
How Ontologies Can Help in Software Engineering

Cesar Gonzalez-Perez(✉)

Incipit CSIC, Avda. de Vigo, s/n, 15705 Santiago de Compostela, Spain
cesar.gonzalez-perez@incipit.csic.es

Abstract. Ontologies are often understood as having a historical background
quite different to that of software engineering, which has caused a number of
issues when trying to use them in this context. However, recent works have char‐
acterized ontologies as being closely related to models and metamodels, thus
allowing for an inclusive treatment and use. In this work I describe how ontologies
are understood today within software engineering, how they relate to models and
metamodels, and how they are useful to software and systems engineering over
different lifecycle phases, in different domains, and in relation to standards such
as those from ISO/IEC JTC1 SC7.

Keywords: Ontologies · Models · Conceptual modelling · Domain-specific
modelling · Metamodelling · Modelling languages · Standards

1 Context and Motivation

In philosophy, ontology is the science of being [82]. That is, ontology is the branch of
philosophy concerned with the study of what is and how it is, regardless of what we may
know about it. As a countable noun, an ontology is a theory of the world in terms of
what exists and how, again regardless of what our knowledge about it may be. In turn,
the study of knowledge (including belief, truth and justification) is part of episte‐
mology, a different branch of philosophy [83 “Epistemology”].

Outside philosophy and in the computing realm, the word “ontology” is often used
with a different but related meaning; in 1993, Gruber [28], a researcher in artificial
intelligence and knowledge engineering, famously defined an ontology as “a formal
specification of a conceptualization”. There are two especially relevant differences
between this definition and the philosophical view described above:

• In computing, ontologies are formal, i.e., they are expressed in a formal or at least
semi-formal language, through which relevant concepts and their properties and
relationships are captured. In philosophy, however, ontologies are often presented in
natural language; see e.g. [10].

• In computing, an ontology captures a conceptualization, that is, some knowledge as
held by one or more people. This brings computing ontologies closer to epistemology
(the science of knowledge) than philosophical ontology (the science of knowledge-
independent being), as noted by [31].

© Springer International Publishing AG 2017
J. Cunha et al. (Eds.): GTTSE 2015, LNCS 10223, pp. 26–44, 2017.
DOI: 10.1007/978-3-319-60074-1_2



Despite these differences, we can still claim that computing ontologies are theories
of (a part of) the world, because they describe what a portion of reality looks like
(although many anti-realists would disagree). In this regard, and according to Gregor
[27], they are analytical (i.e., type 1) theories, since they describe the target domain
without attempting to explain causal phenomena or predict future observations.

Two additional points must be made in relation to Gruber’s definition and its context.
First of all, the definition provided by Gruber, and especially the way in which it has
been applied since, correspond mostly to what today we call domain ontologies, i.e.,
ontologies that describe a particular subject or field of work such as genomics [2], lexical
structures [66] or cultural heritage [52]. In addition to domain ontologies, however, the
literature has also studied upper ontologies, which, rather than describing a specific area
of reality, aim to establish what reality is like in general, making statements that should
be valid for any domain or application. For example, a domain ontology about lexical
structures may contain concepts such as “Determiner” or “Adjective”, which are only
relevant within that domain; similarly, a domain ontology for genomics may contain
concepts such as “Gene” or “Transposon”. An upper ontology, however, may contain
concepts that describe the very fabric of reality, such as “Type”, “Property” or “Role”;
see, e.g., BORO [76], DOLCE [62] or UFO [34]. The relationship between domain
ontologies and upper ontologies is that of conformance, i.e., a domain ontology conforms
to a particular upper ontology, very much as a model conforms to a metamodel. This
fact and its consequences are explored in Sect. 2.

Secondly, Gruber, as well as other authors who adopted and further developed the
application of ontologies in computing [29, 32, 38], were part of the artificial intelligence
(AI) community, which since the 1970s had been pressed to find a good manner to
describe states of affairs in the world on which machines were able to apply automatic
reasoning. Agent technologies, which became a fashionable research theme in the late
1990s and early 2000s, also pushed in this direction [12], and ontologies (as in computing
rather than philosophy) were developed as a solution to this problem. At the same time,
the software engineering community was developing solutions to cope with the
increasing complexity of the systems that were being developed, and introducing a wide
range of modelling languages and approaches over the 1980s and 1990s [14, 26, 61,
79]. As a result, the same problem (namely, representing the world in a suitable fashion)
was being addressed by two communities at the same time and with not much exchange
of information [46], and focusing on very different aspects of the problem. As pointed
out by [31], “AI researchers seem to have been much more interested in the nature of
reasoning rather than in the nature of the real world”. The solutions thus obtained by the
two communities (ontologies and modelling approaches) share some commonalities,
but also differ in significant ways, which are explored in Sect. 2. In particular, in software
engineering we use models for two major purposes: to describe domains and to specify
systems [21]. A model used to describe a domain looks much like a domain ontology,
and the relationship between models and ontologies is also explored in Sect. 2.

Finally, it is worth mentioning that ontologies have become quite typical in the
semantic web [7] field, particularly through World Wide Web Consortium (W3C) spec‐
ifications such as the Web Ontology Language (OWL) [86] and the Simple Knowledge
Organization System (SKOS) [85]. SKOS and most especially OWL use a very

How Ontologies Can Help in Software Engineering 27



computation-oriented notion of what ontologies are and focus on web-based solutions,
which introduces significant “implementation noise” that makes these approaches barely
usable outside their niche. This is also discussed in Sect. 2.

Over the following sections, I will focus on how ontologies can be useful in software
engineering; for this reason, the discussion will be centred on software engineering and,
in general, I will use software engineering terms and concepts. Terminology and
concepts that are specific of the ontologies field are explicitly flagged.

In particular, the following sections describe three major aspects on how ontologies
can be useful in software engineering. First, ontologies help obtain a better philosophical
grounding of the software engineering discipline and practice, solving some issues that
often pass unnoticed. Second, ontological thinking allows us to carry out better domain
modelling by contributing aspects often neglected by traditional modelling technologies.
Third, ontologies constitute an excellent basis for the standardisation of the software
engineering field, especially within the work carried out by organizations such as ISO.

2 Ontologies and Models

Ontologies are intuitively close to models in software engineering, as described above.
However, before I discuss ontologies and their relationship to models, some concepts
must be fixed. This section provides some base concepts and terms, and then discusses
the differences and commonalities between ontologies and models.

