
Chapter 2
Theory

In this chapter, we build the theoretical outline for understanding the fundamental
electrodynamic and photophysical properties of a fluorescent emitter. We start with
a quantummechanical picture where we introduce a fluorescent molecule as a dipole
emitter with a fixed transition dipole moment oriented in its molecular structure.
Thereafter, we consider a dipole in an empty box with boundary conditions on the
electromagnetic field’s periodicity, in order to determine its absorption and emis-
sion coefficients and connect these properties with its spontaneous emission rates. In
order to account for its emission properties in the presence of a dielectric or a metal
interface, we introduce a dipole in a semi-classical quantum optical framework. We
start from a basic description of plane waves using Maxwell’s equations, Fresnel’s
equations for reflection and transmission, etc. and ultimately calculate the total radi-
ation power of a dipole as a function of its distance and orientation from such an
interface. This completes our introduction to the concept of Metal Induced Energy
Transfer (MIET).

2.1 Quantum Mechanical Picture of Fluorescence

From a quantum mechanical viewpoint fluorescence is a process which involves
a repeated transition of a molecule between two quantized energy states (or the
transition of electrons between two molecular orbitals) given by wave functions,
say ψ1 and ψ2. The excitation from the ground state to the excited state takes place
following an absorption of a photon of energy hν, followed by the decay of the
molecule from the excited state back to the ground state. This is achieved either by the
emissionof a photon, or non-radiatively by transferring the energy to the surroundings
or lost internally. The excitation and de-excitation processes are accompanied by
perturbations in the delocalized electron cloud over themolecule’s framework. These
perturbations depend on the probability of a transition between two energy states
and also on the selection rules based on the symmetry of the structure of molecular
orbitals involved. Therefore, each transition takes place along a preferred direction
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in the molecule’s framework which is known as the transition dipole moment, and
the magnitude of this vector represents the probability of this transition. Below, we
will briefly introduce this concept and touch upon some fundamental photophysical
properties of a fluorescent molecule that are otherwise hard to explain from a purely
classical framework.

2.1.1 Molecular Excitation and Emission

A complete explanation for the electronic spectra of molecules is extremely com-
plex. An electronic transition is coupled with vibrational and rotational transitions
which makes it even more complicated. However, in this section we will state some
general rules and fundamental principles associated with the excitation and emission
phenomena of fluorescent dyes. We refrain ourselves from dealing with the detailed
quantum chemical treatment of the molecular states (those who wish to dive into
the ocean might start by referring to excellent books such as [1]). To begin with, the
molecular states are treated as a linear combination of all the atomic orbitals involved,
which acts as a good starting point for themolecular orbital theory. Thewavefunction
of a molecule in each state gives the overall probability of the electron’s position in
space.

Keeping the discussion between two nuclei and a single electron for the sake
of simplicity, when two atomic orbitals φ1 and φ2 interact, two molecular orbitals
ψ+ = φ1 + φ2 and ψ− = φ1 − φ2 are formed, where ψ+ has lower energy, and
is therefore called as bonding orbital, than ψ−, which we call as an antibonding
orbital. The potential energy curves, as a function of the internuclear distance, can
be obtained by calculating the Hamiltonian over these wavefunctions. The potential
energy depends on electron-nuclei interactions, the angular momentum of the elec-
tron’s spin around its own axis and in the orbital, spin-orbital coupling, and other
factors which play a major role in deciding the fate of the electron in each state.
Figure2.1 shows the general characteristics of potential energy observed for a bond-
ing and antibonding orbital. Depending on the symmetry and shape of the atomic
orbitals involved, the molecular orbitals can be singly (σ) or doubly degenerate (π).
In a many electron system, the electron-electron repulsion plays a dominant role too.
Due to these interactions, the electrons occupy the energy states starting from the
lowest energy state following Hund’s rule of maximum multiplicity for the electron
spin and Pauli’s exclusion principle. The Highest Occupied Molecular Orbital is
called the HOMO and the Lowest Unoccupied Molecular Orbital, above the HOMO
in the energy ladder is termed the LUMO. We must emphasize here that for many
electron systems, the potential energy between two nuclei is the effective curve tak-
ing all the electrons in the bonding and the antibonding orbitals into consideration.
Thus, the two nuclei will be driven apart, or the bond is broken only when the net
curve has antibonding nature. In other words, one can see the net potential energy
curve as a summation of the curves calculated for each electron individually in its
respective molecular orbital. We follow the general naming of the molecular orbitals
such as σ and σ∗, π and π∗ for bonding and anti-bonding orbitals of degeneracy
one and two respectively; and n and n∗ for non-bonding molecular orbitals which
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Fig. 2.1 An exemplary plot
showing energy as a function
of distance for a bonding and
an antibonding orbital

constitute a lone pair of electrons from an atom which does not take part in bond
formation. The electrons can undergo electronic transitions to the higher antibonding
states upon interaction with an incident electromagnetic radiation, but in some cases
these orbitals are orthogonal to all the participating atomic orbitals and thus also the
molecular orbitals, thereby prohibiting any such transitions.

This picture can be extrapolated to a polyatomic organic molecule where each
atom contributes to one or more atomic orbitals for bonding with its neighboring
atoms. In such a molecule, several electronic transitions are possible from its filled
orbitals to higher vacant orbitals. Each transition requires a particular wavelength
which is equal to the energy gap between the two molecular orbitals, and have
different probabilities. The absorption and emission spectra formost strong electronic
transitions in organic molecules are usually related to a transition involving a group
of atoms in the molecule’s structure, which is called the chromophore. The most
common chromophores involve carbonyl, nitro, nitroso groups, and carbon-carbon
double bond systems. Chromophores with alternate double bonds are planar systems
and have their π orbitals over the entire conjugation. The wavefunctions of the
molecular orbitals can thus be approximated as waves with nodes at the edges of
this box. The lowest orbital has no nodes in between the conjugation length and thus
allows the maximum electron density between all the atoms. The number of nodes
increase by one for each higher energy molecular orbital. These are called Hückel’s
molecular orbitals, named after Erich Hückel who calculated the molecular orbital
picture for conjugated π organic molecules, including cyclic molecules. For a linear
conjugated system with i number of π bonds, i molecular orbitals involved in the
bonding. The energy of each state is given by En = n2h2/8mL2, where L is the
total length of the molecule (here one can approximate L as i times the length of
a carbon-carbon bond with a bond order of 1.5) and m is the reduced mass of the
electron. For such amolecular system, HOMO is the i th molecular orbital and LUMO
the i + 1th, and therefore the excitation wavelength (λ = hc/(Ei+1 − Ei )), can be



