
On the Semantics of Atomic Subgroups
in Practical Regular Expressions

Martin Berglund1,3, Brink van der Merwe2(B), Bruce Watson1,3,
and Nicolaas Weideman2,3

1 Department of Information Science,
Stellenbosch University, Stellenbosch, South Africa

2 Department of Computer Science,
Stellenbosch University, Stellenbosch, South Africa

abvdm@cs.sun.ac.za
3 Center for AI Research, CSIR, Stellenbosch University, Stellenbosch, South Africa

Abstract. Most regular expression matching engines have operators
and features to enhance the succinctness of classical regular expressions,
such as interval quantifiers and regular lookahead. In addition, matching
engines in for example Perl, Java, Ruby and .NET, also provide opera-
tors, such as atomic operators, that constrain the backtracking behavior
of the engine. The most common use is to prevent needless backtracking,
but the operators will often also change the language accepted. As such it
is essential to develop a theoretical sound basis for the matching seman-
tics of regular expressions with atomic operators. We here establish that
atomic operators preserve regularity, but are exponentially more succinct
for some languages. Further we investigate the state complexity of deter-
ministic and non-deterministic finite automata accepting the language
corresponding to a regular expression with atomic operators, and show
that emptiness testing is PSPACE-complete.

1 Introduction

In this paper we study atomic subgroups, a generalization of the feature
described by Jeffrey Friedl, in the first edition of his book on regular expres-
sions, as follows [Fri97]:

“A feature I think would be useful, but that no regex flavor that I know
of has, is what I would call possessive quantifiers. They would act like
normal quantifiers except that once they made a decision that met with local
success, they would never backtrack to try the other option. The text they
match could be unmatched if their enclosing subexpression was unmatched,
but they would never give up matched text of their own volition, even in
deference to an overall match.”

In the five and a half years between the first and second edition of Friedl’s
book, possessive quantifiers were introduced, and in the process gave way to

c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 14–26, 2017.
DOI: 10.1007/978-3-319-60134-2 2

On the Semantics of Atomic Subgroups in Practical Regular Expressions 15

atomic subgroups, making the prior a syntactic sugar for the latter. For exam-
ple, E*+ denotes a regular expression E with a possessive Kleene star applied,
which may also be written as (?>E*), where ?> makes the surrounding parenthe-
sis an “atomic subgroup”. Atomic subgroups “lock up” the part of the pattern it
contains once it has matched, a failure further on in the pattern is not allowed to
backtrack into the atomic group, but backtracking past it to previous subexpres-
sions works as usual. A common use of atomic subgroups is to prevent needless
backtracking and thus speedup matching time. For example, while the matcher
in Java will take exponential time in the length of the input string to estab-
lish that input strings of the form a . . . ab can not be matched by (a|a)*, by
essentially trying each possible way of matching an a in the input string with
respectively the first or the second a in (a|a), matching happens in linear time
when using (?>a|a)*, since the matcher “forgets” each time after using the first
a in (?>a|a) to match an a, that it was also possible to use the second. Atomic
subgroups are implemented in, among others, the Java, .NET, Python, Perl,
PHP, and Ruby standard libraries, and in libraries such as Boost and PCRE.

Paper outline. In the next section we introduce the required notation followed
by a section on the matching semantics of a-regexes (regular expressions with
atomic subgroups). Then a section on the descriptional complexity of a-regexes
and the complexity of deciding emptiness follows. After this, we briefly discuss
how we arrived at our matching semantics definition, followed by our conclusions.

2 Definitions and Notation

An alphabet is a finite set of symbols. When not otherwise specified, Σ denotes
an arbitrary alphabet. A regular expression over Σ is, as usual, an element of Σ∪
{ε, ∅} (ε denotes the empty string), or an expression of one of the forms (E1 |E2),
(E1 · E2), or (E∗

1), where E1 and E2 are regular expressions. Some parenthesis
may be elided using the rule that the Kleene closure ‘∗’ takes precedence over
concatenation ‘·’, which takes precedence over union ‘|’. In addition, outermost
parenthesis may be dropped and E1 · E2 abbreviated as E1E2. The language
matched by an expression is defined in the usual way. Furthermore, an alphabet
S = {s1, . . . , sn} used as an expression S is an abbreviation for s1 |· · ·|sn, and for
any expression E we may write Ek as an abbreviation for E · · · E, i.e. k copies
of E (so |Ek| = k|E|, where |E| denotes the number of symbols in |E|, i.e. the
size of E). Regular expressions set in typewriter font are examples of the Java
syntax (same as most other libraries), which is not fully described here.