2.1 Base Concepts in Models, Metamodels and Modelling Languages

A model is “an abstraction that represents some view on reality, necessarily omitting
details, and for a specific purpose” [39], or “an abstraction of a (real or language-based)
subject allowing predictions or inferences to be made” [59, 60], or “a statement about
a given subject under study (SUS), expressed in a given language” [23], or even “a
description of (part of) a system written in a well-defined language” [18]. In any case,
a model always involves the following [43]:

• Something that is represented, i.e., the modelled subject. (Mapping)
• An abstraction process, which eliminates irrelevant details of the former to keep only

what is relevant to a particular purpose. (Simplification)
• An ability to reason on the model and then apply the conclusions of the reasoning to

the modelled subject, i.e., a proxy function. (Application)

As seen above, representation plays a central role in models. A model can represent
the subject through mappings of three different kinds [21]:

• Isotypical, by which an element in the model maps straightforwardly to an entity in
the modelled subject. For example, an architectural plan of a house usually represents
the real house isotypically, since it maps to that house and only that house. Also, an
object in an object-oriented model or running process usually represents the real
entity it refers to isotypically.

28 C. Gonzalez-Perez



• Prototypical, by which an element in the model maps to a set of entities in the
modelled subject given by example; in other words, the element in the model exem‐
plifies the kind of subject entities that are being represented. For example, a model
car placed next to a cardboard model house to illustrate where cars are expected to
park represents cars prototypically, since the model car does not map to any particular
real car, but just to an example car.

• Metatypical, by which an element in the model maps to a set of entities in the
modelled subject given declaratively; in other words, the element in the model is a
description of the properties that subject entities must comply with in order to be
represented. For example, the technical specifications of the windows to install in the
house from our previous example constitute a metatypical representation, since they
do not depict a specific window or exemplify a set of allowed windows, but declare
what properties any window must possess in order to be acceptable. A class in an
object-oriented model or computer program also represents the real entities it refers
to metatypically.

Models that work in an isotypical manner have been called in the literature token
models, and those who represent metatypically have been called type models [60]. This
distinction is old, having been introduced by philosopher Charles Sanders Peirce in the
late 19th century, and plays an important role in contemporary ontological thinking [83
“Types and Tokens”]. However, and since different elements in one model can work in
different manners (isotopically, prototypically or metatypically), I prefer the more
precise granularity of the latter rather than the simplistic classification into token and
type models.

A metamodel, in turn, is a particular kind of model, as indicated by the qualifier
“meta-”; a metamodel is a “model of models” [68] or “a model of a set of models” [18].
Either case, it is clear that a metamodel is a model for which the modelled subjects are
also models. The relationship between a metamodel and the models that it represents is
one of conformance [39], i.e., a model conforms to a metamodel.

Also, and very importantly, since metamodels are a specific type of models, every‐
thing that we state about models also applies to metamodels, including their ability to
represent their subjects (i.e., other models) isotypically, prototypically or metatypically.

Defining what a modelling language is proves harder. For some authors, a modelling
language is “a set of models” [18], i.e., a language is the set of all possible models that
may be possibly expressed in that language. According to this view, a specification (or
model) of that language constitutes a metamodel, since we said that a metamodel is a
model of a set of models. This is analogous to saying that English is the set of all possible
sentences that may be possibly uttered in this language, and that a specification (or
model) of English constitutes its grammar (cf. metamodel).

Other authors, however, place no emphasis in this difference between metamodels
and languages, and define a modelling language as “an organised collection of model
unit kinds that focus on a particular modelling perspective” [23, 56 clause 7.1.18], where
model unit kinds are the primitives that this language uses to express models, e.g.,
“Class” or “Association” in UML [69].

How Ontologies Can Help in Software Engineering 29



2.2 Base Concepts in Ontologies

As stated earlier, an ontology is “a formal specification of a conceptualization” [28,
29], or “a formal, explicit specification of a shared conceptualization” [15]. Also, “an
ontology defines a set of representational primitives with which to model a domain of
knowledge or discourse. The representational primitives are typically classes (or sets),
attributes (or properties), and relationships (or relations among class members)” [30].
However, it is often emphasised in the literature that ontologies do not need to be
composed of type-level elements only, and they may also contain instance-level
elements such as objects, often called “individuals” in ontology parlance [15, 86], as
well as axioms [15, 86] that further constrain the semantics of the involved types and
instances.

Furthermore, ontologies are usually described as containing knowledge rather than
data [28], that is, they work at the knowledge level, a concept introduced by [67] in the
1980s. Knowledge and data, together with the intermediate level of information and the
top level of wisdom, compose the Ackoff “pyramid” [1] of increasing abstraction. Thus,
by representing the world in terms of knowledge rather than data, ontologies are
supposed to be more abstract than, say, database schemata, and provide better support
for semantics, especially in the context of the semantic web [7]. According to [39],
ontologies were introduced and popularised within the software engineering community
from the early 2000s and onwards, as shown by the increasing literature on the subject,
the availability of specific tools (such as Protégé protege.stanford.edu or Swoogles‐
woogle.umbc.edu) and ontology repositories, and the number of projects devoted to
ontologies. Still, some authors have pointed out that the promise of semantic knowledge,
especially on the web, is still unrealised [84].

Another essential aspects of ontologies in computing, hinted at above, is that they
must be formal and, more precisely, understandable by a computer or “codified in a
machine interpretable language” [15]. In fact, automatic (i.e., algorithmic) reasoning is
often presented as a key motivation to develop ontologies [31, 86]. To this purpose,
ontology languages such as CycL [33] or OWL [86] have been developed that focus on
rigorous implementation of formal logic. The amount of detail required to create an
ontology, as well as the associated “implementation noise”, are usually quite large; this
is a contradiction with the principle of minimal encoding bias [29], which states that a
good ontology should be expressed at the knowledge level and be as free from encoding
details as possible. In addition, this means that creating an ontology by hand (on paper
or on a whiteboard, for example) and dynamically exploring alternatives is extremely
difficult, and specialised tools are obligatory.

Finally, a clear distinction must be made between upper, or foundational, ontologies
and domain ontologies, as introduced in previous sections. An upper ontology is an
“axiomatic account of high-level domain-independent categories about the real world”
[80], or one that “defines a range of top-level domain-independent ontological catego‐
ries, which form a general foundation for more elaborated domain-specific ontologies”
[36]; this means upper ontologies should be valid across domains and contain very
abstract concepts only. In turn, a domain ontology is a “specific theory about a material
domain (e.g., law, medicine, archaeology, molecular biology, etc.)” or “a shared

30 C. Gonzalez-Perez



conceptual specification of the domain” [34]. Developing a domain ontology requires a
deep understanding of the particular domain of application; however, developing an
upper ontology requires a deep understanding of reality and the commitment to specific
meta-ontological choices as exemplified by [75], such as the nature of categorisation or
the structure of time.

This has several consequences. Firstly, it seems that upper ontologies closely match
the field of study of philosophical ontology, whereas domain ontologies are closer to
epistemology, since they describe a domain in terms of human-mediated knowledge
[31]. Secondly, upper ontologies establish a structure to which domain ontologies can
conform, by serving as a starting point to build new (domain) ontologies, asa reference
for the comparison of different (domain) ontologies, and as a common framework for
(domain) ontology harmonisation and integration [62].