20 2 Theory

calculated using the simple equation

λ = 8mL2c

h(2i + 1)
(2.1)

For dyemolecules that absorb andfluoresce in the visible range,mainly the transitions
between π ↔ π∗ and n ↔ π∗ are responsible. Thus the shape of the frontier
orbitals (HOMO and LUMO) is chiefly determined by the conjugation structure of
the chromophore. The wavelength range for the transitions σ ↔ σ∗ usually lies in
the ultraviolet region.

The complete absorption spectra of polyatomic chromophores contains all the
transitions that are possible. Each transition is associatedwith twomolecular orbitals,
and therefore represents a change of electron density over the structure of the mole-
cule along a particular direction termed the transition dipole. For a transition between
two states with wavefunctions ψ f and ψi , the associated transition dipole moment is
defined as

M̂ f i = 〈
ψ∗

f

∣∣q r̂
∣∣ ψi

〉 =
ˆ

ψ∗
f q r̂ψi dτ (2.2)

where q r̂ is the electric dipole moment operator and M̂ f i is the matrix element of
the transition dipole matrix M̂ corresponding to the transition ψ f ↔ ψi . Clearly, the
characteristics of ψi and ψ f play an important role in determining the magnitude
of the transition between the two states, which give us the selection rules that are
fundamental for all spectroscopic studies. If the expectation value for the transition
dipole moment operator between the two states is zero, the transition takes place
infrequently and it is said to be forbidden, and if it is a finite value, it is called an
allowed transition. Since the dipole operator is a translation operator r̂ times charge,
it depends only on the spatial part of thewave functions.One can interpret this is in the
followingway: if themolecular orbitalψi overlaps in spacewith themolecular orbital
ψ f then the molecule will absorb energy from an EM radiation with energy equal to
the energy gap between these two orbitals. However, exceptions exist. An example
where this is not true, i.e. where the orbitals are spatially orthogonal, is a π∗ ← n
transition in a carbonyl group. Since we already realized above that the non-bonding
orbital n is orthogonal to all the molecular orbitals, the transition is forbidden. But,
a weak absorbance is observed in most of the molecules containing the carbonyl
group due to several reasons. One basic reason which we did not consider in all
the arguments made above is the spin-orbital coupling which is beyond the scope
of this thesis. It is strenuous to calculate the dipole moment of each transition for
complicated structures such as for those shown in Fig. 2.2. But, simple rules from
group theory in quantum mechanics can be of great help to predict at least which
transition probabilities are necessarily zero or forbidden (see Chap.11 from the book
[2] for example).

The spectra of the chromophore group shift towards longer wavelengths due to the
presence of other functional groups attached to it such as hydroxyl, amino, oxymethyl
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Fig. 2.2 The structure of Rhodamine 6G showing the orientation of the transition dipole moment.
The carbon atoms of the Xanthene core atoms are numbered C1 to C13. Two ethylamine aux-
ochromes are attached one each on the carbons C6 and C12 which participate in the conjugation
with the help of their lone pair of electrons. The group attached on C7 lies perpendicular to the
plane of the chromophore due to steric hindrance and does not take part in the conjugation. The π

molecular orbitals lie perpendicular to the frontier orbitals of the chromophore (see [5])

groups, which are called auxochromes. These auxochromes do not absorb or emit
light themselves but when present next to a chromophore, they increase the conjuga-
tion length due to their own lone pair of electrons. One needs to take the auxochromes
into account too while calculating the frontier orbitals for the dye molecules, which
can majorly contribute to the shape of these orbitals by varying the number and
position of the nodal planes in the chromophore’s structure. For example, the chro-
mophore responsible for the absorption and emission properties of Rhodamine 6G
is the Xanthene core and if we look at the frontier orbitals of this chromophore
alone, then the transition should take place with the shift of electron density majorly
along the direction of O↔C7 [3]. However, experiments and theoretical calculations
for this dye suggest the transition dipole moment along the direction of C12↔C6
[4]. This is due to the presence of the two amino auxochromes, whose lone pair of
electrons also participate in the conjugation.

2.1.2 Single-Singlet and Singlet-Triplet Transitions

Under the assumption that the coupling of the spin and orbital angular momentum
is weak, we can separate the wavefunction of each molecular orbital into a spin and
a spatial part.

ψ(r1σ1, r2σ2) = ψ(r1, r2)X (σ1,σ2). (2.3)

where X (σ) can be written as a combination of α(σ) or β(σ) depending upon the
sign of the electron spin (↑ or ↓) respectively. These functions are the eigenvalues of
the Hermitian spin angular-momentum operator, and therefore are orthogonal. The
ground state of the molecule is, in a majority of cases, a singlet state, where the spin
of the electrons are paired, S = 0. The spin multiplicity for such a paired state is
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2S + 1 = 1. The spin part of the wave function is given by

Xi (σ1,σ2) = [α(σ1)β(σ2) − β(σ1)α(σ2)] (2.4)

The antisymmetric function above on the right side is the Pauli principle which
states that the total wave function of a system of electrons must be antisymmetric
with respect to the interchange of any two electrons. If σ1 and σ2 are interchanged,
the sign of the function becomes negative. This represents the fact that the probability
to find two electrons with same spin close to each other is zero. For the excited state
however, when one electron is promoted to a higher molecular orbital, the total spin
can be 0 or 1. The state when S = 0 is again a singlet, and the spin wavefunction is
given by the same Eq. (2.4). But, for the total wave function to be antisymmetric, the
spatial part has to be symmetric. Therefore,

ψ f (r1, r2) = [
ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)

]
. (2.5)

where ψ1 is the spatial wavefunction of obital in the ground state and When the
total spin S = 1, the spin multiplicity is 3. This can be explained by the three possi-
bilities for the spins of the two electrons involved. In this case the three associated
wavefunctions are given by

X f (σ1,σ2)(σ1,σ2) =

⎧
⎪⎨

⎪⎩

[α(σ1)α(σ2)] ↑↑
[α(σ1)β(σ2) + β(σ1)α(σ2)] ↑↓
[β(σ2)β(σ1)] ↓↓

As the spin part is symmetric, the spatial wavefunction takes up the antisymmetric
nature in order to obey the Pauli principle.