For a set S let 2S denote the powerset of S. For a string w and a set of strings
S, let w� S = {v | wv ∈ S}. A singleton set S and the single string may be used
interchangeably. The union, concatenation and Kleene star of languages (over
an alphabet Σ) is defined as usual. For a possibly infinite sequence v1, v2, . . .
let dedup(v1, v2, . . .) denote the list (always finite in the uses in this paper)
resulting when only the first instance of each value in the sequence is retained
(e.g. dedup(1, 2, 2, 1, 4, 3, 4) = 1, 2, 4, 3). The concatenation of two sequences

16 M. Berglund et al.

σ = v1, . . . , vm and σ′ = v′
1, . . . , v

′
n is denoted by σ, σ′ and defined to be the

sequence v1, . . . , vm, v′
1, . . . , v

′
n. For a string w ∈ Σ∗ and sequence σ = v1, . . . , vm

with vi ∈ Σ∗, we denote by wσ the sequence wv1, . . . , wvm.

Remark 1. In many real-world systems the primary primitive for regular expres-
sion matching is a substring finding one, where an input string w is searched
for the left-most longest substring which matches the expression. Here we take
(mostly) the more classical view, concerning ourselves with the strings matched
entirely by the expression (with the exception of Definition 4). When we write
e.g. a∗b the corresponding Java regular expression is ^a*b$, the caret and dollar
sign being special operators which “anchor” the match to the ends of the string.

As usual we will need to consider finite automata in some of the following.

Definition 1. A non-deterministic finite automaton (NFA) is a tuple A =
(Q,Σ, q0, δ, F) where: (i) Q is the finite set of states; (ii) Σ is the input alpha-
bet; (iii) q0 ∈ Q is the initial state; (iv) δ ⊆ Q × (Σ ∪ {ε}) × Q is the transition
relation; and (v) F ⊆ Q is the set of final states.

The language L(A) accepted by A is precisely the strings w = α1 · · · αn where
αi ∈ Σ ∪ {ε} for all i, such that there exists states q0, . . . , qn ∈ Q, where q0 is
the initial state, (qi, αi+1, qi+1) ∈ δ for each i, and qn ∈ F .

For brevity we may write e.q. AQ to denote the states of A, Aδ for the transition
function, and so on. Also, |A| denotes the number of states in A.

Definition 2. An NFA with negative regular lookaheads (NFA with lookaheads
for short) is an NFA A = (Q,Σ, q0, δ, F), where δ may contain transitions of
the form (q, α,¬E, q′) ∈ δ, where E is a regular expression over Σ.

The language is as in Definition 1 except a transition (q, α,¬E, q′) ∈ δ may
only be used when the remainder of the input string is not in L(E).

We use lookaheads to demonstrate the regularity of atomic subgroups in an
intuitive way. For this purpose, note that NFA with lookahead can only represent
regular languages, as the lookaheads may be implemented by complementation
and intersection of regular languages (that is, a product automaton tracking all
lookaheads in parallel with the main expression).

3 Regular Expression Semantics and Atomic Subgroups

Informally, atomic subgroups are defined in terms of the depth-first search nature
of matchers (such as in e.g. Java), in that the implementation will discard the
portion of the stack (recording decisions made) corresponding to the atomic sub-
group upon exiting the group. That is, the matcher will not reconsider choices
made within the atomic subgroup once it has started to match the expression
immediately following the group, though it may reconsider the choices made
before entering the atomic subgroup, in which case the atomic subgroup match-
ing will also be reconsidered.

On the Semantics of Atomic Subgroups in Practical Regular Expressions 17

Definition 3. An a-regex over Σ is an element of Σ ∪ {ε, ∅}, or an expression
of the form (E1 |E2), (E1 ·E2), (E∗

1), or (�E1), where E1 and E2 are a-regexes. A
subexpression of the form (�E), for an expression E, is referred to as an atomic
subgroup (that is, where it is styled as (?>E) in e.g. Java we write (�E)).

Before going into the definition proper let us first give some informal examples
of the semantics of atomic subgroups (agreeing with those in practical software).

Example 1. The expression (�b∗)b matches nothing, as the atomic subgroup will
consume all bs available and refuse to give one up for the final b subexpression.
Meanwhile, the expression a∗(�ab | b∗)b will match {anb2 | n ≥ 1}. For example,
on a2b2 the matcher will first have the a∗ subexpression consume all as, then the
b∗ in the atomic subgroup “steals” all bs, making the match fail. However, as the
atomic subgroup will not relinquish a b the matcher will backtrack past it into
a∗, having it match one less a, after which reconsidering the atomic subgroup
instead matches its preferred ab, leaving the final b to be matched by the end
of the expression. Note that there exist E such that L(�E) �= L(E), and more
precisely, L(�E) ⊆ L(E) in general. For example (�a |aa) does not match aa as
it will always prefer to just match the first a without possibility of backtracking.