2.3 Differences Between Ontologies and Models

As discussed above, ontologies and models seem to be trying to address the same prob‐
lems (representing the world in an abstract manner) but do it from very different
perspectives. These differences often result in different artefacts, different uses and
different possibilities:

• Ontologies are intended for computer processing, whereas models are aimed at
human understanding (but see below).

• Ontologies are highly formal and require a logical basis, whereas models can be semi-
formal and admit some degree of informality.

• Ontologies are harder to develop, whereas some models can be created quite easily.
• Ontologies aim to represent the world objectively, as it is, whereas models are inher‐

ently subjective.
• Ontologies often combine type (i.e., metatypical) and token (i.e., isotypical) repre‐

sentations together, whereas models tend to emphasise the difference.

First of all, the overall motivation for ontologies has been automated, algorithmic
reasoning [31, 86] carried out by machines. This has meant that an ontology is usually
a computer-oriented artefact, not always easily readable by humans. Contrarily, model‐
ling in software engineering has been motivated since the 1980s by the need to tackle
complexity and understand better the world around us as well as obtain better specifi‐
cations for the systems that engineers will build [44]. This means that models are usually
human-oriented artefacts that machines cannot process directly. However, the model-
based software engineering (MBSE) approach [9, 81], popularized in the last 15 years,
has changed this significantly. These days, models are often constructed as machine-
readable artefacts that can be processed by a computer to generate other models or even
code through MDA/MDE approaches [68] or languages such as Executable UML [64].
Still, much modelling is still not machine-based and oriented towards humans. From the
ontologies side, work in ontology visualization [58] is being carried out to make ontol‐
ogies more easily understandable to humans. In summary, ontologies and models have
very different historical aims, which are now converging.

How Ontologies Can Help in Software Engineering 31



Since ontologies are traditionally geared towards computers, they are often based on
some form of formal logic, and an ontology, as an artefact, is a highly formal one. This
is particularly noticeable when looking at ontology languages; for example, CycL [33]
is based on first-order logic and has some support for modal operators and higher-order
quantification (such as “all” and “exists”); similarly, OWL [86] is a “computational
logic-based language” that supports full algorithmic decidability in its OWL-DL
(description logic) variant. Contrarily, many modelling languages rarely aim to attain
full formality, with the exception of those particular to the formal methods subfield or
oriented towards MBSE. Modelling languages, in general and as usually employed in
software engineering, are based on meta-specifications such as MOF [70] that make
extensive use of natural language and thus leave room for informality. Again, this is
changing now, and implementations based on languages such as UML are being
successfully used for machine processing.

As a further consequence, ontologies are usually harder to develop than models. An
example of this is the fact that ontologies usually require great care when identifying
and naming classes; in OWL, for instance, a class is identified by an international
resource identifier (IRI), which must be correctly generated and namespaced. In UML
[69], however, a class is identified by a simple name in natural language. For reasons
like this, it is very easy to informally sketch an exploratory model on a piece of paper
or a whiteboard, but it is very hard to do this foran ontology. However, the ontology,
once created, will have a degree of formality and a potentiality for automatic processing
that the model may lack.

As an additional major difference, ontologies aim to represent the world objectively,
as it is, without introducing much subjective bias, whereas models may embrace subjec‐
tivity. This is particularly so in the case of upper ontologies, although domain ontologies,
given their focus on shared conceptualizations [15], also have this property. According
to [31], ontologies constrain the meanings they aim to provide (through axioms, for
example), whereas conceptual models offer a fully subjective and pre-interpreted view
of the represented subject. In the case of upper ontologies, this is even more so, as
illustrated in [80] when describing foundational (i.e., upper) ontologies as being related
to “reusable information”, “semantic interoperability” and “axiomatic accounts of high-
level domain-independent categories”. In modelling, to the contrary, a very specific
purpose is always taken as a starting point, and it is assumed that this purpose strongly
shapes the resultant model; as pointed out by [4], “software engineers have taken a very
pragmatic approach to data representation, encoding only the information needed to
solve the problem in hand”. Also, the statistician George Box is usually credited as the
author of the famous aphorism “All models are wrong; some models are useful”; this is
often interpreted to mean that models, given the fact that they represent through abstrac‐
tion, are necessarily discarding details, and are therefore “wrong” or biased in some way
as dictated by the guiding purpose [43].

Lastly, ontologies often emphasise that a good account of reality is given by combining
classes and instances in the same representation, and usually there is no particular
emphasis in differentiating layers or levels. The modelling community, however, has
developed strong ideas about the separation of type (i.e., metatypical) and token (i.e.,
isotypical) representations, such as OMG’s strict metamodelling paradigm [3] and,

32 C. Gonzalez-Perez



although classes and objects can be mixed together in the same models in, for example,
UML, this is very rarely done.

Additional differences between ontologies and models are reported and discussed
in [4].

2.4 Commonalities of Ontologies and Models

Despite the differences described in the previous section, numerous works have tried to
find commonalities between ontologies and models. This is not surprising, since, as
pointed out above, models and ontologies are trying to solve much the same problems,
and some common grounds are to be expected. In addition, cross-pollination between
disciplines is often seen as a motivation.

In [4], the authors characterize models and ontologies over several key aspects, and
observe that “all ontologies are models, but not all models are ontologies”, since any
information representation that fulfils the necessary conditions to be an ontology also
fulfils those to be a model. This means that ontologies are a specific kind of models and
that, therefore, everything we say about models should also apply to ontologies. Also,
the authors convincingly criticise many of the claims that are usually employed to high‐
light the differences between models and ontologies. For example, they show that
support for reasoning is not a definitional property of ontologies, that there is no require‐
ment for open or closed world assumptions for either models or ontologies, and that it
is perfectly possible to create information representations that are not shared (and there‐
fore are not ontologies) using ontology languages. All these facts mean that ontologies
and models are extremely similar, much more than often depicted. However, and
although the authors state that these strong similarities make many ontology-driven
efforts and technologies redundant, this is hard to sustain, since a subtype usually adds
details to the super type it derives from, and hence ontologies are likely to possess
specific properties (such as those described in Sect. 2.3) that are not present in models.
Still, most of the observations in [4] are valid and constitute a strong change of direction
to the usual discourse and its emphasis on difference.

A few years later, [39] tackled similar concerns from a different angle. Here, the
author relates models to domain ontologies, and metamodels to upper (foundational)
ontologies. In both cases, the author points out that other works also coincide in equating
or relating domain ontologies and models, such as [19, 47], and upper ontologies with
metamodels [34, 35].

It thus seems that ontologies and models, despite being often presented as different
technologies, are not that different after all. This is compatible with our experience when,
in 2006, we “extracted” a domain ontology for software development methodologies
[22] from an existing model of the same domain [56] with little effort. Apparently, the
same representation could be easily cast as either a software engineering model or a
domain ontology; this made us realise that ontological thinking may be applicable to
software engineering as a fruitful contribution.

