hermite interpolation scheme and prove error bounds for
C1 bivariate piecewise polynomial spaces of Argyris type vanishing on the boundary
of curved domains enclosed by piecewise conics.
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1 Introduction

Spaces of piecewise polynomials definedondomains boundedbypiecewise algebraic
curves and vanishing onparts of the boundary can be used in thefinite elementmethod
as an alternative to the classical mapped curved elements [10, 12]. Since implicit
algebraic curves and surfaces provide awell-knownmodeling tool inCAGD[1], these
methods are inherently isogeometric in the sense of [14]. Moreover, this approach
does not suffer from the usual difficulties of building a globally C1 or smoother
space of functions on curved domains (see [4, Sect. 4.7]) shared by the classical
curved finite elements and the B-spline-based isogeometric analysis.

In particular, a space ofC1 piecewise polynomials on domains enclosed by piece-
wise conic sections has been studied in [10] and applied to the numerical solution
of fully nonlinear elliptic equations. These piecewise polynomials are quintic on the
interior triangles of a triangulation of the domain and sextics on the boundary tri-
angles (pie-shaped triangles with one side represented by a conic section as well as
those triangles that share with them an interior edge with one endpoint on the bound-
ary) and generalize the well-known Argyris finite element. Although local bases for
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these spaces have been constructed in [10] and numerical examples demonstrated
the convergence orders expected from a piecewise quintic finite element, no error
bounds have been provided.

In this paper, we study the approximation properties of the spaces introduced in
[10]. We define a Hermite-type interpolation operator and prove an error bound that
shows the convergence order O(h6) of the residual in L2-norm and order O(h6−k)

in Sobolev spaces Hk(Ω). This extends the techniques used in [12] for C0 splines
to Hermite interpolation.

The paper is organized as follows. We introduce in Sect. 2 the spaces S1,2d,0(�)

of C1 piecewise polynomials on domains bounded by a number of conic sections,
with homogeneous boundary conditions, define in Sect. 3 our interpolation operator
in the case d = 5, and investigate in Sect. 4 its approximation error for functions in
Sobolev spaces Hm(Ω), m = 5, 6, vanishing on the boundary.

2 C1 Piecewise Polynomials on Piecewise Conic Domains

We make the same assumptions on the domain and its triangulation as in [10, 12],
as outlined below.

Let Ω ⊂ R
2 be a bounded curvilinear polygonal domain with Γ = ∂Ω =⋃n

j=1 Γ j , where each Γ j is an open arc of an algebraic curve of at most second
order (ı.e., either a straight line or a conic). For simplicity, we assume that Ω is sim-
ply connected, so that its boundary Γ is a closed curve without self-intersections. Let
Z = {z1, . . . , zn} be the set of the endpoints of all arcs numbered counterclockwise
such that z j , z j+1 are the endpoints of Γ j , j = 1, . . . , n, with z j+n = z j . Further-
more, for each j , we denote by ω j the internal angle between the tangents τ+

j and
τ−
j to Γ j and Γ j−1, respectively, at z j . We assume that ω j ∈ (0, 2π) for all j . Hence,

Ω is a Lipschitz domain.
Let � be a triangulation of Ω , ı.e., a subdivision of Ω into triangles, where each

triangle T ∈ � has at most one edge replaced with a curved segment of the boundary
∂Ω , and the intersection of any pair of the triangles is either a common vertex or a
common (straight) edge if it is non-empty. The triangles with a curved edge are said
to be pie-shaped. Any triangle T ∈ � that shares at least one edge with a pie-shaped
triangle is called a buffer triangle, and the remaining triangles are ordinary. We
denote by �0, �B , and �P the sets of all ordinary, buffer, and pie-shaped triangles
of �, respectively, such that � = �0 ∪ �B ∪ �P is a disjoint union, see Fig. 1. Let
V, E, VI , EI , V∂ , E∂ denote the set of all vertices, all edges, interior vertices, interior
edges, boundary vertices, and boundary edges, respectively.