Example 2. A key use of atomic subgroups in practical matching is to limit
ambiguity for performance reasons (e.g. avoiding pitfalls such as those formal-
ized in [WvdMBW16]). Consider the following expression for matching email
addresses, extracted from the RegExLib repository [Reg] (here slightly simplified):

[0-9a-z]([-.\w]*[0-9a-z])*@(([0-9a-z])+([-\w]*[0-9a-z])*\.)+[a-z]{2,9}

We do not give a complete explanation of the syntax and matching behav-
ior of this expression, but there are two dangerous subexpressions here. Firstly,
([-.\w]*[0-9a-z])* is (exponentially) ambiguous on the string a · · · a since
both [-.\w] and [0-9a-z] represents subalphabets containing a, and thus aa
can be matched in more than one way by ([-.\w]*[0-9a-z])*. Using this
regular expression, in e.g. a Java system, to validate that a user has provided
a valid email address, would leave the system open to a regular expression
denial of service attack. To make it safe one would replace this subexpression by
(?>([-.\w]*[0-9a-z])*). The refusal to backtrack, introduced by using ?>,
will have no effect on the language accepted, as the next symbol in the input
sting must be an @, and the subgroup cannot read @. A similar problem, and
solution, exist for the subexpression ([-\w]*[0-9a-z])*). This kind of perfor-
mance concern apply especially in expressions using back references, which are
necessarily very expensive to match in the face of ambiguity (unless P equals
NP [Aho90]).

Example 3. The example eliciting the quote from [Fri97] on the introductory
page concerned writing a regular expression for rounding decimal numbers. The
expression should match a decimal number if it; either has more than two dig-
its on the right of the decimal point; and; if the third is non-zero, it has more

18 M. Berglund et al.

than three. It would match 12.750001 with the intent of rounding to 12.75, and
match 2.1250 to round to 2.125, but not match 2.125 (in almost all practical
regular expression matchers the substring matched by a certain subexpression
can be extracted after matching, which is used in this example). Friedl suggests
the expression ([1-9][0-9]*\.([0-9][0-9]([1-9]|ε)))[0-9][0-9]*, where [x-z]

is shorthand for x | · · · | z, with the intent of using the first parenthesized subex-
pression (i.e. ([1-9] [0-9]*\.([0-9] [0-9]([1-9]|ε)))) to “capture” the rounded
number. This is incorrect however, as the number 2.125 would get 2.12 captured
with the 5 being used to satisfy the final [0-9]. It is non-trivial to rewrite with-
out interfering with having the rounded substring be the one matched by the
first subexpression. This suggested the invention of atomic subgroups, i.e. the
ability to force the first subexpression to not not give up the trailing 5 once it
has matched it in for example 2.125, even though this makes the overall match
fail, realizing the intended language.

For classical regular expressions the language being accepted can be defined
inductively in terms of operations on the languages accepted by the subexpres-
sions, e.g. L(E1 · E2) = {wv | w ∈ L(E1), v ∈ L(E2)}, but this is not the case
for a-regexes. Instead we have to opt for a left-to-right approach on a specified
input string w, where a subexpression acts upon some prefix of the suffix of w
left to be matched. This definition was arrived at by careful analysis of the Java
implementation – see Sect. 5 for a discussion on this process.

Definition 4. For any a-regex E and string w let m(E,w) denote the sequence
of (not necessarily strict) prefixes of w which E matches, in order of priority.
Then for all w:

– m(ε, w) = ε, the list consisting of a single element, the empty string,
– m(α,w) = α if α ∈ Σ and w starts with α, otherwise m(α,w) is empty,
– m(E |E′, w) = dedup(m(E,w),m(E′, w)) (the concatenation deduplicated),
– m(E∗, w) = dedup(v1σ1, v2σ2, . . . , vnσn, ε) where m(E,w) = v1, . . . , vn and

for each i, σi = m(E∗, vi � w) if vi �= ε, and σi = ε otherwise,
– m(E ·E′, w) = dedup(v1m(E′, v1 � w), . . . , vnm(E′, vn � w)) where m(E,w) =

v1, . . . , vn,
– m((�E), w) = v1 if m(E,w) is non-empty and equal to v1, . . . , vn, otherwise

m((�E), w) is empty.

The language matched by E is denoted La(E) and defined as

{w | w ∈ Σ∗ occurs in m(E,w)}.

Remark 2. Note that setting σi = ε when vi = ε in the definition of m(E∗, w)
above, is required in order to avoid infinite recursion in the definition. Regular
expressions with subexpressions of the form E∗, such that ε ∈ L(E), are so-
called problematic regular expressions. These are special enough that they are
a source for differences in matching behavior in some implementations, and are
considered in for example [SMV12,BvdM16].