∴ ψ f (r1, r2) = [
ψ1(r1)ψ2(r2) − ψ2(r1)ψ1(r2)

]
. (2.6)

TheHamiltonian is applied only on the spatial terms, which serves as a good approxi-
mation.With this approximation, we immediately conclude that the energies of three
possibilities for the state S = 1 are equal. Thus, it is called a triplet state. Further,
the energy of the triplet excited state is less than the energy of a singlet excited state.
This holds true for any excited state. The diagram in Fig. 2.3 shows the depiction of
the states involved.

The wavefunction ψ(r1σ1, r2σ2) is said to be even parity if it does not change its
signwhen the sign of the coordinates are inverted and it is odd parity otherwise. Since
the dipole operator p = q r̂ changes the sign r → −r , the integral (2.2) vanishes if
both the wavefunctions ψi and ψ f have the same parity. Thus, either of them must
have an odd and the other an even parity for the transition to take place. The even and
odd nature of a wavefunction must not be confused with its symmetry with respect
to the interchange of electrons. Separating the spin and spatial parts of the integral,
we have
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〈
ψ∗

f |p| ψi
〉 = 〈X f |Xi

〉 ˆ
ψ∗

f q r̂ψi d
3r (2.7)

The spin term,
〈X f |Xi

〉
is non-zero only if the wavefunctions for both the states are

identical. This is the first selection rule for electronic transitions, and it states that the
spin state must not be altered in an electric dipole transition. This means that singlet
state to triplet state transition is forbidden and vice versa. Thus, a molecule is excited
from its singlet ground state S0 to its singlet excited state S1, which then returns to
the ground state undergoing either spontaneous or stimulated emission. This cycle
process must go on indefinitely, unless, as a rare event, the molecule undergoes what
is known as intersystem crossing, and ends up in a metastable triplet state T1. The
probability of this transition depends primarily on the spin-orbital interaction where
the triplet state ‘mixes’ with the pure singlet states so that a perturbed triplet state t1
is formed [6].

ψt1 = ψT1 +
∑

k

akψSk (2.8)

where ak give the coefficient of mixing with all possible singlet states Sk due to spin-
orbital interactions. The square of these coefficients is proportional to the probability
for a transition to the perturbed triplet state

P = 2π

3�2

∑

k, j=1→3

(Sk

∣∣q r̂
∣∣ T j

1 )2 (2.9)

The mean lifetime of the triplet state is inversely proportional to the probability of
singlet-triplet transition [7]. For a typical organic fluorophore, this is around 10−6 ∼
10−4 s. During this time, the excitation-emission fluorescence cycle is broken, and
the dye remains in the dark state. This temporal intermittency of intensity from a dye
molecule is known as blinking.

2.1.3 Franck-Condon Principle

When an electronic transition takes place, all the nuclei are assumed to be stationary.
This treatment is similar to the Born-Oppenheimer approximation which relies on
the fact that the nuclear masses are much larger than the electron mass and thus
the motions of both can be separated. This is the Franck-Condon principle and is
the basis of all the vibronic transition analysis following an electronic transition.
Figure2.3 illustrates the energy diagram of the transitions showing the vibrational
states in each electronic state. The equilibriumpositions in the higher electronic states
are shifted towards larger distances due to the fact that they have higher antibonding
character. When a transition takes place between S0 and S1, the internuclear distance
is equal to the bond length in the ground state and since the nuclei motion are
fixed, the transition occurs to the vibronic state where the internuclear distance is on
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Fig. 2.3 Franck Condon diagram showing the potential energy curves for a singlet ground state and
excited state (S0 and S1) and a triplet state T1. The red vertical arrows show the vertical transitions
from the ground state to excited states and back

the edge of the potential energy curve as shown in the figure. Such transitions are
called vertical transitions. Thereafter, the nuclei vibrate at this energy level around
the shifted equilibrium distance and readjust to the changes in the electron density
which in-turn alters the overall electron density over the molecule, and so on until
a new equilibrium state is attained. The same is observed when the transition takes
place from the excited states to the ground state. The probability of transition is
given by the square of the overlap integral between the two vibrational states in the
respective electronic states.

F(ν ′, ν) =
∣∣∣∣

ˆ
ψν(R)ψ∗

ν ′(R) dτN

∣∣∣∣

2

(2.10)

where ψν and ψν ′ are the wavefunctions of the vibronic states in the ground and the
excited states respectively and R denotes the nuclear coordinates during the transi-
tion. At room temperature, the electronic transition usually proceeds from its ground
vibronic level. The factors F(ν ′, ν) are the Franck-Condon factors and contribute to
the shape of the intensity spectrum of electronic transitions.

2.1.4 Radiationless De-Excitation

There are several relaxation processes in a molecule that proceed without the emis-
sion of photons. The intersystem crossing, where transitions occur between states of
different multiplicity, introduced in the previous section, is an example. The relax-
ation of the molecule from higher excited states of the same multiplicity to the first
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excited state (for example Sn → S1) non-radiatively is known as internal conversion.
Radiative decay occurs with an appreciable yield only from the lowest excited state
of a given multiplicity. This is the well-known Kasha’s rule in photochemistry.