For each j = 1, . . . , n, let q j ∈ P2 be a polynomial such that Γ j ⊂ {x ∈ R
2 :

q j (x) = 0}, where Pd denotes the space of all bivariate polynomials of total degree
at most d. By changing the sign of q j if needed, we ensure that q j (x) is positive for
points in Ω near the boundary segment Γ j . For simplicity, we assume in this paper
that all boundary segments Γ j are curved. Hence, each q j is an irreducible quadratic
polynomial and
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Fig. 1 A triangulation of a curved domain with ordinary triangles (green), pie-shaped triangles
(pink), and buffer triangles (blue)

∇q j (x) �= 0 if x ∈ Γ j . (1)

We assume that � satisfies the following conditions:

(A) Z = {z1, . . . , zn} ⊂ V∂ .
(B) No interior edge has both endpoints on the boundary.
(C) No pair of pie-shaped triangles shares an edge.
(D) Every T ∈ �P is star-shaped with respect to its interior vertex v.
(E) For any T ∈ �P with its curved side on Γ j , q j (z) > 0 for all z ∈ T \ Γ j .
(F) No pair of buffer triangles shares an edge.

It can be easily seen that (B) and (C) are achievable by a slight modification of a
given triangulation, while (D) and (E) hold for sufficiently fine triangulations. The
assumption (F) is made for the sake of simplicity of the analysis. Note that the
triangulation shown in Fig. 1 does not satisfy (F).

For any T ∈ �, let hT denote the diameter of T , and let ρT be the radius of the disk
BT inscribed in T if T ∈ �0 ∪ �B or in T ∩ T ∗ if T ∈ �P , where T ∗ denotes the
triangle obtained by joining the boundary vertices of T by a straight line, see Fig. 2.
Note that every triangle T ∈ � is star-shaped with respect to BT . In particular, for
T ∈ �P , this follows from Condition (D) and the fact that the conics do not possess
inflection points.

We define the shape regularity constant of � by

R = max
T∈�

hT

ρT
. (2)

For any d ≥ 1, we set

S
1
d(�) := {s ∈ C1(Ω) : s|T ∈ Pd , T ∈ �0, and s|T ∈ Pd+1, T ∈ �P ∪ �B},

S
1,2
d,I (�) := {s ∈ S

1
d(�) : s is twice differentiable at any v ∈ VI },

S
1,2
d,0(�) := {s ∈ S

1,2
d,I (�) : s|Γ = 0}.
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Fig. 2 A pie-shaped triangle with a curved edge and the associated triangle T ∗ with straight sides
and vertices v1, v2, v3. The curved edge can be either outside (left) or inside T ∗ (right)

We refer to [10] for the construction of a local basis for the space S1,25,0(�) and its
applications in the finite element method.

Our goal is to obtain an error bound for the approximation of functions vanishing
on the boundary by splines in S

1,2
5,0(�). This is done through the construction of an

interpolation operator of Hermite type. Note that a method of stable splitting was
employed in [6–8] to estimate the approximation power of C1 splines vanishing on
the boundary of a polygonal domain. C1 finite element spaces with a stable splitting
are also required in Böhmer’s proofs of the error bounds for his method of numerical
solutionof fully nonlinear elliptic equations [2].A stable splittingof the spaceS1,25,I (�)

will be obtained if a stable local basis for a stable complement of S1,25,0(�) in S1,25,I (�)

is constructed, which we leave to a future work.

3 Interpolation Operator

We denote by ∂α f , α ∈ Z
2+, the partial derivatives of f and consider the usual

Sobolev spaces Hm(Ω) with the seminorm and norm defined by

| f |2Hm (Ω) =
∑

|α|=m

‖∂α f ‖2L2(Ω), ‖ f ‖2Hm (Ω) =
m∑

k=0

| f |2Hk (Ω) (H 0(Ω) = L2(Ω)),

where |α| := α1 + α2. We set H 1
0 (Ω) = { f ∈ H 1(Ω) : f |∂Ω = 0}.

In this section, we construct an interpolation operator I� : H 5(Ω) ∩ H 1
0 (Ω) →

S
1,2
5,0(�) and estimate its error for the functions in Hm(Ω) ∩ H 1

0 (Ω), m = 5, 6, in
the next section.

As in [12], we choose domains Ω j ⊂ Ω , j = 1, . . . , n, with Lipschitz boundary
such that

(a) ∂Ω j ∩ ∂Ω = Γ j ,
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(b) ∂Ω j \ ∂Ω is composed of a finite number of straight line segments,
(c) q j (x) > 0 for all x ∈ Ω j \ Γ j , and
(d) Ω j ∩ Ωk = ∅ for all j �= k.

In addition, we assume that the triangulation � is such that

(e) Ω j contains every triangle T ∈ �P whose curved edge is part of Γ j

and that q j satisfy (without loss of generality)

(f) max
x∈Ω j

‖∇q j (x)‖2 ≤ 1 and ‖∇2q j‖2 ≤ 1, for all j = 1, . . . , n,

where ∇2q j denotes the (constant) Hessian matrix of q j .
Note that (e)will holdwith the same set {Ω j : j = 1, . . . , n} for any triangulations

obtained by subdividing the triangles of �.
The following lemma can be shown following the lines of the proof of [13,

Theorem6.1], see also [12, Theorem3.1].