On the Semantics of Atomic Subgroups in Practical Regular Expressions 19

Remark 3. We can define m(E∗?, w), where E∗? denotes the lazy Kleene star of
E by moving the ε to the front in a definition otherwise similar to m(E∗, w):
m(E∗?, w) = dedup(ε, v1σ1, v2σ2, . . . , vnσn). Intuitively, E∗? repeats match-
ing with E as few times as possible, whereas E∗ does the opposite. Thus
m(E∗?, an) = {ε, a, . . . , an} whereas m(E∗, an) = {an, an−1, . . . , ε}.

Remark 4. Atomic subgroups may be compared to cuts [BBD+13], a proposed
alternative to concatenation, denoted R1 ! R2 for expressions R1 and R2. The
expression R1 !R2 forces a “greedy” (i.e. longest possible prefix) match with R1,
whereas (�R1)R2 forces R1 to pick the “first” match according to a priority
implied by the syntactic details of the expression R1. So, for example, whereas
L((�ε|a)ab∗) equals ab∗, the cut expression (ε|a)!ab∗ would match aab∗. As such
the cut is a normal operator on languages with two arguments, whereas atomic
subgroups depend on the structure of the expressions.

Lemma 1. For a regular expression E the sequence m(E,w) contains each pre-
fix w′ of w with w′ ∈ L(E) precisely once, and m(E,w) contains no other strings.
As a direct effect it holds that L(E) = La(E).

Proof. Follows by induction on the number of operators appearing in E. 	

In the remainder of the paper we simply use the notation L(E), instead of

La(E), for an a-regex E. Let us consider some of the properties of a-regexes.

Lemma 2. For a-regexes E and F we have the following properties.

(i) L(EF) ⊆ L(E)L(F) (ii) L(E |F) = L(E) ∪ L(F) = L(F |E)
(iii) L(E∗) ⊆ L(E)∗ (iv) L(�E) ⊆ L(E)

Also (i) is an equality if E is a regular expression. In addition, there exists E
and F such that L(EF) � L(E) · L(F), L(E∗) � L(E)∗ and L(�E) � L(E).

Proof. Follows from Definition 4, e.g. abab /∈ L((�aba∗)∗) � L((�aba∗))∗ � abab
exemplifies property (iii). 	

In addition to the language captured, let us make the ordered nature of the
semantics which Definition 4 gives to each expression an explicit property.

Definition 5. For a-regexes F and G, we define F and G to be language equiva-
lent, denoted by F ≡L G, if L(F) = L(G), whereas F and G are order equivalent,
denoted by F ≡O G, if m(F,w) = m(G,w) for all w ∈ Σ∗.

Lemma 3. The following language and order equivalences hold.

(i) (FG)H ≡O F (GH) (ii) (F |G) | H ≡O F |(G | H)
(iii) (F ∗)∗ ≡O F ∗ (iv) F ≡O G implies F ≡L G

However, there exists some F and G fulfilling each of the following inequalities.

(v) F |G �≡O G |F (vi) (�FG) �≡L (�F)(�G) (vii) F ≡L G but F �≡O G

20 M. Berglund et al.

Proof. Follows directly from Definition 4. For (�FG) �≡O (�F)(�G) take e.g.
F = Σ∗ and G = a, which makes L((�F)(�G)) empty. 	

Order equivalence captures the semantics precisely: if two expressions are not
order-equivalent contexts exist where replacing one with the other (as subexpres-
sions of some expression) will result in different languages being accepted.

Lemma 4. Let F and G be two a-regexes over Σ. Let E and E′ be a-regexes
over Σ ∪ {#} (we assume # /∈ Σ) such that E′ is obtained from E by replacing
the subexpression F by the subexpression G. Then: (i) F ≡O G implies E ≡O E′

for all E; and; (ii) F �≡O G implies E �≡L E′ for some E.

Proof. Statement (i) follows from Definitions 4 and 5, since having order equiv-
alence means that m(F,w) = m(G,w) for all w, and the sequences m(F,w)
and m(G,w) entirely determine the influence of the subexpressions F and G on
m(E,w) and m(E′, w), respectively.