How Ontologies Can Help in Software Engineering 33



3 Using Ontologies

Previous sections have described ontologies, models, and the relationships between
them, focussing on differences and similarities. At the end of the last section, I concluded
that ontologies and models are not too different, and that, for this reason, bringing over
ontological thinking into software engineering should be feasible. In this section, I
explore three major areas where ontologies have proven useful to software engineering
over the last few years: philosophical grounding, domain modelling and standardisation.

3.1 For Philosophical Grounding

It is interesting to observe how software engineering has focussed so much in repre‐
senting reality, but invested so little in understanding the implications of these repre‐
sentations [46, 77]. Often, we make representational choices without being too conscious
of the consequences, and some choices are never made because we cannot even think
of them. Philosophy, however, has been dealing with the issue of representing reality
for some time, and can help. Thus, the philosophical grounding of modelling has become
the theme of some recent works in software engineering, in which ontologies (especially
upper) play an important role.

My colleagues and I have devoted some time to searching for answers to questions
such as “What are conceptual models made of?”, “What do classes in class models
actually represent?” or “What is the relationship between conceptual models, mental
models and physical reality?” [46, 77]. Take, for example, the second question.
Assuming that classes in class models represent categories of things, often called
“universals” in philosophy, do they stand for universals-as-they-are or rather universals-
as-we-know-them? In other words, do classes directly represent things in the world
(ontological, direct representation) or do they represent mental concepts, which in turn
represent things in the world (epistemic, mediated representation)? If the latter, and
assuming that mental concepts may be different from an individual to the next, how are
we sure that a class in a model stands for the “right” concept? How do we eliminate
subjectivity and ambiguity so that a shared understanding is achieved?

This line of reasoning has also been used to analyse specific aspects of modelling,
such as whole/part relationships in object-oriented models [41, 73, 74] or the UML itself
[72]. In [41], the authors characterize whole/part relationships by ontological analysis
and describe a number of primary (necessary, Boolean) and secondary (classificatory,
not necessarily Boolean) characteristics of these relationships. In [73, 74], the authors
continue to differentiate resultant and emergent properties by using Bunge’s ontology
[10, 11]; a resultant property is a property of an aggregate that is a direct result of prop‐
erties of its parts (the whole equals the sum of its parts), whereas an emergent property
of an aggregate is one that is not provided by any properties of its parts, but rather
emerges from their interaction (the whole is greater than the sum of its parts). For
example, a car engine is an aggregate of individual mechanical parts: the engine has a
resultant “Weight” property, directly obtained from its members’ properties, as well as
an emergent “Peak Power” property, which materialises from the interactions of its
members rather than being contributed directly by the members’ properties. The authors

34 C. Gonzalez-Perez



in [73, 74] conclude that an aggregate (the “whole” in a whole/part relationship) must
possess at least a resultant and an emergent property; otherwise, it would not be a true
aggregate.

A similar ontological analysis based on the Bunge-Wand-Weber approach [78] has
been carried out by [72] on the UML itself, resulting in a comprehensive set of recom‐
mendations to enhance UML. Some of the improvement areas include:

• Distinguishing between physically impossible and humanly disallowed events.
• Achieving better separation between the description of the domain and the specifi‐

cation of the system.
• Introducing additional modelling primitives to avoid overloading, i.e., the fact that

some existing modelling constructs are used for several different purposes.

Precisely, ontological analysis has been especially useful to explicitly clarify and
solve some obscure areas of modelling. For example, it has been long known that the
“is-a” construct in modelling was being used with little rigour to represent very different
semantics; in fact, [32] discusses the problem of “ISA overloading” back in 1998, and
proposes an initial framework to avoid it. We have observed that the problem is
compounded by the fact that the copula to be in English, very much like in most other
Indo-European languages, is extremely overloaded with meaning. We have identified
at least five senses in which the verb to be is regularly used in the modelling literature:

• Existence, by which something is said to exist, e.g., “There is a person”.
• Identity, by which two entities are said to be the same, e.g.,“Isabel is my wife”.
• Predication, by which a property is associated to an entity, e.g., “Isabel is tall”.
• Classification, by which an entity is assigned to a type or class, e.g., “Isabel is a

person”.
• Generalisation, by which a type or class is said to be subsumed by a more abstract

one, e.g., “A person is a living being”.

In modern-day object oriented languages, existence of an entity is conveyed by the
existence of the corresponding object; identity is not conveyed but delegated to the real-
world entity; predication is easily conveyed through attribute values; classification is
conveyed through the object’s “instance-of” relationship towards its class; and generali‐
sation is conveyed through generalisation/specialisation relationships between classes.
Thus, I do not see any problem with “is-a” overloading today as long as a well-defined
language is used that supports object identification, attribute values, instantiation rela‐
tionships and generalisation/specialisation relationships as separate modelling primitives.

Ontological reasoning is sometimes confronted with linguistic or epistemic thinking,
especially when discussing alternative ways of representing. In [5], for example,
“logical” and “physical” representations are described: when we say that a particular
book object in a library management system is a book, we are using a logical represen‐
tation; when we say that this object is an object, we are using a physical representation.
As discussed by [23], physical models represent ontologically, using concepts from what
we have called upper or foundational ontologies, such as “Object”. Contrarily, logical
models represent epistemically, using concepts from what we have called domain ontol‐
ogies, such as “Book”. Although some authors insist that physical and logical modelling

How Ontologies Can Help in Software Engineering 35



(sometimes confusingly named linguistic and ontological modelling, respectively, such
as in [6]) are orthogonal manners of representing the same reality, it is easily seen that
they are not, and in fact logical models conform to physical models, very much like
domain ontologies conform to upper ontologies, and therefore a linear (rather than
orthogonal) chain of models arises as proposed by [23].

An additional area where ontological thinking has been used in software engineering
is that of language development. ConML is a conceptual modelling language designed for
users with no previous exposure to information technologies and especially oriented
towards domains in the humanities and social sciences [20, 48]. Although ConML super‐
ficially resembles UML, it contains some aspects that are worth mentioning. One of them
is that of symmetric unary associations. Most associations are binary (i.e., they link two
types together) or even higher-arity, but some are unary, which link a type back to itself.
Of these, some entail an asymmetric relation between the instances they connect, whereas
others establish a symmetric relation. UML and other conventional languages provide no
support to model this latter kind of associations, despite being extremely common in real
life: for example, a place and its neighbouring places, a person and his/her spouse, an
author and his/her co-authors, a mathematical function and its inverse, an archaeological‐
site and all those others that are visible from it. Since these associations involve a single
role (for both “ends”) attached to a single class, and UML requires that every association
end attached to a type has a different qualified name, these associations cannot be
expressed in UML. The solution adopted by ConML is straightforward, namely allowing
for associations with a single “end” [48 clause 5.6.9], and its novelty does not reside so
much in the adopted solution as in the detection of the need and the insight to differen‐
tiate between symmetric and asymmetric unary associations.

