Approximation by C! Splines on Piecewise
Conic Domains
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Abstract We develop a Hermite interpolation scheme and prove error bounds for
C! bivariate piecewise polynomial spaces of Argyris type vanishing on the boundary
of curved domains enclosed by piecewise conics.
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1 Introduction

Spaces of piecewise polynomials defined on domains bounded by piecewise algebraic
curves and vanishing on parts of the boundary can be used in the finite element method
as an alternative to the classical mapped curved elements [10, 12]. Since implicit
algebraic curves and surfaces provide a well-known modeling tool in CAGD [1], these
methods are inherently isogeometric in the sense of [14]. Moreover, this approach
does not suffer from the usual difficulties of building a globally C' or smoother
space of functions on curved domains (see [4, Sect.4.7]) shared by the classical
curved finite elements and the B-spline-based isogeometric analysis.

In particular, a space of C'! piecewise polynomials on domains enclosed by piece-
wise conic sections has been studied in [10] and applied to the numerical solution
of fully nonlinear elliptic equations. These piecewise polynomials are quintic on the
interior triangles of a triangulation of the domain and sextics on the boundary tri-
angles (pie-shaped triangles with one side represented by a conic section as well as
those triangles that share with them an interior edge with one endpoint on the bound-
ary) and generalize the well-known Argyris finite element. Although local bases for
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these spaces have been constructed in [10] and numerical examples demonstrated
the convergence orders expected from a piecewise quintic finite element, no error
bounds have been provided.

In this paper, we study the approximation properties of the spaces introduced in
[10]. We define a Hermite-type interpolation operator and prove an error bound that
shows the convergence order @ (h®) of the residual in L,-norm and order & (h%%)
in Sobolev spaces H k(£2). This extends the techniques used in [12] for C 0 splines
to Hermite interpolation.

The paper is organized as follows. We introduce in Sect.2 the spaces Scll’_(z)(A)
of C! piecewise polynomials on domains bounded by a number of conic sections,
with homogeneous boundary conditions, define in Sect. 3 our interpolation operator
in the case d = 5, and investigate in Sect.4 its approximation error for functions in
Sobolev spaces H" (§2), m = 5, 6, vanishing on the boundary.

2 C! Piecewise Polynomials on Piecewise Conic Domains

We make the same assumptions on the domain and its triangulation as in [10, 12],
as outlined below.

Let 2 C R? be a bounded curvilinear polygonal domain with I' = 32 =
U'}zl T j» where each I'; is an open arc of an algebraic curve of at most second
order (1.e., either a straight line or a conic). For simplicity, we assume that £2 is sim-
ply connected, so that its boundary I” is a closed curve without self-intersections. Let
Z ={z1, ..., z,} be the set of the endpoints of all arcs numbered counterclockwise
such that z;, z;1 are the endpoints of I'j, j = 1,...,n, with z;, = z;. Further-
more, for each j, we denote by w; the internal angle between the tangents r;“ and
‘L'; to I'j and I';_y, respectively, at z;. We assume that w; € (0, 2) for all j. Hence,
£2 is a Lipschitz domain.

Let A be a triangulation of 2, 1.e., a subdivision of £2 into triangles, where each
triangle 7 € A has at most one edge replaced with a curved segment of the boundary
052, and the intersection of any pair of the triangles is either a common vertex or a
common (straight) edge if it is non-empty. The triangles with a curved edge are said
to be pie-shaped. Any triangle T € A that shares at least one edge with a pie-shaped
triangle is called a buffer triangle, and the remaining triangles are ordinary. We
denote by Ay, Ag, and Ap the sets of all ordinary, buffer, and pie-shaped triangles
of A, respectively, such that A = Ag U Ag U Ap is a disjoint union, see Fig. 1. Let
V,E,V;, E;, Vy, Eydenote the set of all vertices, all edges, interior vertices, interior
edges, boundary vertices, and boundary edges, respectively.