For statement (ii), take w such that m(F,w) �= m(G,w) and let m(F,w) =
v1 · · · vn and m(G,w) = v′

1 · · · v′
n′ . If {v1, . . . , vn} �= {v′

1, . . . , v
′
n′} the languages

L(F) and L(G) already differ when restricted to prefixes of w, so just take E = F ,
E′ = G and we are done. Otherwise, let i be the smallest index with vi �= v′

i. As
vi and v′

i are both prefixes of w, we may assume without loss of generality that
w = viw2 = v′

iw1w2, with w1 �= ε. Now construct E = (�F (w2## | w1w2#))#,
which makes E′ = (�G(w2## | w1w2#))#. Then w## �∈ L(E), while w## ∈
L(E′). To see, for example, why w## �∈ L(E), note that as a subexpression, F
has to match either vi or v′

i in order to make it through the atomic subgroups
in E, when attempting to match w## with E. However, during this matching
process, the a-regex F will in fact use vi and not v′

i, since vi appears before v′
i in

m(E,w). Since using vi will cause both # end-markers to be used in the atomic
subgroup, we have that w## is not matched by E. 	

4 Automata Construction and Complexity Results

Despite the rather special semantics, adding atomic subgroups to regular expres-
sions does in fact preserve regularity, though with a high state complexity.

Lemma 5. For every a-regex E there exists a finite automaton A with L(E) =
L(A).

Proof. We first consider the case where E contains no subexpression of the form
F ∗, with ε ∈ L(F). This restriction ensures that the constructed NFA contain
no ε-loops, and thus each input string has only finitely many acceptance paths.

We inductively construct an NFA for each a-regex E, denoted by M(E),
with lookaheads and prioritized ε-transitions (a concept to be defined below),
such that not only L(M(E)) = L(E), but also such that M(E) encodes (to be
made precise below) for each string w the order in which prefixes w′ of w with
w′ ∈ L(E), appear in m(E,w). M(E) has a single accept state with no outgoing
transitions. With the exception of the final state, each state p in M(E) has

On the Semantics of Atomic Subgroups in Practical Regular Expressions 21

outgoing transitions of one of the following forms: (i) p has a single transition to
a state q on a symbol from Σ ∪ {ε}; (ii) p has transitions on ε to states q1 and
q2, but p → q1 has higher priority (a concept used and defined next to ensure
that each w ∈ L(E) has a unique accepting path in M(E)) than p → q2. Also,
prioritized ε-transitions may have regular lookahead.

Given a string w ∈ L(G), we define an accepting path for w as usual, but
whenever we encounter a state with transitions of type (ii), we always pick the
higher priority transition if taking this transition will still make acceptance of
w possible. By doing this, each w ∈ L(E) will have a unique accepting path in
M(E). Note that in terms of language accepted, the priorities on transitions play
no role. Also, note that if w′ and w′′ are both prefixes of a string w, with w′, w′′ ∈
L(E), then the accepting paths ap(w′) and ap(w′′) of w′ and w′′ respectively,
will be such that at some state p with prioritized outgoing ε-transitions, the one
acceptance path will take the higher priority transition and the other the lower
priority transition. The priorities on transitions at states with two outgoing ε-
transitions can thus be used to define an ordering on all prefixes of w in L(E),
denoted by the sequence M(E,w). By constructing M(E) inductively over the
operators in E, we show that M(E,w) = m(E,w) for all w ∈ Σ∗, which will
also imply that we have L(M(E)) = L(E). See Fig. 1 for examples.

The construction of M(E), when E = ∅, ε or a, for a ∈ Σ, is as usual. Now
suppose M(Ei), for i = 1, 2, is already constructed, and M(Ei, w) = m(Ei, w)
for all w ∈ Σ∗. Also, assume pi and qi are the initial and final states in Ei.
Next we describe the construction of (i) M(E1|E2), (ii) M(E1E2), (iii) M(E1

∗)
and (iv) M((�E1)), and leave it to the reader to verify from Definition 4 that
M(E,w) = m(E,w), for all w ∈ Σ∗, in each of these four cases.

(i) Create a new initial state p and final state q. In addition to these two states,
we use the states and transitions as in E1 and E2. We add prioritized ε-
transitions from p to p1 and p2, with p → p1 having higher priority. We also
add ε transitions from q1 and q2 to q.

(ii) We use the states and transitions as in E1 and E2 and merge states q1 and
p2. We use p1 as initial and q2 as final state.

Fig. 1. NFA with lookahead constructed as defined in Lemma 5. Wavy and dashed lines
represent high and low priority transitions respectively. Negative lookaheads are shown
in angle brackets. On the left the expression ab | b∗, in the middle the same expression
inside an atomic subgroup, getting the prioritized edges augmented by lookaheads on
the low-priority case. Right is the full result for an expression discussed in Example 1.

22 M. Berglund et al.

(iii) Create a new final state q and relabel the old final state q1 in E1 as the new
initial state. In addition to the state q, we use the states and transitions as
in E1. We add prioritized ε-transitions from q1 to p1 and q, with q1 → p1
having higher priority.