Also in relation to ConML, ontological thinking allowed us to improve the usual
treatment of null semantics that is found in most languages. Usually, “null” means no
data, but no distinction is made between ontological and epistemic reasons for this
absence. For example, if the “Name” column in a “Persons” table contains “null” for a
particular row, does this mean that this person lacks a name (ontological absence) or
rather that we do not know it (epistemic absence)? This is easy to determine for some
properties, which by nature cannot be ontologically absent (e.g., “Age” in the above
mentioned table), but impossible for others. For this reason, ConML uses null to indicate
ontological absence of information (i.e., “this data does not exist”) and unknown to
indicate epistemic absence of information (i.e., “this data exists but we do not know
about it”) [44 Problem 5, 48 clause 5.6.8]. This allows for more precise semantics and
a better representation of the domain.

3.2 As Domain Models

Regarding the second area of ontology use in software engineering, it is worth noting
that a number of domain-specific models have been published as the result of consensus
building in particular areas of discourse. Some examples include the Semantics of Busi‐
ness Vocabulary and Business Rules (SBVR) [71], which focuses on “documenting the
semantics of business vocabularies and business rules for the exchange of business
vocabularies and business rules among organizations and between software tools”; or

36 C. Gonzalez-Perez



the International Council of Museums (ICOM) International Committee for Documen‐
tation (CIDOC) Conceptual Reference Model (CIDOC CRM) [13, 52], which “provides
definitions and a formal structure for describing the implicit and explicit concepts and
relationships used in cultural heritage documentation”; or the Cultural Heritage Abstract
Reference Model (CHARM) [25, 51]. Models like these are highly specialised in a
technical area, have been created after more or less elaborate processes of consensus
building among experts in the field, are published to a wide audience for shared refer‐
ence, and often are provided in a machine-readable format that may allow automated
processing by computer. Therefore, and according to our discussion in previous sections,
they qualify as domain ontologies. Whether actual ontological thinking has been used
to construct these models is sometimes difficult to say, either because this fact is not
captured in the published documentation or because of the blur between ontologies and
conceptual modelling that we have previously described. Some of these models,
however, explicitly mention the fact that they are conceived as ontologies; for example,
ISO 21127:2014 [52], the standard version of CIDOC CRM, states in the Introduction
that “ISO 21127 is an ontology for cultural heritage information”.

The field of software engineering itself has also been described through a domain
ontology, at least partially, by e.g. [22], which is strongly based on the ISO/IEC 24744
[56] standard “Software Engineering – Metamodel for Development Methodologies”.

Having a published, shared ontology of a domain can be enormously useful in soft‐
ware engineering, especially in situations where a software system is to be built in a
specific domain. First of all, the domain ontology provides a readily available and
common vocabulary and conceptualization for the communication during requirements
elicitation and analysis. Despite no empirical studies have been carried out about this as
far as I know, our experience is that software developers learn about a domain much
faster and make fewer mistakes when supported by a domain ontology rather than mere
input and discussion with domain experts.

Secondly, the domain ontology can be used as a starting point on which to develop the
system’s domain model, along the lines proposed by domain-driven design (DDD) [17].
Usually, systems cover only a specific area of a domain, and often in a manner that is
highly particular to the customer of future users; this means that, whatever ontology is
taken as a base, it will likely have to be “pruned” and refined. The degree to which
domain ontologies support extension and tailoring is highly variable, this being a factor
with a large impact on the applicability of a domain ontology to the practice of software
engineering (see below). Some kinds of systems go one step beyond and, instead of being
based on a particular ontology, assume that there will be an ontology serving as concep‐
tual basis for the processes that take place inside, but that this ontology is not fixed. These
systems model the concept of ontology as part of the system’s conceptual model; it is the
case, for example, of agent-based systems developed by using the FAME Agent-Oriented
Modelling Language (FAML) [8]. In FAML, “Ontology” is a language primitive which,
together with others such as “Agent” or “Role”, allows the system developer to organize
a community of agents that exchange information in terms of an ontology, but leave the
specific contents of the ontology open to be dynamically evolvable at run time. In other
words, under FAML, ontologies are not constructed in design-time and then used in run-
time; rather, they are constructed, used and even dynamically re-constructed at run-time.

How Ontologies Can Help in Software Engineering 37



Thirdly, the domain ontology can be used as a reference model for the interchange
of information between systems. Even if the system is not built according to the
ontology, it may be designed so that it can import and/or export data that conforms to
it, thus enhancing its interoperability. Some domain ontologies, in fact, are heavily
oriented towards this, such as CIDOC CRM, which is described in [13] as intended to
“provide the ‘semantic glue’ needed to mediate between different sources of cultural
heritage information”.

Some remarks are worth about the extension and tailoring of domain ontologies.
Although the knowledge captured by a domain ontology is supposed to be shared, it
sometimes happens that certain users of the ontology wish to alter specific aspects to
suit their particular views on reality, accommodate technical constrains, or simply add
detail to an abstract conceptualization. As we mentioned above, the degree to which
different ontologies cater for extension and tailoring varies greatly. Some, such as
CHARM [50], are explicitly conceived as abstract reference models, and must be
extended before they are used through a series of well documented extension guidelines
[49]. The fact that these ontologies are expressed in an explicit and documented language
contributes to the ease of extension, since formal support makes it easier to establish the
extension rules and validate whether an ontology is a true extension of the base one or
simply a different ontology. As a counterexample, CIDOC CRM [52] is expressed in a
language that is not named, described or documented, which makes extension difficult
and, what is worse, makes it impossible to verify whether a CIDOC CRM-looking
ontology is a true extension of the standard or not.

3.3 For Standardisation of Software Engineering

The third and last area of use of ontologies in software engineering is concerned with
the field of software engineering itself. Practice in this field is varied and colourful,
including approaches that range from the very rigorous of formal methods and high-
ceremony methodologies to the hacker ethics of some agile approaches and “extreme”
styles. At different points along this spectrum, different standardisation organizations
have been working to produce guidelines and recommendations that may help the
community to improve the ways in which we develop software systems. A good example
is the SWEBOK ontology [65], based on the Software Engineering Body of Knowledge
(SWEBOK), initially developed by the IEEE Computer Society and then made into an
international standard as ISO/IEC TR 19759:2005 [57]. Another interesting case is that
of the International Organization for Standardization (ISO), Joint Technical Committee
1, Sub-Committee 7 (JTC1/SC7), named “Software and systems engineering”. This
subcommittee has been working since 1987 in the “standardization of processes,
supporting tools and supporting technologies for the engineering of software products
and systems”. ISO JTC1/SC7 has produced a number of standards in the areas of process
lifecycles, process assessment, system architecture, open distributed processing, meth‐
odologies, testing or user documentation. Unfortunately, different standards, especially
when coming from different working groups, tend to use a different conceptualization
of the software engineering field, very often overlapping but incompatible [40]. For
example, ISO/IEC 12207 “Software life cycle processes” [54] and ISO/IEC 15504

38 C. Gonzalez-Perez



“Process assessment” [53] use substantially different conceptualizations of what a soft‐
ware process is; this is remarkable, given the fact that 15504 is supposed to establish a
manner in which processes such as those defined by 12207 are to be assessed. In some
cases, even standards coming out of the same working group present noticeable differ‐
ences in their conceptualization; it is the case, for example, of ISO/IEC 15288 “System
life cycle processes” [55] and the previously mentioned ISO/IEC 12207, which present
very different views on how processes are organized and composed of smaller units.
These discrepancies between standards make interoperation and communication very
difficult.