For each j =1,...,n, let g; € P, be a polynomial such that I'; C {x € R? :
q;(x) = 0}, where IP; denotes the space of all bivariate polynomials of total degree
at most d. By changing the sign of ¢; if needed, we ensure that g;(x) is positive for
points in §2 near the boundary segment I';. For simplicity, we assume in this paper
that all boundary segments I'; are curved. Hence, each g is an irreducible quadratic
polynomial and
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Fig. 1 A triangulation of a curved domain with ordinary triangles (green), pie-shaped triangles
(pink), and buffer triangles (blue)

Vgj(x) #0 if xelj. (1)

We assume that A satisfies the following conditions:

A Z={z1,...,2,} C V3.

(B) No interior edge has both endpoints on the boundary.

(C) No pair of pie-shaped triangles shares an edge.

(D) Every T € Ap is star-shaped with respect to its interior vertex v.

(E) Forany T € Ap withits curved side on I'j, g;(z) > Oforallz € T\ I7.
(F) No pair of buffer triangles shares an edge.

It can be easily seen that (B) and (C) are achievable by a slight modification of a
given triangulation, while (D) and (E) hold for sufficiently fine triangulations. The
assumption (F) is made for the sake of simplicity of the analysis. Note that the
triangulation shown in Fig. 1 does not satisfy (F).

Forany T € A,let hy denote the diameter of T, and let pr be the radius of the disk
By inscribedin T if T € AgUAgorin T NT*if T € Ap, where T* denotes the
triangle obtained by joining the boundary vertices of T by a straight line, see Fig. 2.
Note that every triangle T € A is star-shaped with respect to Br. In particular, for
T € Ap, this follows from Condition (D) and the fact that the conics do not possess
inflection points.

We define the shape regularity constant of A by

h
R = max —. 2)
TeA or

For any d > 1, we set
Sh(A) :={s € C"(R2) : slr €Py, T € Ao, and s|y € Pyyy, T € Ap U Ag),

Szlz’,zl (A) :={s € S}(A) : s is twice differentiable at any v € V;},
SA(8) = (s €8[3(8) © slr =0},
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v3

conic ¢ =0

v2

v vi

Fig. 2 A pie-shaped triangle with a curved edge and the associated triangle 7* with straight sides
and vertices vy, v2, v3. The curved edge can be either outside (left) or inside T™* (right)

We refer to [10] for the construction of a local basis for the space Sé:(z)(A) and its
applications in the finite element method.

Our goal is to obtain an error bound for the approximation of functions vanishing
on the boundary by splines in S;ZS(A). This is done through the construction of an
interpolation operator of Hermite type. Note that a method of stable splitting was
employed in [6-8] to estimate the approximation power of C! splines vanishing on
the boundary of a polygonal domain. C' finite element spaces with a stable splitting
are also required in Bohmer’s proofs of the error bounds for his method of numerical
solution of fully nonlinear elliptic equations [2]. A stable splitting of the space S;:? Q)

will be obtained if a stable local basis for a stable complement of S;:é(A) in S;:?(A)
is constructed, which we leave to a future work.

3 Interpolation Operator

We denote by 8% f, o € Z2, the partial derivatives of f and consider the usual
Sobolev spaces H™ (£2) with the seminorm and norm defined by

Gy = D2 10% Fllizys 1 Wiy = D1 f Ty (HO(2) = L2(92)),
k=0

|or|=m

where || := o) + 2. We set H) (2) = {f € H'(2) : flse = 0}.

In this section, we construct an interpolation operator I, : H>(£2) N HOI(.Q) —
S;:(z)(A) and estimate its error for the functions in H™(£2) N HO1 (£2),m =5,6, in
the next section.

As in [12], we choose domains §2; C £2, j =1, ..., n, with Lipschitz boundary
such that

(@ 92,N2 =T},
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(b)  9£2; \ 382 is composed of a finite number of straight line segments,
(¢) g¢gj(x)>0forallx € £2;\ I';, and
d £2;,N8=0forall j #k.

In addition, we assume that the triangulation A is such that

e R j contains every triangle T € Ap whose curved edge is part of I’
and that g; satisfy (without loss of generality)

(f) max ||Vg;(x)ll> <1 and ||V2qj||2 <1, forall j=1,...,n,

X€8;

where V2g ; denotes the (constant) Hessian matrix of g;.

Note that (e) will hold with the same set {§2; : j =1, ..., n}forany triangulations
obtained by subdividing the triangles of A.

The following lemma can be shown following the lines of the proof of [13,
Theorem 6.1], see also [12, Theorem 3.1].