Lemma 1 There is a constant K depending only on Ω , the choice of Ω j ,
j = 1, . . . , n, and m ≥ 1, such that for all j and u ∈ Hm(Ω) ∩ H 1

0 (Ω),

|u/q j |Hm−1(Ω j ) ≤ K‖u‖Hm (Ω j ). (3)

Given a unit vector τ = (τx , τy) in the plane, we denote by Dτ the directional
derivative operator in the direction of τ in the plane, so that

Dτ f := τx Dx f + τy Dy f, Dx f := ∂ f/∂x, Dy f := ∂ f/∂y.

Given f ∈ Cα+β(�), α, β ≥ 0, any number

η f = Dα
τ1
Dβ

τ2
( f |T )(z),

where T ∈ �, z ∈ T , and τ1, τ2 are some unit vectors in the plane, is said to be a
nodal value of f , and the linear functional η : Cα+β(�) → R is a nodal functional,
with d(η) := α + β being the degree of η.

For some special choices of z, τ1, τ2, we use the following notation:

• If v is a vertex of � and e is an edge attached to v, we set

Dα
e f (v) := Dα

τ ( f |T )(v), α ≥ 1,

where τ is the unit vector in the direction of e away from v, and T ∈ � is one of
the triangles with edge e.

• If v is a vertex of � and e1, e2 are two consecutive edges attached to v, we set

Dα
e1D

β
e2 f (v) := Dα

τ1
Dβ

τ2
( f |T )(v), α, β ≥ 1,
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where T ∈ � is the triangle with vertex v and edges e1, e2, and τi is the unit vector
in the ei direction away from v.

• For every edge e of the triangulation �, we choose a unit vector τ⊥ (one of two
possible) orthogonal to e and set

Dα
e⊥ f (z) := Dα

τ⊥ f (z), z ∈ e, α ≥ 1,

provided f ∈ Cα(z).

On every edge e of �, with vertices v′ and v′′, we define three points on e by

z je := v′ + j

4
(v′′ − v′), j = 1, 2, 3.

For every triangle T ∈ �0 with vertices v1, v2, v3 and edges e1, e2, e3, we define
N 0

T to be the set of nodal functionals corresponding to the nodal values

Dα
x D

β
y f (vi ), 0 ≤ α + β ≤ 2, i = 1, 2, 3,

De⊥
i
f (z2ei ), i = 1, 2, 3,

see Fig. 3 (left), where the nodal functionals are depicted in the usual way by dots,
segments, and circles as, for example, in [5].

Let T ∈ �P . We define N P
T to be the set of nodal functionals corresponding to

the nodal values
Dα

x D
β
y f (v1), 0 ≤ α + β ≤ 2,

Dα
x D

β
y f (vi ), 0 ≤ α + β ≤ 1, i = 2, 3,

Dα
x D

β
y f (cT ), 0 ≤ α + β ≤ 1,

where v1 is the interior vertex of T , v2, v3 are boundary vertices, and cT is the center
of the disk BT , see Fig. 4.

Let T ∈ �B with vertices v1, v2, v3. We defineN B,1
T to be the set of nodal func-

tionals corresponding to the nodal value

f (cT ), cT := (v1 + v2 + v3)/3.

Also, we define N B,2
T to be the set of nodal functionals corresponding to the nodal

values
f (z2ei ), i = 1, 2, 3,

Dα
x D

β
y f (vi ), 0 ≤ α + β ≤ 2, i = 1, 2, 3,

De⊥
i
f (z jei ), j = 1, 3, i = 1, 2, 3,
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v3

v1

v2

v1

v2

v3

Fig. 3 Nodal functionals corresponding to N 0
T (left) and N B

T (right)

v2

v1

v3

v2

v3

v1

Fig. 4 Nodal functionals corresponding to N P
T

where v1 is the boundary vertex, and v2, v3 are the interior vertices of T . We set

N B
T := N B,1

T ∪ N B,2
T ,

see Fig. 3 (right).
We define an operator I� : H 5(Ω) ∩ H 1

0 (Ω) → S
1,2
5,0(�) of interpolatory type.