The radiationless relaxation of a molecule when excited to a higher state can
be completely internal due to some rearrangement reactions in the excited state.
As described briefly also in the previous section, an electronic excitation alters the
nuclear coordinates and the electron density of the molecule. This structural change
costs the molecule some energy which is called the reorganization energy (λ), and is
an example of an ultrafast process which lasts about a few femtoseconds to picosec-
onds (10−15 ∼ 10−11s). A well-known example depicting this phenomenon is the
phenolphthalein molecule in basic aqueous solutions (pH ∼8.2 - 12). The phenolph-
thalein molecule, even though its structure is similar to the highly fluorescent fluo-
rescein molecule, is non fluorescent. This is due to the fact that the total energy in its
excited zero-order state (within the Born-Oppenheimer approximation) is converted
into vibrational energy and torsional energy, which results in the rotation and vibra-
tion of the two phenyl rings attached to the central carbon. Whereas in the case of
fluorescein, the two phenyl rings are fixed in a plane with two C-O bonds forming a
rigid structure. In such a case, the rate of the non-radiative process is quenched and
most of the relaxation takes place either radiatively or through intersystem crossing
[8]. The rate of the intramolecular relaxations is related toλ, such that, for high values
of λ (where the electronic and vibrational coupling is strong), the non-radiative rates
are high [9]. The linewidth and the exponential decay of the non-radiative processes
also depend on the interaction between the excited zero-order state and the density
of all the vibronic states located close to that state [10], which, as one would expect,
directly depends on the number of atoms in the molecule. This is straightforward if
one writes the transition probability similar to Fermi’s golden rule (see Eq. (2.19)).
Due to the presence of ‘sparse’ energy levels in small molecules, no intramolecular
electronic relaxation processes are encountered and relatively longer excited state
lifetimes τ f are observed [11].

In order to complete our discussion concerning the pathways of molecular emis-
sion, one must introduce the well-known property that is used to characterize a
fluorescent emitter, the quantum yield of radiation (�). As the name suggests, it
represents the probability an excited molecule decays radiatively. Quantitatively, it
represents the ratio of the number of photons emitted by the molecule to the number
of photons that the molecule absorbed in a given time. Given the radiative rate κr and
the sum of all the non-radiative rates possible κnr , the quantum yield is defined as

� = κr

κr + κnr
. (2.11)

2.1.5 Einstein’s Coefficients and Spontaneous Emission Rate

In a seminal note from 1946 [12], Edward Mills Purcell first mentioned that it is
possible to change the spontaneous emission rate of an emitter by placing it close to
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a resonant structure, for example a metallic cavity. This change of the spontaneous
emission rate is due to the action of the emitted field onto the emitter itself when
it is back-scattered by the cavity. However, there is a deep connection between the
spontaneous emission rate of a quantum-mechanical emitter and its absorption and
stimulated emission coefficients: In thermal equilibrium, the number of photons per
time absorbed by an emitter from the vacuumelectromagnetic field has to be balanced
by an equal number of photons per time emitted by that emitter. This imposes a rigid
relation between absorption and emission properties of an emitter. In this section,
we will briefly recall the connection between spontaneous emission rate and induced
absorption and emission coefficients for an electric dipole emitter in empty space.
Although this can be considered classical textbook knowledge, it will help us to
define all relevant quantities which will be important in the following sections which
considers the spontaneous emission rates of a dipole next to a dielectric or a metallic
interface (Fig. 2.4).

We will start with considering an electric dipole emitter within an empty box
of edge length L in thermal equilibrium at temperature T . It is assumed that the
vacuum electromagnetic field within the box is in thermal equilibrium and obeys
periodic boundary conditions with respect to the box. The vacuum electric field can
be expanded into plane wave modes, E = E0 exp (ik · r − i ω t), where E0 is the
amplitude vector of a given mode and k its wave vector with length k = ω /c. Here,
ω is the oscillation angular frequency of the mode, and c the vacuum speed of light,
and is related to the frequency ν = ω /2π. The imposed boundary conditions imply
that we have for the x-component of the wave vector kx L = 2πnx , where nx is an
integer number. Similar conditions hold also for the y- and z-components. Thus, the

Fig. 2.4 A dipole situated in an empty cubic box with edge length L . The wavefronts of one plane
wave mode and its phase on the three sides of the cubes are shown here
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mode density ρν within frequency interval dν and solid angle element sin θdθdφ is
given by

ρν L3dν sin θdθdφ = 2
k2dk sin θdθdφ

(2π/L)3
(2.12)

where the factor 2 on the right hand side takes into account that there are two different
principal polarisations of the electric field. Using Planck’s energy quantization and
Bose-Einstein statistics, the average energy per mode is

εν = hν

exp (hν/kB T ) − 1
(2.13)

where h is Planck’s constant, kB is Boltzmann’s constant, and T is the temperature.
Thus,when taking into account that themean energy density (energy per unit volume)
is εν/L3, one finds the mean energy density per solid angle and frequency to be equal
to

ενρνdν = 2
k2dk sin θdθdφ

(2π/L)3
1

L3

hν

exp (hν/kB T ) − 1
= 2hν3

c3
dν sin θdθdφ

exp (hν/kB T ) − 1
(2.14)

which is Planck’s famous formula for black-body radiation.
Now, themean energy absorbed by an electric dipole is proportional to this energy

density times anorientation factor, integrated over all possible propagation directions.
The orientation factor takes into account that only electric field components along
the orientation of the emitter’s dipole contribute to energy absorption, and it is given
by 〈|Ê · p̂|2〉 = (1/2) sin2 θ, where p is the electric dipole amplitude vector of
the emitter which is assumed to be oriented along θ = 0. The angular brackets
denote averaging over all possible orientations of Ê with Ê ⊥ k. Thus, one finds the
following expression for the mean density per frequency of the electromagnetic field
which takes part in energy absorption by the dipole emitter

S(ν)dν = hν3

c3
dν

exp (hν/kB T ) − 1

ˆ 2π

0
dφ

ˆ π

0
sin θ · sin2 θdθ

= 8πhν3

3c3
1

exp (hν/kB T ) − 1

(2.15)

Considering all possible dipole orientations gives an additional factor of 3, and there-
fore, one has
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S(ν)dν = 8πhν3

c3
1

exp (hν/kB T ) − 1
(2.16)

The effective mode density or Density of States (DOS) ρ̃ν of the electromagnetic
field that is coupled to the energy absorption by the dipole emitter is given by

ρ̃ν = 8πν2

c3
(2.17)