To mitigate this, and after the problem had been identified and described by several
key actors [40, 63], ISO JTC1/SC7 initiated a study group in 2012 with the aim to
“evaluate the feasibility of preparing an ontology (a conceptual model) of the domains
of interest of SC7 and its standards”. After some exploratory work, this group proposed
that the major challenged to be tackled was to provide a solution to the ongoing tension
between standardisation and customisation. In other words:

• standards already exist and are being actively applied by industry, so they should not
be changed arbitrarily;

• at the same time, reconciling differences necessarily means that somehow standards
must change.

The proposed solution was based on the idea of the gradual refinement of models,
already employed for CHARM [24]. According to this idea, a definitional elements
ontology (DEO) would be created to work as a very abstract representation of all the
SC7 concerns and concepts. The DEO would be so abstract that it could not be applied
straight away; it would need to be refined into a configured definitional ontology (CDO)
whenever is needed through a set of well-defined mechanisms, such as removal of
unwanted areas or extension with new concepts [42]. CDOs can be also “chained” an
arbitrary number of levels by further refining a CDO into a more concrete CDO, in order
to add detail in a piecemeal fashion, often to match the organizational and operational
needs of the community [45]. For example, a CDO could be created from SC7’s DEO
for each of the major scope areas in which SC7 works; from these first-level CDOs, each
working group could derive its own particular CDO, and even a more specific CDO
could be constructed for each family of standards when needed. Finally, a standard
domain ontology (SDO) is an instance of a CDO that suits the needs of a particular
standard, providing its conceptual foundation.

The study group proposed a proof-of-concept DEO to SC7 in late 2014, consisting
of 26 classes plus associations, which are strongly based on ISO/IEC 24744 [56] and
related work.

4 Outlook

In the previous sections I have described ontologies and ontological thinking from the
perspective of software engineering, and in particular in relation to modelling and meta‐
modelling. Although ontologies have been introduced in the software engineering field

How Ontologies Can Help in Software Engineering 39



for some time now, and are being effectively used for some purposes, there are still a
number of areas where much work is to be done. The hybridisation of the two fields
(ontologies and software engineering, see Sect. 1) also poses new challenges. This is
particularly so in the area of philosophical grounding (Sect. 3.1), where specific aspects
of upper ontologies are being re-examined and questioned in recent works, such as those
about physical vs. logical modelling [16], alternative modelling primitives [37], or the
notion of identity [42]. This is a complex and difficult area of research where very few
studies exist with a strong empirical or logical backing, and for this reason more
advances are to be expected in the near future.

In the domain modelling and standardisation areas (Sects. 3.2 and 3.3), in turn, the
major challenge resides in finding a suitable manner to alleviate the tension between the
need for standardisation and that for customisation. The proposal from the ISO
JTC1/SC7 study group, described in Sect. 3.3, is being tested in the field and will hope‐
fully produce results in the next few years. Other approaches may also be proposed.
Also in this area and connected to the previous, a significant challenge is that of
consensus building. Since an ontology working as shared domain model, especially if
it is to be a standard, is supposed to be accepted by a large community, agreement must
be reached on what this model contains and how it represents reality. Although this is
primarily a social rather than technical issue, ontology and modelling technologies must
be developed so that they can accommodate the incremental construction of models and
exploratory developments as required by this situation.

In conclusion, ontologies have contributed very valuable insights to the theory and
practice of software engineering, especially in the subfield of conceptual modelling. But
they have also created a new area of inquiry, bringing up new questions and old problems
that will take long to settle.

Acknowledgements. Thank you to Brian Henderson-Sellers for the revision of a draft of this
work and for his contributions to the ideas presented here.

References

1. Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16, 3–9 (1989)
2. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,

Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene
ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000)

3. Atkinson, C.: Supporting and applying the UML conceptual framework. In: Bézivin, J.,
Muller, P.-A. (eds.) UML 1998. LNCS, vol. 1618, pp. 21–36. Springer, Heidelberg (1999).
doi:10.1007/978-3-540-48480-6_3

4. Atkinson, C., Gutheil, M., Kiko, K.: On the relationship of ontologies and models. In:
Proceedings of the 2nd International Workshop on Meta-Modelling (WoMM). LNI 96,
Karlsruhe, Germany, pp. 47–60 (2006)

5. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Trans. Model. Comput.
Simul. 12(4), 290–321 (2002)

6. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation. IEEE
Softw. 20(5), 36–41 (2003)

40 C. Gonzalez-Perez

http://dx.doi.org/10.1007/978-3-540-48480-6_3


7. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284, 29–37 (2001)
8. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J.J., Pavon, J.,

Gonzalez-Perez, C.: FAML: a generic metamodel for MAS development. IEEE Trans. Softw.
Eng. 35(6), 841–863 (2009)

9. Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171–188 (2005)
10. Bunge, M.: Treatise on Basic Philosophy - Ontology I: The Furniture of the World, vol. 3.

Reidel, Boston (1977)
11. Bunge, M.: Treatise on Basic Philosophy - Ontology II: A World of Systems, vol. 4. Reidel,

Boston (1979)
12. Castel, F.: Ontological computing. Commun. ACM 45(2), 29–30 (2002)
13. CIDOC. The CIDOC Conceptual Reference Model (web site) (2011). http://www.cidoc-

crm.org/. Accessed 26 Nov 2012
14. Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremaes, P.: Object-

Oriented Development: The Fusion Method. Prentice-Hall, Englewood Cliffs (1994)
15. Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Ontological engineering: principles,

methods, tools and languages. In: Ruiz González, F., Calero, C., Piattini, M. (eds.) Ontologies
for Software Engineering and Software Technology, pp. 1–48. Springer, Heidelberg (2006)

16. Eriksson, O., Henderson-Sellers, B., Ågerfalk, P.J.: Ontological and linguistic metamodelling
revisited: a language use approach. Inf. Softw. Technol. 55(12), 2099–2124 (2013)

17. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley Professional, Boston (2003)

18. Favre, J.-M.: Foundations of meta-pyramids: languages vs. metamodels - Episode II: story of
thotus the baboon. In: Bézivin, J., Heckel, R. (eds.) Language Engineering for Model-Driven
Software Development, Dagstuhl Seminar Proceedings, 04101. IBFI, Dagstuhl (2005)