Lemma 1 There is a constant K depending only on $2, the choice of $2;,
j=1,...,n, and m > 1, such that for all j andu € H"(£2) N Hol(.Q),

lu/qilgm-12,) < Kllullamg;)- 3)

Given a unit vector T = (7, 7,) in the plane, we denote by D, the directional
derivative operator in the direction of t in the plane, so that

D.f:=t.D.f+1t,D,f, D.f:=09f/dx, D,f:=09f/dy.

Given f € C**#(A), «, B = 0, any number
nf = D¢ DL (flr) ().

where T € A, z € T, and 7y, 7, are some unit vectors in the plane, is said to be a
nodal value of f, and the linear functional 1 : C**#(A) — R is a nodal functional,
with d(n) := « + B being the degree of 1.

For some special choices of z, 71, 7», we use the following notation:

e Ifvis a vertex of A and e is an edge attached to v, we set
Dy f(v) :=D(fIr)(v), a=>1,

where 7 is the unit vector in the direction of e away from v, and T € A is one of
the triangles with edge e.
e If vis avertex of A and ey, e, are two consecutive edges attached to v, we set

D DP f(v) = DEDE(fl)(W), @B =1,



26 0. Davydov and W.P. Yeo

where T € A is the triangle with vertex v and edges e, e, and t; is the unit vector
in the e; direction away from v.

e For every edge e of the triangulation A, we choose a unit vector 7+ (one of two
possible) orthogonal to e and set

Dii f(z) :=D7. f(z), z€e, a>1,
provided f € C%(z).
On every edge e of A, with vertices v and v’, we define three points on ¢ by
Joe—r ) ] 1 / s
=V —l—Z(v —v), j=1,2,3.

For every triangle T € A, with vertices vy, v», v3 and edges ey, ey, e3, we define
A7 to be the set of nodal functionals corresponding to the nodal values

DiDfw), O0<a+p=<2, i=123,
D, f(z), i=123,
see Fig. 3 (left), where the nodal functionals are depicted in the usual way by dots,
segments, and circles as, for example, in [5].
Let T € Ap. We define .#;” to be the set of nodal functionals corresponding to

the nodal values
DEDEf(v), 0<a+p <2,

D¢Difw), 0<a+B=<1, i=23,

DDEf(er), O<a+p<l,
where v is the interior vertex of T, v,, v3 are boundary vertices, and c7 is the center
of the disk Br, see Fig. 4.

Let T € Ap with vertices vy, v2, v3. We define Ji/TB ' to be the set of nodal func-

tionals corresponding to the nodal value

fler), cr =1 +v2+v3)/3.
Also, we define ,/VTB 2 to be the set of nodal functionals corresponding to the nodal
values

@), =123,
DUDEfw), 0<a+p<2 i=123,

D, f(z}), j=13 i=123,
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v3 v3

v2 v2

vi v1

Fig. 3 Nodal functionals corresponding to JVTO (left) and LA/TB (right)

v3
I
‘
|

Fig. 4 Nodal functionals corresponding to JVTP

v3

where v, is the boundary vertex, and v,, v3 are the interior vertices of 7. We set
B ._ 4Bl B.2
NG =N U,

see Fig.3 (right).

We define an operator I : H ()N HO1 (£2) > Séf)(A) of interpolatory type.
Letu € H>(§2) N H} (£2). By Sobolev embedding, we assume without loss of gen-
erality thatu € C3(2).Forall T € AgU Ap,weset Inu|r = I (u|7), with the local
operators /7 defined as follows.

If T € Ay, then p := Iru is the polynomial of degree 5 that satisfies the following
interpolation conditions:

np =nu, forallne A7,
This is a well-known Argyris interpolation scheme, see, e.g., [15, Sect. 6.1], which
guarantees the existence and uniqueness of the polynomial p.
LetT € Ap withthecurvededgeon I';. Then, Iru := pq;, where p € P4 satisfies

the following interpolation condition:

np =nu/q), forallne 4" (4)



28 0. Davydov and W.P. Yeo

The nodal functionals in .#;” are well defined for u/q; even though the vertices
v2, v3 of T lie on the boundary I'; because u/q; € H4([2j) by Lemma I, and hence,
u/q; may be identified with a function i € C 22 ;) by Sobolev embedding. The
interpolation scheme (4) defines a unique polynomial p € P4, which will be justified
in the proof of Lemma 3. In addition, we will need the following statement.