From time dependent perturbation theory, the probability P for a transition of
the molecular system between two quantum states with energies Ei and E f when
subjected to an electromagnetic radiation with an oscillation frequency ν for a time
t1, involving only the first order perturbation, averaged over all orientations of the
dipole momemt p is given by [2]

Pi f (t1) = 1

3�2
|p|2t1

ˆ
S(ν)

(
sin 1

2 (νi f − ν)

1
2 (νi f − ν)

)2

dν (2.18)

where νi f = |E f − Ei |/h. This shows that the transition probability has a sharp
maximum when ν = νi f and other frequencies do not contribute much. Therefore,
the transition probability per unit time, or transition rate between the two states is
given by the expression

W f ←i = 2π|p|2S(νi f )

3�2
(2.19)

This is the well-known Fermi’s Golden Rule for the transition probability between
two states, which was originally derived by Paul Dirac in the year 1927 in his beau-
tiful manuscript titled “The Quantum Theory of the Emission and Absorption of
Radiation” [13]. The interesting point to realize from the equation above is that
while (E f − Ei ) = hνi f represents the absorption of the radiation incident on the
molecule, the case where (Ei − E f ) = −hνi f represents the case where a molecule
present in the excited state falls into the state with lower energy, emitting radiation at
the same frequency νi f . This phenomenon is called stimulated emission. The expres-
sion for the transition probability for the stimulated emission can be written similar
to the expression given in Eq. (2.18) by replacing νi f with−νi f which gives the same
transition rate as in expression (2.19). Ignoring all higher orders of perturbation, at
thermal equilibrium, the transition rate shown in equation (2.19) directly gives the
Einstein coefficient of stimulated absorption Bi f

W f ←i = 2π|p|2
3�2

S(νi f ) = B f i S(νi f ) (2.20)

Since the transition rate for the stimulated emission is identical to the rate of stim-
ulated absorption, the Einstein coefficient of stimulated emission B f i is exactly the
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same as Bi f . Physically this translates to the statement that the same electromagnetic
field which can excite the molecule from a state with lower energy to higher energy,
can also act as an energy sink which brings the molecule from a higher energy state
to a lower energy state. Therefore, one would conclude that the probability of finding
a molecule in its ground state or excited state is equal. However, at a temperature T ,
if an ensemble of molecules is in thermal and radiation equilibrium the ratio of the
population in the excited state to the ground state is given by Boltzmann statistics
exp(−hνi f /kB T ). This supports the fact that a molecule in the excited state also
emits radiation spontaneously, whether or not an external electromagnetic radiation
field is present. Therefore, at equilibrium, one must have (Fig. 2.5)

N f (A f i + B f i S(νi f )) = Ni Bi f S(νi f ), (2.21)

where Ni and N f are the number of molecules in the initial and final state, respec-
tively. A f i in the equation above is the Einstein coefficient of spontaneous emission.
From this equation the density of states S(νi f ) can be written as

S(νi f ) =
[

A f i

B f i

]

[
Bi f

B f i

] [
Ni
N f

]
− 1

(2.22)

∵ Ni

N f
= exp

(
hνi f

kB T

)
and Bi f = B f i , S(νi f ) =

[
A f i

Bi f

]

exp
(

hνi f

kB T

)
− 1

(2.23)

Comparing with equation (2.16) one has

Fig. 2.5 Diagram illustrating the elementary transitions of a molecule between the two states i and
f in Einstein’s model
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A f i = 8πhν3
i f

c3
B f i = ρ̃νhνB f i (2.24)

This shows that the spontaneous emission is proportional to the cube of the tran-
sition frequency νi f . Also important to note here is that the spontaneous emission
is directly related to the probability of absorption which is itself proportional to the
square of the transition dipole moment, thus the strength of the dipole transition.

Note that three important fields of theories have been combined together here,
namely Planck’s theory for black body radiation, thermodynamics (Boltzmann dis-
tribution) and time dependent perturbation theory. The electromagnetic field here is
also quantized and is seen as a collection of harmonic oscillators. The transfer of
energy between the energy states of the radiation and the molecular system leads to
the excitation and emission processes. The total rate of emission depends on both,
the spontaneous emission and the stimulated emission. The mean lifetime of the
molecule’s exited state is inversely proportional to this total rate.

2.1.5.1 Absorption and Emission Cross Sections and Fluorescence
Lifetimes

Let us for now model a molecule as a two state system, where there is no degeneracy
associated with any of the states. The absorption cross section of a molecule, σa(ν),
is the measure of the probability that it absorbs energy from the electromagnetic
radiation field incident on it. It provides a relationship between the optical density of
the sample and its concentration in spectroscopic analysis. It has the dimension of
an area which can be interpreted as an effective cross-sectional area responsible for
blocking an incident beam of electromagnetic waves of frequency ν. Let us define
the stimulated absorption rate as

wi→ f (ν)dν = bi f (ν)S(ν)dν (2.25)

where S(ν) is the energy density of the electromagnetic field per unit frequency and
therefore S(ν)dν is the energy density for the frequency range ν to ν + dν. bi f (ν)

is the shape factor for the absorption spectrum of the molecule and represents the
probability for the absorption at frequency ν to take place. The total rate of absorption
is then the integral of the expression above.

Wi→ f =
ˆ

bi f (ν)S(ν)dν (2.26)

The absorption coefficient can be written in terms of direct measurable quantities,
and it is simply the ratio of the total energy absorbed in unit time with the total
incident irradiance I (I = c

´
S(ν)dν).