19. Gašević, D., Kaviani, N., Hatala, M.: On metamodeling in megamodels. In: Engels, G.,
Opdyke, B., Schmidt, Douglas C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 91–105. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75209-7_7

20. Gonzalez-Perez, C.: A conceptual modelling language for the humanities and social sciences.
In: Rolland, C., Castro, J., Pastor, O. (eds.) Sixth International Conference on Research
Challenges in Information Science (RCIS), pp. 396–401. IEEE Computer Society (2012)

21. Gonzalez-Perez, C., Henderson-Sellers, B.: A representation-theoretical analysis of the OMG
modelling suite. In: The 4th International Conference on Software Methodologies, Tools and
Techniques, 28–30 September 2005. Frontiers in Artificial Intelligence and Applications 129.
IOS Press, Amsterdam, pp. 252–262 (2005)

22. Gonzalez-Perez, C., Henderson-Sellers, B.: An ontology for software development
methodologies and endeavours. In: Ruiz González, F., Calero, C., Piattini, M. (eds.)
Ontologies for Software Engineering and Software Technology, pp. 123–151. Springer,
Heidelberg (2006)

23. Gonzalez-Perez, C., Henderson-Sellers, B.: Modelling software development methodologies:
a conceptual foundation. J. Syst. Softw. 80(11), 1778–1796 (2007)

24. Gonzalez-Perez, C., Martín-Rodilla, P.: Integration of archaeological datasets through the
gradual refinement of models. In: Giligny, F., et al. (eds.) 21st Century Archaeology:
Concepts, Methods and Tools - Proceedings of the 42nd Annual Conference on Computer
Applications and Quantitative Methods in Archaeology, pp. 193–204. Archaeopress (2015)

25. Gonzalez-Perez, C., Parcero Oubiña, C.: A conceptual model for cultural heritage definition
and motivation. In: Zhou, M., et al. (eds.) Revive the Past: Proceeding of the 39th Conference
on Computer Applications and Quantitative Methods in Archaeology, pp. 234–244.
Amsterdam University Press (2011)

How Ontologies Can Help in Software Engineering 41

http://www.cidoc-crm.org/
http://www.cidoc-crm.org/
http://dx.doi.org/10.1007/978-3-540-75209-7_7


26. Graham, I., Henderson-Sellers, B., Younessi, H.: The OPEN Process Specification. The OPEN
Series. Harlow. Addison-Wesley Longman, Essex (UK) (1997)

27. Gregor, S.: The Nature Of Theory In Information Systems. MIS Q. 30(3), 611–642 (2006)
28. Gruber, T.: A translation approach to portable ontology specifications. Knowl. Acquisition

5(2), 199–220 (1993)
29. Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing? Int.

J. Hum Comput Stud. 43(5–6), 907–928 (1995)
30. Gruber, T.: Ontology. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems.

Springer, New York (2009)
31. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Int. J. Hum

Comput Stud. 43(5–6), 625–640 (1995)
32. Guarino, N.: Some ontological principles for designing upper level lexical resources. In:

Rubio, A., et al. (eds.) Proceedings of First International Conference on Language Resources
and Evaluation, Granada (1998)

33. Guha, R.V., Lenat, D.B.: Cyc: a midterm report. In: Buchanan, B.G., Wilkins, D.C. (eds.)
Readings in Knowledge Acquisition and Learning, pp. 839–866. Morgan Kaufmann, New
York (1993)

34. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. University of
Twente, The Netherlands (2005)

35. Guizzardi, G., Wagner, G.: On the ontological foundations of agent concepts. In:
Grundspenkis, J., Kirikova, M. (eds.) CAiSE 2004 Workshops in Connection with The 16th
Conference on Advanced Information Systems Engineering, pp. 265–279. Riga Technical
University (2004)

36. Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications of it in
business modeling. In: Missikoff, M. (ed.) Enterprise Modelling and Ontologies for
Interoperability, CEUR Workshop Proceedings, vol. 125. CEUR-WS.org (2004)

37. Guizzardi, G., Zamborlini, V.: Using a trope-based foundational ontology for bridging
different areas of concern in ontology-driven conceptual modeling. Sci. Comput. Program.
86, 417–443 (2014)

38. Heller, B., Herre, H.: Ontological categories in GOL. Axiomathes 14(1), 57–76 (2004)
39. Henderson-Sellers, B.: Bridging metamodels and ontologies in software engineering. J. Syst.

Softw. 84(2), 301–313 (2011)
40. Henderson-Sellers, B.: Standards harmonization: theory and practice. Softw. Syst. Model.

11(2), 153–161 (2012)
41. Henderson-Sellers, B., Barbier, F.: What is this thing called aggregation? In: TOOLS 29, May

1999. IEEE Computer Society (1999)
42. Henderson-Sellers, B., Eriksson, O., Ågerfalk, P.J.: On the need for identity in ontology-based

conceptual modelling. In: Saeki, M., Kohler, H. (eds.) Proceedings of 11th Asia-Pacific
Conference on Conceptual Modelling (APCCM 2015), CRPIT, Sydney, Australia, pp. 9–20
(2015)

43. Henderson-Sellers, B., Gonzalez-Perez, C.: Multi-level meta-modelling to underpin the
abstract and concrete syntax for domain specific modelling languages. In: Reinhartz-Berger,
I., et al. (eds.) Domain Engineering: Product Lines, Conceptual Models, and Languages, pp.
291–316. Springer, Heidelberg (2013)

44. Henderson-Sellers, B., Gonzalez-Perez, C., Eriksson, O., Ågerfalk, P.J., Walkerden, G.:
Software modelling languages: a wish list. In: Gray, J., et al. (eds.) IEEE/ACM 7th
International Workshop on Modeling in Software Engineering (MiSE). IEEE Computer
Society (2015)

42 C. Gonzalez-Perez



45. Henderson-Sellers, B., Gonzalez-Perez, C., McBride, T., Low, G.: An ontology for ISO
software engineering standards: 1) Creating the infrastructure. Comput. Stand. Interfaces
36(3), 563–576 (2014)

46. Henderson-Sellers, B., Gonzalez-Perez, C., Walkerden, G.: An application of philosophy in
software modelling and future information systems development. In: Franch, X., Soffer, P.
(eds.) CAiSE 2013. LNBIP, vol. 148, pp. 329–340. Springer, Heidelberg (2013). doi:
10.1007/978-3-642-38490-5_31

47. Hesse, W.: From conceptual models to ontologies. In: Delcambre, L., Kaschek, R.H., Mayr,
H.C. (eds.) Dagstuhl Seminar on The Evolution of Conceptual Modeling. Schloss Dagstuhl,
Dagstuhl (2008)