Lemma 2 The polynomial p defined by (4) satisfies
D¢DY (pgj)(v) = DIDIu®v), 0<a+p<2,

where v is any vertex of the pie-shaped triangle T.

Proof By (4), p(v)q;(v) = u(v)q;(v) = u(v), where it € Cz(ﬁj) is the above func-
tion satisfying u = iiq;. Moreover,

V(pg))(v) =VpWq;v)+ p(v)Vgq;(v)
= Viu()g;(v) +u()Vg;v)
= V(ig;)(v) = Vu®).

Similarly, if v is the interior vertex of T, then

V2(pgj)(v) = V2 p(q; ) + VW) (Vg; )T + Vg; o) (Vpo)T + p()V3g; )
= V2i()qjv) + Vi) (Vq; o) + Vg; ) (Vam)T +am)vig;o)
= Vzu(v).

If v is one of the boundary vertices, then ¢;(v) = 0, and hence,

Vi(pg)(v) = VpW)(Vg; )" + Vg,V p)" + p()V3q;(v)
= Vi) (Vg,0N" + Vq; (Vi) +a(»)V3q;(v)
= VZu@). O

It is easy to deduce from Lemma?2 that the interpolation conditions for p at the
boundary vertices v,, v3 of T can be equivalently formulated as follows: Fori = 2, 3,

_ u ' qu '
PO = 50 / T,
5)

ap 13%u 9q; ap 0%u /qu
e 00 = 35,200/ 5,L00 S0 = S /500,

where n; and 7; are the normal and the tangent unit vectors to the curve g;(x) =0
atv;.

Finally, assume that T € Ay with vertices vy, v,, v3 where v| is aboundary vertex.
Then, I7u = p € Pg satisfies the following interpolation conditions:
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np =nu, forallne Ji/TB’l,

and
np =nlpu, forallne A4 C </VTB’2, i=1,2,3,

where T is a triangle in A sharing an edge ¢; = (v,, v3) with T, and .4 corresponds
to the nodal values '
@), Def@), i=1.3,

DIDIfv), 0<a+B<2, i=23;

T; is a triangle in A p sharing an edge e, = (v, v») with T, and .45 corresponds to
the nodal values

@), Duf@l). i=1.3,
D¢DEf(v), O<a+pB<2;

and Tj is a triangle in A p sharing an edge e3 = (v1, v3) with T, and .45 corresponds
to the nodal values

f@2). DufGEl). i=1.3.

Since A% = M U A5 U A5 and B = 451 U AP are a well posed interpo-
lation scheme [16] for polynomials of degree 6, it follows that p is uniquely defined
by the above conditions.

Theorem 1 Let u € H*(2) N Hy (82). Then Inu € S§5(A).

Proof By the above construction, I,u is a piecewise polynomial of degree 5 on all
triangles in Ay and degree 6 on the triangles in Ap U Ap. Moreover, Ipu vanishes
on the boundary of £2.

To see that Iau € S;:(Z)(A) we thus need to show the C! continuity of /pu across
all interior edges of A. If e is a common edge of two triangles 7', T" € A, then the
C'! continuity follows from the standard argument for C' Argyris finite element, see
[4, Chap.3] and [15, Sect.6.1].

Next, we will show the C! continuity of I,u across edges shared by buffer tri-
angles with either ordinary or pie-shaped triangles. Let T € Ag and 7" € AgU Ap
with common edge ¢’ = (', V"), and let p = Iru and s = Iy u. Consider the uni-
variate polynomials p|, and s|., and let ¢ = p|, — s|.. Assuming that the edge ¢’
is parameterized by ¢ € [0, 1], then ¢ is a univariate polynomial of degree 6 with
respect to the parameterization v/ + ¢ (v — V'), ¢t € [0, 1]. Similarly, we consider the
orthogonal/normal derivatives D, p|, and D,1s|,,andletr = D, p|y — Do1 S|y
then, r is a univariate polynomial of degree 5 with respect to the same parameter ¢.
The C! continuity will follow if we show that both ¢ and r are zero functions.
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If T’ = T| € Ay, then using the interpolation conditions corresponding to .4] C
,/VTB‘z, we have