σa(ν) = hνWi→ f

I
= hν

´
bi f (ν)S(ν)dν

c
´

S(ν)d(ν)
(2.27)



2.1 Quantum Mechanical Picture of Fluorescence 31

If the absorption spectrum is approximated to a line spectrum, bi f is sharply peaked
at ν f i and is equal to B f i , and hence, the absorption cross section can be written as

σa = hν f i

c
Bi f (2.28)

In a similar way, the emission cross section of the molecule can be written in terms
of the emission coefficients

σe(ν) = hν

c
b f i (ν) = c2

8πν2
a f i (ν) (2.29)

The coefficient a f i (ν) is the probability for the molecule in the excited state to decay
spontaneously. Again, for the case of a sharp line spectrum, this is equal to A f i . An
important thing to mention here is that since the emission and absorption for such a
two state system take place at the same frequency, the emission and absorption cross
sections are completely identical σe = σa ≡ σ. In that case, the spontaneous decay
lifetime τ f , i.e. the statistical mean time the molecule stays in the excited state when
there is no perturbation field is inversely proportional to the spontaneous emission
coefficient A f i , or,

1

τ f
= 8π

c2

ˆ
σ(ν)ν2dν = 8πc

ˆ
σ(λ)

λ4
dλ (2.30)

The above equation is known as the Füchtbauer-Ladenburg relationship [14] and it
gives us the means to obtain the radiative lifetime of a two state system from the
measured absorption/emission spectrum. This model works as a good approximation
for the estimation of radiative rates of atomic transitions where the absorption and the
emission take place at the same frequency that can be considered as sharp lines. See
references [15, 16] for example. However, this theory fails to predict the transition
rates for molecular systems accurately. The main reason for this deviation is that
the spectra of the molecules are much broader due to the presence of vibrational
and rotational energy levels within each electronic state. We shall discuss this aspect
further in the next session. But for now, this can be visualized as a collection of many
individual oscillators oscillating at slightly different frequencies that can interactwith
the electromagnetic field and have different transition probabilities. Moreover, the
emission spectrum of a molecule is spectrally red shifted compared to its excitation
spectrum. This is the well known Stokes shift of a fluorescent molecule.

In order to include this effect, Strickler and Berg modified the theory by taking
into account all the vibrational quantum states [17]. The net transition rate is taken
as the sum of the transition rates from the lowest vibrational level of the higher
electronic state to all the possible vibrational levels of the ground state.

A f 0→i = K
8πh

c3

∑
l ν3

k0→nlbk0→nl∑
l bk0→nl

(2.31)
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where the summations are performed over all the vibrational states l of the ground
electronic state, and K is a proportionality constant. Each term in the numerator
is proportional to the intensity in the emission spectrum. Hence, the total rate of
spontaneous decay is written, similar to Eq. (2.30) in the integral form, as

1

τ f
= 8π

c2

´
dν F(ν)´

dν F(ν)/ν3

ˆ
dν σa(ν)/ν (2.32)

where F(ν) are the Franck-Condon factors introduced previously, which shape the
emission spectrum and the integral on the right is over the absorption spectrum of
the molecule. This is the well-known Strickler-Berg equation which connects both
the absorption and emission spectra for determining the average lifetimes of the
molecules in their excited states. One must observe that as a special case, if the
absorption and emission spectra are sharp and take place at the same frequency,
this equation gives the same result as the Füchtbauer-Ladenburg relationship (2.30)
shown above. The integral on the right side can be written in terms of experimentally
measuredmolar extinction coefficients ε(ν). Given the quantumyield of themolecule
and the refractive index of the medium, the Strickler-Berg equation can be written
as

1

τ f
= 2.88 × 10−9n2�

´
dν F(ν)´

dν F(ν)/ν3

ˆ
dν

ε(ν)

ν
(2.33)

where ν is now the wavenumber in cm−1. Figure2.6 shows the spectra for the dye
molecules Rhodamine 6G and Atto 655. The data for Rhodamine 6G has been taken
from [18] and for Atto 655, from the website.1 The quantum yields of these dyes
are reported as 0.95 and 0.33 in the medium of the measurements. The spontaneous
lifetimes calculated from Eq. (2.33) are 3.64 ns and 1.72 ns in water, whereas the true
values reported in literature are 4.1 ns and 1.8 ns, respectively [19].

2.1.5.2 Spontaneous Emission Near Interfaces

In the preceding section we showed the connection between the spontaneous emis-
sion rate of a dipole emitter in empty space and the DOS ρ̃ν . When a molecule is
present in a dielectric medium, the local DOS (LDOS) changes due to the scattering
from the medium which leads to a modification of the spontaneous emission rates.
Depending upon the solvent properties, thermal coupling between the dipole emitter
and surrounding molecules can play a role in non-radiative energy transfer, due to
collisions, known as thermal decay and hence shortening the lifetime of themolecule
in the excited state [20].

The situation becomes complicatedwhen placing such an emitter close to a dielec-
tric or metallic interface. In that case, the spontaneous emission rate A f i will change

1http://www.atto-tec.com/.

http://www.atto-tec.com/
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Fig. 2.6 The left figure shows the excitation/emission spectra of Rhodamine 6G in ethanol and the
right side for Atto 655 in water. The plots are against wavenumbers ν̄ = 1/ λ

and becomes position- and orientation-dependent. Also, the effective DOS will now
be position- and orientation-dependent. One needs to calculate the LDOS in such a
situation and use the relations developed in the previous section. The relation between
the Einstein coefficients and LDOS remain the same as in Eq. (2.24). The properties
of the metal determine the LDOS and depending on the distance from the metal,
the electromagnetic coupling between the states of the dye molecule and the metal’s
surface plasmons varies, which together determine its radiative and non-radiative
rates [21, 22]. However, the calculation of spontaneous emission rate of a dipole
emitter is much more straightforward using the theory by Chance, Prock, and Silbey
(CPS) where one calculates the total emission rates by using Fresnel’s equations
and energy flux density calculations using the Poynting vector [23]. This will the
discussed thoroughly in the forthcoming sections.

2.2 Plane Waves and Maxwell’s Equations

We begin our theoretical outline by highlighting the work of James Clerk Maxwell
who set the groundwork for the electromagnetic theory of light in 1864. In classical
electrodynamics, light is described as an electromagnetic wave (EM wave) with
synchronized oscillations of electric (E) and magnetic (B) fields oriented orthogonal
to each other, traveling with a speed c/nmed along a propagation direction k, where
nmed is the refractive index of the medium, as shown in Fig. 2.7. By synchronized
oscillations, we mean that the fieldsE andB have the same oscillation frequency and
phase. The vector k is orthogonal to both E and B. The classical theory of light is
based on the well knownMaxwell’s equations, which are the fundamental equations
for electricity and magnetism. In CGS units, these equations can be written as
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∇ · εE = 4π ρ (2.34)

∇ · B = 0 (2.35)

∇ × E = −1

c

∂B
∂t

(2.36)

∇ ×
(
B
μ

)
= ε

c

∂E
∂t

+ 4π

c
j (2.37)

where ρ and j are the electric charge and current density respectively, and ε andμ are
the dielectric susceptibility and magnetic permeability of the medium. These four
equations were obtained from the well-known laws for electric and magnetic fields,
the first two equations are Gauss’ law for electric and magnetic fields; the third
equation represents Faraday’s law of magnetic induction and the fourth equation
is Ampere’s circuital law. These four coupled differential equations are satisfied
simultaneously for all possible electromagnetic fields.