Let u ∈ H 5(Ω) ∩ H 1
0 (Ω). By Sobolev embedding, we assume without loss of gen-

erality that u ∈ C3(Ω). For all T ∈ �0 ∪ �P , we set I�u|T = IT (u|T ), with the local
operators IT defined as follows.

If T ∈ �0, then p := IT u is the polynomial of degree 5 that satisfies the following
interpolation conditions:

ηp = ηu, for all η ∈ N 0
T .

This is a well-known Argyris interpolation scheme, see, e.g., [15, Sect. 6.1], which
guarantees the existence and uniqueness of the polynomial p.

Let T ∈ �P with the curved edge onΓ j . Then, IT u := pq j , where p ∈ P4 satisfies
the following interpolation condition:

ηp = η(u/q j ), for all η ∈ N P
T . (4)
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The nodal functionals in N P
T are well defined for u/q j even though the vertices

v2, v3 of T lie on the boundary Γ j because u/q j ∈ H 4(Ω j ) by Lemma1, and hence,
u/q j may be identified with a function ũ ∈ C2(Ω j ) by Sobolev embedding. The
interpolation scheme (4) defines a unique polynomial p ∈ P4, which will be justified
in the proof of Lemma3. In addition, we will need the following statement.

Lemma 2 The polynomial p defined by (4) satisfies

Dα
x D

β
y (pq j )(v) = Dα

x D
β
y u(v), 0 ≤ α + β ≤ 2,

where v is any vertex of the pie-shaped triangle T .

Proof By (4), p(v)q j (v) = ũ(v)q j (v) = u(v), where ũ ∈ C2(Ω j ) is the above func-
tion satisfying u = ũq j . Moreover,

∇(pq j )(v) = ∇ p(v)q j (v) + p(v)∇q j (v)

= ∇ũ(v)q j (v) + ũ(v)∇q j (v)

= ∇(ũq j )(v) = ∇u(v).

Similarly, if v is the interior vertex of T , then

∇2(pq j )(v) = ∇2 p(v)q j (v) + ∇ p(v)(∇q j (v))
T + ∇q j (v)(∇ p(v))T + p(v)∇2q j (v)

= ∇2ũ(v)q j (v) + ∇ũ(v)(∇q j (v))
T + ∇q j (v)(∇ũ(v))T + ũ(v)∇2q j (v)

= ∇2u(v).

If v is one of the boundary vertices, then q j (v) = 0, and hence,

∇2(pq j )(v) = ∇ p(v)(∇q j (v))
T + ∇q j (v)(∇ p(v))T + p(v)∇2q j (v)

= ∇ũ(v)(∇q j (v))
T + ∇q j (v)(∇ũ(v))T + ũ(v)∇2q j (v)

= ∇2u(v). �

It is easy to deduce from Lemma2 that the interpolation conditions for p at the
boundary vertices v2, v3 of T can be equivalently formulated as follows: For i = 2, 3,

p(vi ) = ∂u

∂ni
(vi )

/∂q j

∂ni
(vi ),

∂p

∂ni
(vi ) = 1

2

∂2u

∂n2i
(vi )

/∂q j

∂ni
(vi ),

∂p

∂τi
(vi ) = ∂2u

∂ni∂τ
(vi )

/∂q j

∂ni
(vi ),

(5)

where ni and τi are the normal and the tangent unit vectors to the curve q j (x) = 0
at vi .

Finally, assume that T ∈ �B with vertices v1, v2, v3 where v1 is a boundary vertex.
Then, IT u = p ∈ P6 satisfies the following interpolation conditions:
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ηp = ηu, for all η ∈ N B,1
T ,

and
ηp = ηITi u, for all η ∈ Ni ⊂ N B,2

T , i = 1, 2, 3,

where T1 is a triangle in�0 sharing an edge e1 = 〈v2, v3〉with T , andN1 corresponds
to the nodal values

f (z2e1), De⊥
1
f (zie1), i = 1, 3,

Dα
x D

β
y f (vi ), 0 ≤ α + β ≤ 2, i = 2, 3;

T2 is a triangle in �P sharing an edge e2 = 〈v1, v2〉 with T , and N2 corresponds to
the nodal values

f (z2e2), De⊥
2
f (zie2), i = 1, 3,

Dα
x D

β
y f (v1), 0 ≤ α + β ≤ 2;

and T3 is a triangle in �P sharing an edge e3 = 〈v1, v3〉 with T , andN3 corresponds
to the nodal values

f (z2e3), De⊥
3
f (zie3), i = 1, 3.