q(0) =¢'(0) =¢q"(0) = q(1/2) = q(1) = ¢'(1) = q"(1) = 0,
r(0)=r'(0)=r1/4)=r3/4) =r(1)=r'(1) =0,
which implies ¢ = 0 and r = 0.
If T = T, € Ap, then the interpolation conditions corresponding to .45 C ,/VTB’Z
imply

q(0) =4'(0) = ¢"(0) = q(1/2) =0,
r(0) = #'(0) = r(1/4) = r(3/4) = 0.

In view of Lemma?2, we have
D¢DPs(vy) = DEDPu(vy) = DYDEp(vy), 0<a+p <2,
which implies
q()=4q'(H)=¢"(1) =0, r(1)=r'(1)=0,

and hence, ¢ =0 and r = 0.
If T" = T3 € Ap, then the interpolation conditions corresponding to .45 C JI/TB‘z

imply
q(1/2) =0, r(1/4)=r(3/4) =0,

whereas Lemma?2 gives

q(0)=4'(0)=q"(0) =0, r©0)=r'(0)=0,
g)=q¢'(H)=4¢"(1)=0, r()=r'(1) =0,

which completes the proof. ]

It follows from Lemma 2 that I, u is twice differentiable at the boundary vertices,
and thus,

Iau € {s € S;(A) : s is twice differentiable at any vertex and s|y = 0}.
Moreover, I u satisfies the following interpolation conditions:
DD Iau(v) = DEDEu(v), 0<a+p <2, forallveV,

D, IAu(zg) = DELM(Zg), for all edges e of A,
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D¢DPIyu(cr) = DYDYu(cr), 0<a+p <1, forallT € Ap,
Ipu(cr) = u(er), foralll € A,

where ¢y denotes the center of the disk By inscribed into 7* if T is a pie-shaped
triangle and the barycenter of 7 if T is a buffer triangle. In view of (5), Iau € Séj(z)(A)

is uniquely defined by these conditions for any u € C?(£2).

4 Error Bounds

In this section, we estimate the error ||u — Iau|| yr (o) for functions u € H™($2) N
Hol(.Q), m =5, 6. Similar to [12, Sect.3], we follow the standard finite element
techniques involving the Bramble—Hilbert Lemma (see [4, Chap.4]) on the ordinary
triangles and make use of the estimate (3) on the pie-shaped triangles. Since the
spline /,u on the buffer triangles is constructed in part by interpolation and in part
by the smoothness conditions, the estimate of the error on such triangles relies in
particular on the estimates of the interpolation error on the neighboring ordinary and
buffer triangles.

Lemma3 Ifp ePyand T € Ap, then

()
Il plrsllLe@s < m%hp" [npl, (6)
neNy

where T* is the triangle obtained by replacing the curved edge of T by the straight
line segment, and hr- is the diameter of T*. Similarly, if p € P and T € Ap, then

d(n)
I pl7 ey < max h3 " |npl, (7N
neN?

where ht is the diameter of T.

Proof To show the estimate (6) for 7%, we follow the proof of [11, Lemma3.9]. We
note that we only need to show that the interpolation scheme for pie-shaped triangles
is a valid scheme, that is, we need to show that Ji/TP is P4-unisolvent, and the rest
of the proof can be done similar to that of [11, Lemma3.9]. Recall that a set of
functionals .4 are said to be P;-unisolvent if the only polynomial p € P, satisfying
np = 0 for n € A4 is the zero function.

Let T* = (vy, v2, v3), where vy is the interior vertex. Set e; := (v, v2), €p 1=
(v2,v3), e3 := (v3, vy), see Fig.4. The interpolation conditions along e;, e3 imply
that s vanishes on these edges. After splitting out the linear polynomial factors which
vanish along the edges e;, e3, we obtain a valid interpolation scheme for quadratic
polynomials with function values at the three vertices, and function and gradient
values at the the barycenter ¢ of By C T*. The validity of this scheme can be seen
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by looking at a straight line ¢ through ¢ and any one of the vertices of T*. Along
the line ¢, a function value is given at the vertex and a function value together with
the first derivative is given at the point ¢, and this set of data are unisolvent for the
univariate quadratic polynomials, which means s must vanish along €. After factoring
out the respective linear polynomial, we are left with function values at three non-
collinear points, which defines a valid interpolation scheme for the remaining linear
polynomial factor of s.