(iv) We keep the states and transitions as in E1, but for all states p′ having
prioritized ε-transitions to q′

1 and q′
2 (with p′ → q′

1 having highest priority),
we add regular lookahead ¬(E1)p′,q′

2
to p′ → q′

2, where (E1)p′,q′
2

is obtained
as follows. Let (E1)q′

1
be a regular expression for the language accepted by

M(E1) when q′
1 is initial, then (E1)p′,q′

2
= (E1)q′

1
Σ∗.

Next we discuss the modifications required for subexpression of the form E1
∗,

with ε ∈ L(E1). In the construction of E1
∗ given in (iii) above we end up with

potentially infinitely many acceptance paths for some strings when ε ∈ L(E1).
This problem can be addressed by a procedure called flattening, described in the
proof of Theorem 3 in [BvdM16]. According to Definition 4, in cases where ε
is the next prefix that should be matched (by the subexpression E1) based on
priority of prefix matching, the process of matching with E1 (again) is disallowed.
Flattening ensures this behavior by replacing consecutive ε-transitions (on a path
in the NFA) with a single ε-transition, while taking all lookaheads on a given
path of ε-transitions and replacing them with a regular expression equivalent
to the intersection of encountered lookaheads. Once we apply this procedure, ε-
selfloops may be obtained, which are simply not used in the flattened version of
M(E1

∗). It should be noted that applying the flattening procedure may produce
states with more than two outgoing prioritized transitions. 	

Remark 5. The proof above can allow for lazy Kleene closures by switching the
priorities of the outgoing ε-transitions from state q1 in M(E∗

1).

Lemma 6. For every a-regex E there exists an NFA A such that L(E) = L(A)
and |A| ∈ 2O((k+1)|E|) where k is the number of atomic subgroups in E.

Proof (sketch). A Boolean automaton with n states can be simulated by an NFA
with 2n + 1 states [HK11], and can be used to implement lookaheads. Without
a complete definition, note that Boolean automata may have transitions of the
form (q, α, (p ∧ ¬p′)), i.e., one can in q accept αw if w can be accepted from p
but it cannot be accepted from p′ ([HK11] does not permit α = ε, but without
ε-loops and each state having either transitions on symbols or ε, but not both,
ε-transitions can be removed by replacing a state with the Boolean formula
defining the transition on ε, in other Boolean formulas). A transition from q to
p with lookahead ¬F can be simulated in a Boolean automaton by constructing
a Boolean automaton A with L(F) = L(A) and (q, ε, (p ∧ ¬Aq0)) ∈ Aδ.

To complete the proof we argue that the NFA with lookaheads M(E) con-
structed in the proof of Lemma 5 can be converted into a Boolean automaton
with O((k + 1)|M(E)|) states, where k is the number of atomic subgroups in
E. Notice that M(E) has O(|E|) states as constructed. As only the language
matters, prioritized transitions are treated as ε-transitions.

On the Semantics of Atomic Subgroups in Practical Regular Expressions 23

Consider a lookahead ¬GΣ∗ added to a transition when constructing M(�F)
in Lemma 5. Notice that there will exist some q ∈ M(FΣ∗)Q such that L(GΣ∗)
is accepted by M(FΣ∗) when starting in q (choosing the q which corresponds to
the higher-priority choice). As such, let {E1, . . . , Ek} be all the subexpressions
such that each (�Ei) occurs in E. Then construct the disjoint union of all these
automata A = M(E)∪M(E1Σ

∗)∪· · ·∪M(EkΣ∗) taking Aq0 = M(E)q0 . Then,
for each transition (q, α,¬GΣ∗, p) in A find the state r such that A accepts
L(GΣ∗) when started in r (as noted above r was originally in M(EiΣ

∗)Q for
the Ei most closely enclosing this transition), and replace the transition by
(q, α, (p ∧ ¬r)). The intersected lookaheads created by the flattening at the end
of Lemma 5 can be handled by a conjunction of lookaheads in the formula. 	

Theorem 1. The class of languages matched by a-regexes is precisely the class
of regular languages.

Proof. This follows from the combination of Lemma 1, as a regular expression is
an a-regex representing the same language, and Lemma 5, demonstrating that
a finite automaton can describe the language of an a-regex. 	

We now demonstrate that a-regexes are exponentially more succinct than
regular expressions for some languages. We start with two utility lemmas, which
demonstrate that we can perform a limited set subtraction and intersection of
languages using atomic subgroups.

Lemma 7. For a-regexes F and G over the alphabet Σ with ε �∈ L(G) we have
that L((�(FΣ∗ | ε))G) = L(G) \ L(FΣ∗).