SinceN B,2
T = N1 ∪ N2 ∪ N3 andN B

T = N B,1
T ∪ N B,2

T are a well posed interpo-
lation scheme [16] for polynomials of degree 6, it follows that p is uniquely defined
by the above conditions.

Theorem 1 Let u ∈ H 5(Ω) ∩ H 1
0 (Ω). Then I�u ∈ S

1,2
5,0(�).

Proof By the above construction, I�u is a piecewise polynomial of degree 5 on all
triangles in �0 and degree 6 on the triangles in �P ∪ �B . Moreover, I�u vanishes
on the boundary of Ω .

To see that I�u ∈ S
1,2
5,0(�) we thus need to show the C1 continuity of I�u across

all interior edges of �. If e is a common edge of two triangles T ′, T ′′ ∈ �0, then the
C1 continuity follows from the standard argument for C1 Argyris finite element, see
[4, Chap. 3] and [15, Sect. 6.1].

Next, we will show the C1 continuity of I�u across edges shared by buffer tri-
angles with either ordinary or pie-shaped triangles. Let T ∈ �B and T ′ ∈ �0 ∪ �P

with common edge e′ = 〈v′, v′′〉, and let p = IT u and s = IT ′u. Consider the uni-
variate polynomials p|e′ and s|e′ , and let q = p|e′ − s|e′ . Assuming that the edge e′
is parameterized by t ∈ [0, 1], then q is a univariate polynomial of degree 6 with
respect to the parameterization v′ + t (v′′ − v′), t ∈ [0, 1]. Similarly, we consider the
orthogonal/normal derivatives De′⊥ p|e′ and De′⊥s|e′ , and let r = De′⊥ p|e′ − De′⊥s|e′ ;
then, r is a univariate polynomial of degree 5 with respect to the same parameter t .
The C1 continuity will follow if we show that both q and r are zero functions.
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If T ′ = T1 ∈ �0, then using the interpolation conditions corresponding to N1 ⊂
N B,2

T , we have

q(0) = q ′(0) = q ′′(0) = q(1/2) = q(1) = q ′(1) = q ′′(1) = 0,

r(0) = r ′(0) = r(1/4) = r(3/4) = r(1) = r ′(1) = 0,

which implies q ≡ 0 and r ≡ 0.
If T ′ = T2 ∈ �P , then the interpolation conditions corresponding toN2 ⊂ N B,2

T
imply

q(0) = q ′(0) = q ′′(0) = q(1/2) = 0,

r(0) = r ′(0) = r(1/4) = r(3/4) = 0.

In view of Lemma2, we have

Dα
x D

β
y s(v2) = Dα

x D
β
y u(v2) = Dα

x D
β
y p(v2), 0 ≤ α + β ≤ 2,

which implies

q(1) = q ′(1) = q ′′(1) = 0, r(1) = r ′(1) = 0,

and hence, q ≡ 0 and r ≡ 0.
If T ′ = T3 ∈ �P , then the interpolation conditions corresponding toN3 ⊂ N B,2

T
imply

q(1/2) = 0, r(1/4) = r(3/4) = 0,

whereas Lemma2 gives

q(0) = q ′(0) = q ′′(0) = 0, r(0) = r ′(0) = 0,

q(1) = q ′(1) = q ′′(1) = 0, r(1) = r ′(1) = 0,

which completes the proof. �

It follows from Lemma2 that I�u is twice differentiable at the boundary vertices,
and thus,

I�u ∈ {s ∈ S
1
5(�) : s is twice differentiable at any vertex and s|Γ = 0}.

Moreover, I�u satisfies the following interpolation conditions:

Dα
x D

β
y I�u(v) = Dα

x D
β
y u(v), 0 ≤ α + β ≤ 2, for all v ∈ V,

De⊥ I�u(z2e) = De⊥u(z2e), for all edges e of �0,
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Dα
x D

β
y I�u(cT ) = Dα

x D
β
y u(cT ), 0 ≤ α + β ≤ 1, for all T ∈ �P ,

I�u(cT ) = u(cT ), for allT ∈ �,

where cT denotes the center of the disk BT inscribed into T ∗ if T is a pie-shaped
triangle and the barycenter of T if T is a buffer triangle. In view of (5), I�u ∈ S

1,2
5,0(�)

is uniquely defined by these conditions for any u ∈ C2(Ω).