To show the estimate (7) for T € Ap, the proof is similar. We need to show the
set of functionals </VTB is P¢-unisolvent but this follows from the standard scheme of
[16] for polynomials of degree six.

We note that the argument of the proof of [11, Lemma3.9] applies to affine
invariant interpolation schemes, that is the schemes that use the edge derivatives. As
our scheme relies on the standard derivatives in the direction of the x, y axes, we
need to express the edge derivatives as linear combinations of the x, y derivatives
as follows. Assume that e, e; are two edges that emanate from a vertex v. Let
7; = (7i1, T;2) be the unit vector in the direction of ¢; away from v, i = 1, 2. Then,
we can easily obtain the following identities

Do, f(v) =t Dy f(v) + 12Dy f (V),
D] f(v) =} DI f(v) + 210112 Dx Dy f (v) + T3 D5 f (V).
Dy, Do, f(v) = 11t DY f (V) + (ti1T22 + 112721) Dy Dy f (v) + 1122 D} f (V).
(I
Lemma4 Let T € Ap and its curved edge e C I';. Then

Mrullisy < Cr max b5 u/q;lweay i w € H ()N Hi(2),  (8)

where C, depends only on hr/pr. Moreover, if 5 <m <6, then for any u €
H™(2) N HJ (2),

lu — Irull ey < Cally ™ u/gjlynrry, k=0,....,m—1, )
lu — Irulws vy < C3hy *Mu/qjlgny, k=0,...,m=2,  (10)

where Cy, C3 depend only on hy /pr.

Proof We will denote by C constants which may depend only on k7 /pr and on £2.
Assume that u € H>(2) N HO1 (£2) and recall that by definition /ru = pgq;, where
p € Py satisfies the interpolation conditions (4). Since u € H>(£2;) N Hy (£2;), it
follows that u/q; € H*($2;) by Lemma, and hence, u/q; € C>(£2;) by Sobolev
embedding. From Lemma 3, we have
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d(n)
PllLeers < max, h3." npl, (11)
neNy

and hence

d(n)
T*

Il < n?jv);"h /gl = C max hylu/q;lwer)-

As in the proof of [12, Theorem 3.2], we can show that for any polynomial of degree
at most 6,

Isllz=cry < Cllsllz=r) and lsllz=cr) < Clislz=r)- (12)
By using (f), it is easy to show that ||g;||z~() < hr, and hence,
Mrullp=ay = llpgjlleeay < hrlipli=a),
which completes the proof of (8).

Moreover, since the area of T is less than or equal to %hZT and 0% (I7u) € Pg_y if
|| = k, it follows that

0% (Irw)ll 2y < gthaa(ITu)”Lw(T) < Chr||8* (Iru) || L1+
By Markov inequality (see, e.g., [15, Theorem 1.2]), we get furthermore
10 (Iru) || oo 7y < ép;k”IT“”L“’(T*)a
and hence in view of (12)
\Trulmery < Chy *Irullr).
In view of (8), we arrive at

[l < C max hy™Flu/qjlwe ), if w € H(2) N Hy(2).  (13)

Let m € {5,6}, and let u € H™(£2) N H} (£2). It follows from Lemmal that
u/q; € H"'(T). By the results in [4, Chap. 4], there exists a polynomial p € P,,_»
such that

lu/q; — placry < CHy ™ Mu/qjlgnray, k=0,...,m—1,

N - (14)
lu/q; — plweay < C

R 2 \u/qi gy, k=0,...,m—2.
Indeed, a suitable p is given by the averaged Taylor polynomial [4, Definition 4.1.3]
with respect to the disk B, and the inequalities in (14) follow from [4, Lemma4.3.8]
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(Bramble—Hilbert Lemma) and an obvious generalization of [4, Proposition4.3.2],
respectively. Itis easy to check by inspecting the proofs in [4] that the quotient h7 / o7
can be used in the estimates instead of the chunkiness parameter used there.