Proof. From L(�FΣ∗) = L(FΣ∗) (both consist of all strings which have a prefix
in L(F)) and ε �∈ L(G) it follows that L((�(FΣ∗ | ε))G) ∩ L(FΣ∗) = ∅. To
complete the proof we need to show that if w ∈ L(G) but w �∈ L(FΣ∗), then
w ∈ L((�(FΣ∗ |ε))G). This is indeed the case since w �∈ L(FΣ∗) implies that ε,
and not FΣ∗, is used when matching a string w with (�(FΣ∗ | ε))G. 	

Lemma 8. Let E1, . . . , En be a-regexes over the alphabet Σ and # �∈ Σ. Then
there is an a-regex E over the alphabet Σ∪{#} such that |E| ≤ cn|Σ|+∑n

i=1 |Ei|,
for some constant c, and L(E) = (L(E1) ∩ . . . ∩ L(En))#.

Proof. Let Γ = Σ ∪ {#}. The language equality when replacing Σ by Γ in
Lemma 7 becomes:

L((�(FΓ ∗ | ε))G) = L(G) \ L(FΓ ∗) (1)

Let E′
1 = (�(E1#Γ ∗ | ε))Σ∗# be the lhs of (1) when setting F = E1# and G =

Σ∗#. Then from (1) we have L(E′
1) = L(Σ∗#)\L(E1#Γ ∗) = (L(Σ∗)\L(E1))#.

Next, let E1,2 = (�(E′
1Γ

∗ | ε))E2#, again forming the lhs of (1) when taking
F = E′

1 and G = E2#. Again from (1) we have L(E1,2) = L(E2#) \ L(E′
1) =

(L(E1) ∩ L(E2))#. The result now follows by repeating this construction. 	

Using the above lemmas we can now demonstrate a lower bound on the

worst-case state complexity of an a-regex.

24 M. Berglund et al.

Theorem 2. There exists a sequence F1, F2, . . . of a-regexes of increasing size
such that the number of states in a minimal DFA for L(Fn) is in 22

Ω(
√

|Fn|)
.

Proof. By using Lemma 8 we obtain a sequence of a-regexes Fn with L(Fn) =
Σ∗a((Σp1)+ ∩ . . .∩ (Σp1)+)# and |Fn| ∈ Θ(p1 + . . .+ pn), where a ∈ Σ, |Σ| ≥ 2
and p1, . . . , pn the first n prime numbers. Note that L(Fn) = Σ∗a(Σrn)+#,
where rn = p1 · p2 · . . . · pn. Let D(Ln) be the complete minimal DFA for L(Fn)
and s(n) the number of states in D(Fn). Thus s(n) = 2rn+1 + 2 (which can for
example be verified by using derivatives). By showing that rn ∈ 2Ω(

√
p1+...+pn)

we thus have that s(n) ∈ 22
Ω(

√
|Fn|)

. To obtain that rn ∈ 2Ω(
√

p1+...+pn), make use
of the results stating that; the sum of the first n prime numbers is asymptotically
equal to (n2 ln n)/2; and; the product of the first n prime numbers (the so called
primorial function), is equal to e(1+o(1))n lnn. 	

For NFA the lower bound on worst-case state complexity indirectly estab-
lished in Theorem 2 (2Ω(

√
n) for NFA) can be improved upon.

Theorem 3. For every integer k ≥ 1 there exists an a-regex Ek of size O(k)
such that a state minimal NFA (and thus also every regular expression) for L(Ek)
contains 2Ω(k) states. Furthermore, Ek contains only one atomic subgroup.

Proof. Let Σ = {0, 1} and for k ≥ 1 let F = Σ∗(0Σk−11 |1Σk−10) and G = Σ2k

in Lemma 7. Then if Ek = (�(FΣ∗ | ε))G, we have, via Lemma 7, that

L(Ek) = L(G) \ L(FΣ∗) = Σ2k \ L(Σ∗(0Σk−11 |1Σk−10)Σ∗) = {ww |w ∈ Σk}.

To complete the proof, note that from the pigeon-hole principle it follows that
no NFA with fever than 2k states can accept the language L(Ek) (for a detailed
argument see the proof of Theorem 6 in [BBD+13] where a language very similar
to L(Ek) is considered). 	

Finally we show that deciding emptiness of a-regexes is PSPACE-complete.

Theorem 4. The problem of deciding whether L(E) = ∅, for an a-regex E, is
PSPACE-complete.

Proof. First we show that deciding emptiness is PSPACE-hard. With Γ =
Σ ∪ {#}, where # �∈ Σ, and E′

1 = (�(E1#Γ ∗ | ε))Σ∗#, we have from the
proof of Lemma 8 that L(E′

1) = (L(Σ∗) \ L(E1))#. Thus L(E′
1) = ∅ precisely

when L(E1) = Σ∗. Since deciding if L(E1) = Σ∗ for a regular expression E1 is
PSPACE-hard, we have that deciding emptiness for a-regexes is PSPACE-hard.