4 Error Bounds

In this section, we estimate the error ‖u − I�u‖Hk (Ω) for functions u ∈ Hm(Ω) ∩
H 1

0 (Ω), m = 5, 6. Similar to [12, Sect. 3], we follow the standard finite element
techniques involving the Bramble–Hilbert Lemma (see [4, Chap. 4]) on the ordinary
triangles and make use of the estimate (3) on the pie-shaped triangles. Since the
spline I�u on the buffer triangles is constructed in part by interpolation and in part
by the smoothness conditions, the estimate of the error on such triangles relies in
particular on the estimates of the interpolation error on the neighboring ordinary and
buffer triangles.

Lemma 3 If p ∈ P4 and T ∈ �P , then

‖p|T ∗‖L∞(T ∗) ≤ max
η∈N P

T

hd(η)

T ∗ |ηp|, (6)

where T ∗ is the triangle obtained by replacing the curved edge of T by the straight
line segment, and hT ∗ is the diameter of T ∗. Similarly, if p ∈ P6 and T ∈ �B, then

‖p|T ‖L∞(T ) ≤ max
η∈N B

T

hd(η)

T |ηp|, (7)

where hT is the diameter of T .

Proof To show the estimate (6) for T ∗, we follow the proof of [11, Lemma3.9]. We
note that we only need to show that the interpolation scheme for pie-shaped triangles
is a valid scheme, that is, we need to show that N P

T is P4-unisolvent, and the rest
of the proof can be done similar to that of [11, Lemma3.9]. Recall that a set of
functionalsN are said to be Pd -unisolvent if the only polynomial p ∈ Pd satisfying
ηp = 0 for η ∈ N is the zero function.

Let T ∗ = 〈v1, v2, v3〉, where v1 is the interior vertex. Set e1 := 〈v1, v2〉, e2 :=
〈v2, v3〉, e3 := 〈v3, v1〉, see Fig. 4. The interpolation conditions along e1, e3 imply
that s vanishes on these edges. After splitting out the linear polynomial factors which
vanish along the edges e1, e3, we obtain a valid interpolation scheme for quadratic
polynomials with function values at the three vertices, and function and gradient
values at the the barycenter c of BT ⊂ T ∗. The validity of this scheme can be seen
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by looking at a straight line � through c and any one of the vertices of T ∗. Along
the line �, a function value is given at the vertex and a function value together with
the first derivative is given at the point c, and this set of data are unisolvent for the
univariate quadratic polynomials, whichmeans smust vanish along �. After factoring
out the respective linear polynomial, we are left with function values at three non-
collinear points, which defines a valid interpolation scheme for the remaining linear
polynomial factor of s.

To show the estimate (7) for T ∈ �B , the proof is similar. We need to show the
set of functionalsN B

T is P6-unisolvent but this follows from the standard scheme of
[16] for polynomials of degree six.

We note that the argument of the proof of [11, Lemma3.9] applies to affine
invariant interpolation schemes, that is the schemes that use the edge derivatives. As
our scheme relies on the standard derivatives in the direction of the x, y axes, we
need to express the edge derivatives as linear combinations of the x, y derivatives
as follows. Assume that e1, e2 are two edges that emanate from a vertex v. Let
τi = (τi1, τi2) be the unit vector in the direction of ei away from v, i = 1, 2. Then,
we can easily obtain the following identities

Dei f (v) = τi1Dx f (v) + τi2Dy f (v),

D2
ei f (v) = τ 2

i1D
2
x f (v) + 2τi1τi2Dx Dy f (v) + τ 2

i2D
2
y f (v),

De1De2 f (v) = τ11τ21D
2
x f (v) + (τ11τ22 + τ12τ21)Dx Dy f (v) + τ12τ22D

2
y f (v).

�

Lemma 4 Let T ∈ �P and its curved edge e ⊂ Γ j . Then

‖IT u‖L∞(T ) ≤ C1 max
0≤�≤2

h�+1
T |u/q j |W �∞(T ) if u ∈ H 5(Ω) ∩ H 1

0 (Ω), (8)

where C1 depends only on hT /ρT . Moreover, if 5 ≤ m ≤ 6, then for any u ∈
Hm(Ω) ∩ H 1

0 (Ω),

‖u − IT u‖Hk (T ) ≤ C2h
m−k
T |u/q j |Hm−1(T ), k = 0, . . . ,m − 1, (9)

|u − IT u|Wk∞(T ) ≤ C3h
m−k−1
T |u/q j |Hm−1(T ), k = 0, . . . ,m − 2, (10)

where C2,C3 depend only on hT /ρT .