Since

u—Iru=(u/q; — p)q;— Ir(u— pgq;),
we have for any norm || - ||,
lu — Irull < I(u/q; — p)g;ll + 1 r(u — pg)|.

In view of (f) and (14), forany k =0, ..., m — 2,

|w/q; — P)qjlwe .y < hrlu/q; — plwery + lu/q; — Pllwe )
< ChF Mu/qlpmrcry,s
and forany k =0,...,m — 1,
Iw/q; — P)gillurr) < Chrllu/q; — pllaray + Cllu/q; — pllaer
f éh?_klu/qj|Hm—l(T).

Furthermore, by the Markov inequality, (8), (13), and (14),

- ~ er1—k - A m—k—1
[I7(u — pgj)lwe ) < CoTzai‘th+ lu/q; — plwery < Chy ™" u/qjlan-1 (1)

I 17 (u — pgp) sy < 60T352h§+27k|u/4j = plwery < éhrrnfk|u/51j|Hmfl(T)~

By combining the inequalities in the five last displays, we deduce (9) and (10). O

We are ready to formulate and prove our main result.

Theorem 2 Let 5 <m < 6. Foranyu € H™(2) N H} (£2),

12
(Z = 1Au||§,km) < CH" Mulgneey, k=0,....m—1,  (I5)
TeA

where h is the maximum diameter of the triangles in A, and C is a constant depending
only on 2, the choice of §2;, and the shape regularity constant R of A.

Proof We estimate the norms of u — I7u on all triangles T € A. The letter C stands
below for various constants depending only on the parameters mentioned in the
formulation of the theorem.

If T € Ay, then 5|7 is a macroelement as defined in [15, Chap. 6]. Furthermore,
by [15, Theorem 6.3], the set of linear functionals </VT0 give rise to a stable local
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nodal basis, which is in particular uniformly bounded. Hence, by [9, Theorem 2], we
obtain a Jackson estimate in the form

lu — Irull ey < CHY Mulgnery, k=0,....m, (16)

where C depends only on ir/pr. If T € Ap, with the curved edge e C I}, then the
Jackson estimate (9) holds by Lemma4.

Let T € Ag, p := Ipu|r, and let p € Pg be the interpolation polynomial that
satisfies np = nu for all n € </VTB. Then

L ifn e N>,
TP = = oy ity e AP

where T" = T, € Ag U Ap. Hence, by Markov inequality and (7) of Lemma3, we
conclude that for k =0, ..., m,

15 — pllacey < Chy 1P — pllL=c).
with
17 = plloscry < Cmax{hllu — Ipulye g 0 < €<2, T € AgUAp, T'NT £0),
whereas by the same arguments leading to (16) we have
lu — plleery < Chy Xl gncry,

with the constants depending only on hy/pr. If T' € Ay U Ap, then by (10) and
the analogous estimate for 7’ € Ay, comparing [4, Corollary4.4.7], we have for
£=0,1,2,

—i—1 |M|Hm T ifT' € A(),
lu — Irulwe 7y < Chy, ¢ a o
|M/Qj|H'"*1(T/) ifT' e AP,

where C depends only on A7/ /p7. By combining these inequalities, we obtain an
estimate of ||u — Iru|l gx () by Ch™=* times the maximum of [l g7y, || vy for
T’ € A sharing edges with T, and |u/q | gn-1(7) for T' € Ap sharing edges with T'.
Here, C depends only on the maximum of &7/ pr and h7+/ p7+, and h is the maximum
of hy and all hy for T’ € Ag U Ap sharing edges with 7.

By using (16) on T' € Ag, (9) on T € Ap and the estimate of the last paragraph
onT € Ag, we get

2 2(m—k 2 2
D= sl < CH (DT Nl + 2 /g0 )

TeA TeAgUAp TeAp
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where j(T') is the index of I'; containing the curved edge of T € Ap. Clearly,

2 2 2
Z |”|H'"(T) =< |M|Hm(g) < ”u”HW’(Q)v
TelgUAp

whereas by Lemma 1,

n
T 2 2
> /g ey < 2N/ B,y < Kl o),
Tehp j=1

where K is the constant of (3) depending only on §2 and the choice of £2;. (I
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