It can be decided whether L(E) = ∅ in PSPACE by constructing the Boolean
automaton described in the proof of Lemma 6 (polynomial in the size of E),
this automaton can then be converted into an alternating finite automaton and
emptiness-checked in PSPACE using results from [HK11]. 	

On the Semantics of Atomic Subgroups in Practical Regular Expressions 25

5 On Arriving at the Semantics

The atomic subgroups semantics defined in this paper should agree with most
common regular expression libraries, but the reference point primarily used has
been the Java implementation (where they are called “independent subgroups”).
The priorities of Definition 4 follow from the depth-first search implementation
which Java and many others use (or at least simulate the effects of), seman-
tics which are treated at length in [BvdM16], where the specifics of the Java
implementation are also described. For atomic subgroups specifically a further
analysis of the Java source code (version 8u40-25) was performed. In so doing we
informally deduced the stack-discarding behavior which causes the atomic sub-
group semantics in Java. However, the source code for the matcher itself is close
to 6000 lines, supported by several other classes, and has little documentation,
making a truly formal proof of equivalence fall outside the scope of this paper.

To corroborate the semantics of Definition 4 without a formal proof an
implementation computing m(E,w) for any expression E and string w was cre-
ated. This was compared to Java using both a full match (i.e. verifying that
w ∈ m(E,w) if and only if E matches w in Java), and by comparing the pre-
ferred prefixes (where the prefix of a string w matched by an expression E in
Java is compared with the first element in m(E,w)). All strings w ∈ {a, b, c}∗

with |w| ≤ 5 were tested against all expressions with up to three operations,
with no discrepancies found between Java and the definition.

6 Conclusions and Future Work

While this paper gives formal definitions and some key results on the previously
only informally documented atomic subgroups, numerous open questions remain.
Specifically, the complexity of the uniform membership problem (it is linear in
the non-uniform case due to the regularity of a-regexes) remains open (O(n3)
appears likely). Also, the worst-case bounds on the minimum number of states
required to accept the language matched by an a-regex are not tight, with DFA
having the span between 22

Ω(
√

|E|)
and 22

O((k+1)|E|)
(where k is the number of

atomic subgroups in E), and NFA between 2Ω(|E|) and 2O((k+1)|E|).

References

[Aho90] Aho, A.: Algorithms for finding patterns in strings. In: van Leeuwen, J.
(ed.) Handbook of Theoretical Computer Science, vol. A, pp. 255–300.
MIT Press (1990)

[BBD+13] Berglund, M., Björklund, H., Drewes, F., van der Merwe, B., Watson,
B.: Cuts in regular expressions. In: Béal, M.-P., Carton, O. (eds.) DLT
2013. LNCS, vol. 7907, pp. 70–81. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38771-5 8

[BvdM16] Berglund, M., van der Merwe, B.: On the semantics of regular expres-
sion parsing in the wild. Theor. Comput. Sci. (2016). doi:10.1016/j.tcs.
2016.09.006

http://dx.doi.org/10.1007/978-3-642-38771-5_8
http://dx.doi.org/10.1007/978-3-642-38771-5_8
http://dx.doi.org/10.1016/j.tcs.2016.09.006
http://dx.doi.org/10.1016/j.tcs.2016.09.006

26 M. Berglund et al.

[Fri97] Friedl, J.: Mastering regular expressions, 1st edn. O’Reilly & Associates
Inc. (1997)

[HK11] Holzer, M., Kutrib, M.: Descriptional and computational complexity
of finite automata—a survey. Inf. Comput. 209(3), 456–470 (2011)

[Reg] RegexAdvice.com. Regular expression library. http://regexlib.com.
Accessed 9 Jan 2017

[SMV12] Sakuma, Y., Minamide, Y., Voronkov, A.: Translating regular expres-
sion matching into transducers. J. Appl. Logic 10(1), 32–51 (2012)

[WvdMBW16] Weideman, N., van der Merwe, B., Berglund, M., Watson, B.: Analyz-
ing matching time behavior of backtracking regular expression match-
ers by using ambiguity of NFA. In: Han, Y.-S., Salomaa, K. (eds.)
CIAA 2016. LNCS, vol. 9705, pp. 322–334. Springer, Cham (2016).
doi:10.1007/978-3-319-40946-7 27

http://regexlib.com
http://dx.doi.org/10.1007/978-3-319-40946-7_27

http://www.springer.com/978-3-319-60133-5

	On the Semantics of Atomic Subgroups in Practical Regular Expressions
	1 Introduction
	2 Definitions and Notation
	3 Regular Expression Semantics and Atomic Subgroups
	4 Automata Construction and Complexity Results
	5 On Arriving at the Semantics
	6 Conclusions and Future Work
	References