Equations (2.34) and (2.35) stem from the fact that electric charges can exist in
space whereas magnetic monopoles do not; and the electric field exiting a volume
is proportional to the charge density present inside it whereas the total flux of the
magnetic field through a closed surface is always zero. Gauss’ law holds true even
for moving charges which makes it more general than Coloumb’s law. The force due
to an electromagnetic field on a charge particle moving with an arbitrary velocity v
is given by the Lorentz force,

F = q[E + (v × B)]. (2.38)

Fig. 2.7 A Schematic showing an electromagnetic wave at a time t with E and B oscillating
orthogonal to the direction of propagation k. The wavelength λ of the EM wave is marked here as
the distance over one complete cycle of oscillation
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An important point to note from Eq. (2.38) is that magnetic field due to any config-
uration of moving or static electric charges is always perpendicular to the direction
of motion, and thus, does not perform any work.

In a source-free homogeneous medium with unity magnetic permeability μ = 1
(which is true for all of the work in this thesis), the simplest solution to Maxwell’s
equations is a plane wave, where the space-time behavior of the electric (E) and
magnetic (B) fields can be written as ∝ exp(ik · r − iω t), where ω is the angular
frequencyof the oscillations. Inserting this space-time relationback into the equations
(2.34), (2.35), (2.36) and (2.37) we get

k · E = 0 (2.39)

k · B = 0 (2.40)

ik × E = iω

c
B (2.41)

ik × B = − iεω

c
E (2.42)

From equations (2.39) and (2.40), it is clear that E, B and k are mutually perpendic-
ular. If we now apply the curl operator again on Eq. (2.36) and use the relations in
equations (2.39) and (2.42), we obtain

∇ × ∇ × E = −k × (k × E) = k2E = −ω

c
(k × B) = ε ω2

c2
E (2.43)

Therefore, fromEq. (2.43)we obtain the amplitude of thewave vector |k| = √
εω /c.

The vector |k| characterizes the spatial periodicity of the electric field. If we define
the refractive index of the medium by nmed = √

ε, we get the dispersion relation
|k| = nmed ω /c and the relation between the amplitudes of the electric and magnetic
fields as |B| = nmed |E|.

For any electromagnetic field, the instantaneous energy flux is given by the Poynt-
ing vector S.

S = c

4π
E × B (2.44)

For visible light S oscillates with a frequency ∼ 1015 Hz, which cannot be measured
with any instrument. What is measurable is the time-averaged energy flux density
〈S〉 (averaged over one period of oscillation) for an electromagnetic field, which is
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given by2

〈S〉 = c

8π
Re{E × B∗} (2.45)

These relations hold true for anyplanewave solution of the electromagnetic field in
a source-free homogeneous environment. Further, any field in such an environment
can be described as a superposition of plane waves. We will use these relations
extensively in our forthcoming sectionswherewe investigate thefieldof anoscillating
electric dipole in such environments.

The interaction of EM waves with conducting media can be understood well
with the help of the Drude model for conductivity. The model is based on the fact
that the valence and the conduction bands of metals overlap at room temperature,
and as a result a large number of free electrons exist that are responsible for their
high conductivity. Therefore, any electromagnetic oscillations incident on a metal
perturb the electrons on the surface which are then set into an oscillation with the
same frequency in order to counter these perturbations. The existence of conductivity
can be taken into account by simply introducing a complex dielectric constant into
Maxwell’s equations. The real of the dielectric constant (ε′) is related to the bounded
electrons and the lattice structure of the metal, whereas the imaginary part arises due
to the free electrons. If we define σ as the specific conductivity of the material, then
the convection current density j is given by

j = σE (2.46)

Note here that σ is a function of frequency since we saw that bound electrons can
be excited into the conduction band. Plugging Eq. (2.46) into Maxwell’s equation
(2.37), we have

∇ × B = − i ω

c

[
ε′(ω) + 4πi

ω
σ(ω)

]
E (2.47)

Using Eq. (2.43) we get the dispersion relation

k2 = k2
0

[
ε′(ω) + 4πi

ω
σ(ω)

]
(2.48)

where k0 = ω /c. The refractive index is thus a complex numberwhich can bewritten
as ñ = n(ω) + iκ(ω).

∴ ñ2(ω) = [n(ω) + iκ(ω)]2 = ε′(ω) + 4πi

ω
σ(ω) = ε(ω) (2.49)

This brings us to the relations

2For derivation refer to “Principles of Optics”, Born and Wolf [24].
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ε′ = n2 − κ2 (2.50)

and,

2πσ

ω
= nκ (2.51)

2.3 Fresnel’s Equations

After having familiarized ourselves with the basic properties of plane waves in a
homogeneous environment, we now study their behavior when they encounter a
locally flat interface separating two homogeneous media with different refractive
indices n1 and n2. The wave vector k again represents a plane wave with a spatial
periodicity of |k| and its propagation direction along the unit vector k̂. Furthermore,
we will use a ‘±’ subscript to indicate the global direction of propagation: “+” when
the wave travels from medium 1 → 2; and “−” when it travels from medium 2 → 1
(see Fig. 2.8). To complete the picture, we must specify the direction of oscillation
(polarization) of either E or B. We consider two explicit cases of polarization, one
where E oscillates in the plane of incidence, I, (B is then pointing out of the plane
of incidence), denoted as the p-wave, or Transversal Electric (TE) wave; and the
other where E oscillates out of the plane (B is then oscillating in the plane of inci-
dence), which is denoted as the s-wave, or Transversal Magnetic (TM) wave. Any
other polarization can be written as a linear combination of these two polarizations.
Figure2.8 represents the generalized situation of the problem where plane waves are
incident from both sides of the interface onto it.