Proof We will denote by C̃ constants which may depend only on hT /ρT and on Ω .
Assume that u ∈ H 5(Ω) ∩ H 1

0 (Ω) and recall that by definition IT u = pq j , where
p ∈ P4 satisfies the interpolation conditions (4). Since u ∈ H 5(Ω j ) ∩ H 1

0 (Ω j ), it
follows that u/q j ∈ H 4(Ω j ) by Lemma1, and hence, u/q j ∈ C2(Ω j ) by Sobolev
embedding. From Lemma3, we have
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‖p‖L∞(T ∗) ≤ max
η∈N P

T

hd(η)

T ∗ |ηp|, (11)

and hence

‖p‖L∞(T ∗) ≤ max
η∈N P

T

hd(η)

T ∗ |η(u/q j )| ≤ C̃ max
0≤�≤2

h�
T |u/q j |W �∞(T ).

As in the proof of [12, Theorem3.2], we can show that for any polynomial of degree
at most 6,

‖s‖L∞(T ) ≤ C̃‖s‖L∞(T ∗) and ‖s‖L∞(T ∗) ≤ C̃‖s‖L∞(T ). (12)

By using (f), it is easy to show that ‖q j‖L∞(T ) ≤ hT , and hence,

‖IT u‖L∞(T ) = ‖pq j‖L∞(T ) ≤ hT ‖p‖L∞(T ),

which completes the proof of (8).
Moreover, since the area of T is less than or equal to π

4 h
2
T and ∂α(IT u) ∈ P6−k if

|α| = k, it follows that

‖∂α(IT u)‖L2(T ) ≤
√

π

2
hT ‖∂α(IT u)‖L∞(T ) ≤ C̃hT ‖∂α(IT u)‖L∞(T ∗).

By Markov inequality (see, e.g., [15, Theorem1.2]), we get furthermore

‖∂α(IT u)‖L∞(T ∗) ≤ C̃ρ−k
T ‖IT u‖L∞(T ∗),

and hence in view of (12)

|IT u|Hk (T ) ≤ C̃h1−k
T ‖IT u‖L∞(T ).

In view of (8), we arrive at

|IT u|Hk (T ) ≤ C̃ max
0≤�≤2

h�+2−k
T |u/q j |W �∞(T ), if u ∈ H 5(Ω) ∩ H 1

0 (Ω). (13)

Let m ∈ {5, 6}, and let u ∈ Hm(Ω) ∩ H 1
0 (Ω). It follows from Lemma1 that

u/q j ∈ Hm−1(T ). By the results in [4, Chap. 4], there exists a polynomial p̃ ∈ Pm−2

such that

‖u/q j − p̃‖Hk (T ) ≤ C̃hm−k−1
T |u/q j |Hm−1(T ), k = 0, . . . ,m − 1,

|u/q j − p̃|Wk∞(T ) ≤ C̃hm−k−2
T |u/q j |Hm−1(T ), k = 0, . . . ,m − 2.

(14)

Indeed, a suitable p̃ is given by the averaged Taylor polynomial [4, Definition 4.1.3]
with respect to the disk BT , and the inequalities in (14) follow from [4, Lemma4.3.8]
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(Bramble–Hilbert Lemma) and an obvious generalization of [4, Proposition4.3.2],
respectively. It is easy to check by inspecting the proofs in [4] that the quotient hT /ρT

can be used in the estimates instead of the chunkiness parameter used there.
Since

u − IT u = (u/q j − p̃)q j − IT (u − p̃q j ),

we have for any norm ‖ · ‖,

‖u − IT u‖ ≤ ‖(u/q j − p̃)q j‖ + ‖IT (u − p̃q j )‖.

In view of (f) and (14), for any k = 0, . . . ,m − 2,

|(u/q j − p̃)q j |Wk∞(T ) ≤ hT |u/q j − p̃|Wk∞(T ) + ‖u/q j − p̃‖Wk−1∞ (T )

≤ C̃hm−k−1
T |u/q j |Hm−1(T ),

and for any k = 0, . . . ,m − 1,

‖(u/q j − p̃)q j‖Hk (T ) ≤ C̃hT ‖u/q j − p̃‖Hk (T ) + C̃‖u/q j − p̃‖Hk−1(T )

≤ C̃hm−k
T |u/q j |Hm−1(T ).

Furthermore, by the Markov inequality, (8), (13), and (14),

|IT (u − p̃q j )|Wk∞(T ) ≤ C̃ max
0≤�≤2

h�+1−k
T |u/q j − p̃|W �∞(T ) ≤ C̃hm−k−1

T |u/q j |Hm−1(T ),

‖IT (u − p̃q j )‖Hk (T ) ≤ C̃ max
0≤�≤2

h�+2−k
T |u/q j − p̃|W �∞(T ) ≤ C̃hm−k

T |u/q j |Hm−1(T ).