48. Incipit. ConML Technical Specification. Incipit, CSIC (2016). http://www.conml.org/
Resources_TechSpec.aspx

49. Incipit. CHARM Extension Guidelines. Incipit, CSIC (2016). http://www.charminfo.org/
Resources/Technical.aspx

50. Incipit. CHARM Web Site (web site) (2016). http://www.charminfo.org. Accesed 30 May
2016

51. Incipit. CHARM White Paper. Incipit, CSIC (2016). http://www.charminfo.org/Resources/
Technical.aspx

52. ISO. Information and documentation – a reference ontology for the interchange of cultural
heritage information. ISO 21127:2014 (2014)

53. ISO/IEC. Software Process Assessment - Part 1: Concepts and Vocabulary. ISO/IEC
15504-1:2004 (2004)

54. ISO/IEC. Systems and software engineering – software life cycle processes. ISO/IEC
12207:2008 (2008)

55. ISO/IEC. Systems and software engineering – system life cycle processes. ISO/IEC
15288:2008 (2008)

56. ISO/IEC. Software Engineering - Metamodel for Development Methodologies. ISO/IEC
24744:2004 (2014). http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?
csnumber=62644

57. ISO/IEC. Software Engineering - Guide to the software engineering body of knowledge
(SWEBOK). ISO/IEC TR 19759 (2015). http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=67604

58. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology
visualization methods — a survey. ACM Comput. Surv. 39(4), 10 (2007)

59. Kühne, T.: Clarifying matters of (meta-) modeling: an author’s reply. Softw. Syst. Model.
5(4), 395–401 (2006)

60. Kühne, T.: Matters of (meta-) modeling. Softw. Syst. Model. 5(4), 369–385 (2006)
61. Martin, J., Odell, J.: Object-Oriented Analysis and Design. Prentice-Hall, Englewood Cliffs

(1992)
62. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology Library. Laboratory

For Applied Ontology - ISTC-CNR (2003). http://www.loa.istc.cnr.it/old/Papers/D18.pdf
63. McBride, T., Henderson-Sellers, B.: The Growing Need for Alignment, N5507. ISO/IEC

JTC1 SC7 (2012)
64. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Architectures.

Addison-Wesley, Boston (2002)
65. Mendes, O., Abran, A.: Software engineering ontology: a development methodology. Metrics

News. 9, 68–76 (2004)
66. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: WordNet: an on-line lexical

database. Int. J. Lexicogr. 3, 235–244 (1990)

How Ontologies Can Help in Software Engineering 43

http://dx.doi.org/10.1007/978-3-642-38490-5_31
http://www.conml.org/Resources_TechSpec.aspx
http://www.conml.org/Resources_TechSpec.aspx
http://www.charminfo.org/Resources/Technical.aspx
http://www.charminfo.org/Resources/Technical.aspx
http://www.charminfo.org
http://www.charminfo.org/Resources/Technical.aspx
http://www.charminfo.org/Resources/Technical.aspx
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm%3fcsnumber%3d62644
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm%3fcsnumber%3d62644
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm%3fcsnumber%3d67604
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm%3fcsnumber%3d67604
http://www.loa.istc.cnr.it/old/Papers/D18.pdf


67. Newell, A.: The knowledge level. Artif. Intell. 18(1), 87–127 (1982)
68. OMG. MDA Guide, omg/2003-06-01. Object Management Group (2003)
69. OMG. Unified Modelling Language Specification: Infrastructure. formal/05-07-05 (2006)
70. OMG. OMG Meta Object Facility (MOF) Core Specification. formal/2013-06-01 (2013).

http://www.omg.org
71. OMG. Semantics of Business Vocabulary and Business Rules (SBVR). formal/2015-05-07

(2015). http://www.omg.org/spec/SBVR/
72. Opdahl, A.L., Henderson-Sellers, B.: Ontological evaluation of the UML using the Bunge-

Wand-Weber model. Softw. Syst. Model. 1(1), 43–67 (2002)
73. Opdahl, A.L., Henderson-Sellers, B., Barbier, F.: Erratum to “ontological analysis of whole-

part relationships in OO models”. Inf. Softw. Technol. 43(9), 577 (2001)
74. Opdahl, A.L., Henderson-Sellers, B., Barbier, F.: Ontological analysis of whole-part

relationships in OO models. Inf. Softw. Technol. 43(6), 387–399 (2001)
75. Partridge, C.: A Couple of Meta-ontological Choices for Ontological Architectures.

LADSEB-CNR, Padova (2002)
76. Partridge, C.: Business Objects: Re-Engineering for Re-Use. 2nd edn. The BORO Centre,

412 p. (2005)
77. Partridge, C., Gonzalez-Perez, C., Henderson-Sellers, B.: Are conceptual models concept

models? In: Ng, W., Storey, Veda C., Trujillo, Juan C. (eds.) ER 2013. LNCS, vol. 8217, pp.
96–105. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41924-9_9

78. Rosemann, M., Green, P.: Developing a meta model for the Bunge-Wand-Weber ontological
constructs. Inf. Syst. 27(2), 75–91 (2002)

79. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented Modeling
and Design. Prentice-Hall, Englewood Cliffs (1991)

80. Schneider, L.: How to build a foundational ontology. In: Günter, A., Kruse, R., Neumann, B.
(eds.) KI 2003. LNCS, vol. 2821, pp. 120–134. Springer, Heidelberg (2003). doi:
10.1007/978-3-540-39451-8_10

81. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25 (2003)
82. Simons, P., Cameron, R.: A short glossary of metaphysics. In: Le Poidevin, R., et al. (eds.)

Routledge Companion to Metaphysics, pp. 578–599. Routledge, London (2009)
83. Stanford University. Stanford Encyclopedia of Philosophy (2015). http://plato.stanford.edu/.

Accessed 23 July 2015
84. Uschold, M.: Where are the semantics in the semantic web? AI Mag. 24(3), 25–36 (2003)
85. World Wide Web Consortium. SKOS Simple Knowledge Organization System Primer

(2009). http://www.w3.org/TR/2009/NOTE-skos-primer-20090818/
86. World Wide Web Consortium. OWL 2 Web Ontology Language (2012). http://www.w3.org/

TR/2012/REC-owl2-overview-20121211/

44 C. Gonzalez-Perez

http://www.omg.org
http://www.omg.org/spec/SBVR/
http://dx.doi.org/10.1007/978-3-642-41924-9_9
http://dx.doi.org/10.1007/978-3-540-39451-8_10
http://plato.stanford.edu/
http://www.w3.org/TR/2009/NOTE-skos-primer-20090818/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/


http://www.springer.com/978-3-319-60073-4


	How Ontologies Can Help in Software Engineering
	Abstract
	1 Context and Motivation
	2 Ontologies and Models
	2.1 Base Concepts in Models, Metamodels and Modelling Languages
	2.2 Base Concepts in Ontologies
	2.3 Differences Between Ontologies and Models
	2.4 Commonalities of Ontologies and Models

	3 Using Ontologies
	3.1 For Philosophical Grounding
	3.2 As Domain Models
	3.3 For Standardisation of Software Engineering

	4 Outlook
	Acknowledgements
	References