By combining the inequalities in the five last displays, we deduce (9) and (10). �

We are ready to formulate and prove our main result.

Theorem 2 Let 5 ≤ m ≤ 6. For any u ∈ Hm(Ω) ∩ H 1
0 (Ω),

( ∑

T∈�
‖u − I�u‖2Hk (T )

)1/2 ≤ Chm−k‖u‖Hm (Ω), k = 0, . . . ,m − 1, (15)

where h is themaximumdiameter of the triangles in�, andC is a constant depending
only on Ω , the choice of Ω j , and the shape regularity constant R of �.

Proof We estimate the norms of u − IT u on all triangles T ∈ �. The letter C stands
below for various constants depending only on the parameters mentioned in the
formulation of the theorem.

If T ∈ �0, then s|T is a macroelement as defined in [15, Chap.6]. Furthermore,
by [15, Theorem6.3], the set of linear functionals N 0

T give rise to a stable local
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nodal basis, which is in particular uniformly bounded. Hence, by [9, Theorem2], we
obtain a Jackson estimate in the form

‖u − IT u‖Hk (T ) ≤ Chm−k
T |u|Hm(T ), k = 0, . . . ,m, (16)

where C depends only on hT /ρT . If T ∈ �P , with the curved edge e ⊂ Γ j , then the
Jackson estimate (9) holds by Lemma4.

Let T ∈ �B , p := I�u|T , and let p̃ ∈ P6 be the interpolation polynomial that
satisfies η p̃ = ηu for all η ∈ N B

T . Then

η( p̃ − p) =
{
0 if η ∈ N B,1

T ,

η(u − IT ′u) if η ∈ N B,2
T ,

where T ′ = T ′
η ∈ �0 ∪ �P . Hence, by Markov inequality and (7) of Lemma3, we

conclude that for k = 0, . . . ,m,

‖ p̃ − p‖Hk (T ) ≤ Ch1−k
T ‖ p̃ − p‖L∞(T ),

with

‖ p̃ − p‖L∞(T ) ≤ C max{h�
T |u − IT ′u|W �∞(T ′) : 0 ≤ � ≤ 2, T ′ ∈ �0 ∪ �P , T ′ ∩ T �= ∅},

whereas by the same arguments leading to (16) we have

‖u − p̃‖Hk (T ) ≤ Chm−k
T |u|Hm (T ),

with the constants depending only on hT /ρT . If T ′ ∈ �0 ∪ �P , then by (10) and
the analogous estimate for T ′ ∈ �0, comparing [4, Corollary4.4.7], we have for
� = 0, 1, 2,

|u − IT ′u|W �∞(T ′) ≤ Chm−�−1
T ′

{
|u|Hm (T ′) if T ′ ∈ �0,

|u/q j |Hm−1(T ′) if T ′ ∈ �P ,

where C depends only on hT ′/ρT ′ . By combining these inequalities, we obtain an
estimate of ‖u − IT u‖Hk (T ) by Ch̃m−k times the maximum of |u|Hm(T ), |u|Hm (T ′) for
T ′ ∈ �0 sharing edges with T , and |u/q j |Hm−1(T ′) for T ′ ∈ �P sharing edges with T .
Here,C depends only on the maximum of hT /ρT and hT ′/ρT ′ , and h̃ is the maximum
of hT and all hT ′ for T ′ ∈ �0 ∪ �P sharing edges with T .

By using (16) on T ∈ �0, (9) on T ∈ �P and the estimate of the last paragraph
on T ∈ �B , we get

∑

T∈�
‖u − I�u‖2Hk (T ) ≤ Ch2(m−k)

( ∑

T∈�0∪�B

|u|2Hm (T ) +
∑

T∈�P

|u/q j (T )|2Hm−1(T )

)
,
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where j (T ) is the index of Γ j containing the curved edge of T ∈ �P . Clearly,

∑

T∈�0∪�B

|u|2Hm (T ) ≤ |u|2Hm(Ω) ≤ ‖u‖2Hm (Ω),

whereas by Lemma1,

∑

T∈�P

|u/q j (T )|2Hm−1(T ) ≤
n∑

j=1

|u/q j |2Hm−1(Ω j )
≤ K‖u‖2Hm (Ω),

where K is the constant of (3) depending only on Ω and the choice of Ω j . �
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