The projection of k on the interface is denoted as q, and the wave-vector compo-
nent perpendicular to it is denoted by ±wi, where the sign follows the same sense of
direction as stated above. Before we get to the boundary conditions for the problem,
we must note that the periodicity along the interface must be conserved, thus q is
equal for all the four wave vectors. In order to simplify the notations in all the dis-
cussion that follows, we will work, without loss of generality, in a unit system where
the length unit is chosen in such a way that the vacuum wavelength of light is 2π,
and thus the length of the wave vector |k| in vacuum equal to one. Using elementary
geometry, one has the following

sin θi = q/ni (2.52)

and

n1
2 − w2

1 = n2
2 − w2

2 (2.53)

where θi are the angles of the wave vectors with respect to the normal of the inter-
face. Equation (2.52) directly gives us Snell’s law of refraction and reflection i.e.
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Fig. 2.8 A schematic representation of plane waves at a dielectric interface between two media
with refractive indices ni (for i = 1, 2). The waves are denoted by their wave vectors k±

i depending
upon their direction with respect to the interface; and the electric field polarizations as E p or Es

depending on their orientations with respect to the plane of incidence I as shown. The vector k±
i is

resolved into two components ±wi and q perpendicular and in the interface

n1 sin θ1 = n2 sin θ2; and the wave vectors k+
1 and k−

1 have the same angle with the
normal, θ1.

Let us now establish the boundary conditions first by considering p-waves. In
order to observe continuity in space, the tangential component of the electric field E
and magnetic field B must be conserved across the interface. Thus we obtain

E+
p,1 cos θ1 − E−

p,1 cos θ1 = E+
p,2 cos θ2 − E−

p,2 cos θ2, (2.54)

B+
p,1 + B−

p,1 = B+
p,2 + B−

p,2 (2.55)

Using the relationship |B| = nmed |E| and the fact that cos θ1,2 = w1,2

n1,2
, we get

w1

n1
E+

p,1 − w1

n1
E−

p,1 = w2

n2
E+

p,2 − w2

n2
E−

p,2, (2.56)

n1E+
p,1 + n1E−

p,1 = n2E+
p,2 + n2E−

p,2 (2.57)

These equations can be written in a compact matrix form as
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(
w1
n1

−w1
n1

n1 n1

) (
E+

p,1

E−
p,1

)
=

(
w2
n2

−w2
n2

n2 n2

) (
E+

p,2

E−
p,2

)
(2.58)

Performing necessary matrix operations, Eq. (2.58) can be rewritten as

(
E+

p,1

E−
p,1

)
= 1

2

(
w
n + n −w

n + n
−w

n + n w
n + n

) (
E+

p,2

E−
p,2

)
(2.59)

where we use the notation w = w2/w1 and n = n2/n1. Let us denote the matrix in
the Eq. (2.59) as M̂p for future reference. In the special case when an EM wave is
incident from the side of the interface where the refractive index is n1, we have

(
E+

p,1

E−
p,1

)
= M̂p

(
E+

p,2

0

)
(2.60)

Defining reflection and transmission coefficients as R = E−
1 /E+

1 and T = E+
2 /E+

1 ,
we obtain

Rp = n2 − w

n2 + w
, (2.61)

and

Tp = 2n

n2 + w
(2.62)

For the case of s-waves, the boundary conditions can be written similar to equa-
tions (2.54) and (2.55) as

E+
s,1 + E−

s,1 = E+
s,2 + E−

s,2 (2.63)

w1E+
s,1 − w1E−

s,1 = w2E+
s,2 − w2E−

s,2, (2.64)

Writing in the matrix form, we obtain,

(
E+

s,1
E−

s,1

)
= 1

2

(
1 + w 1 − w

1 − w 1 + w

) (
E+

s,2
E−

s,2

)
(2.65)

and the reflection and transmission coefficients are now given by

Rs = 1 − w

1 + w
, (2.66)

and
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Ts = 2

1 + w
(2.67)

Fig. 2.9 shows the reflection coefficients as a function of incident angle θ1, or
cos−1(w1/k1). From Eq. (2.61) we find that Rp is zero when w = n2 or cos θ1/n1 =
cos θ2/n2, which can be seen in both cases of incidence as shown in the figure.
The angle of incidence where the reflection coefficient vanishes is called Brewster’s
angle. Since from Snell’s law we have n1/n2 = sin θ2/ sin θ1, the situation only
occurs when θ1 + θ2 = π /2 or n2/n1 = tan θ1.

2.3.1 Total Internal Reflection

From Eq. (2.59), we get the amplitude of the E+
p,2

E+
p,2 = ê+

p,2

2E+
p,1

w/n + n
(2.68)

where ê+
p,2 = w2q̂−qẑ

n2
is the unit vector along the polarization of the p-wave E+

p,2.
Ignoring the time variation, the refracted plane wave can be written as∝ exp(−ik+

2 ·
r). Observing that k+

2 = qq̂ + w2ẑ, we can rewrite the exponential term as exp(iq ·
ρ+iw2z), where ρ is the two dimensional vector component of rwithin the interface.
Using Eq. (2.53), w2 can be written as

w2 =
√

n2
2 − n2

1 + w2
1 (2.69)

Fig. 2.9 Calculated reflection coefficients Rp and Rs as a function of the incident angle θ1 for an
air/glass interface for incidence from the air medium (left) and from the glass medium (right). The
angle where the reflection coefficient for the p-waves is zero is the Brewster’s angle. The critical
angle θc, above which total internal reflection occurs is shown as well
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Fig. 2.10 The phase shift between the incident and the reflected p- and s-waves at the interface
separating air and glass (n = 1.52). The plot shows for θ > θc, below which the phase shift is zero
for both waves

This implies that w2 becomes purely imaginary if w1 <

√
n2
1 − n2

2. In this case, the
spatial field dependence for the EM field represents a wave propagating along the
interface in the plane of incidence (i.e. along the direction of q̂), but exponentially
decaying perpendicular to the interface (along the z-axis). The amplitude decreases
rapidly with the depth z, and the effective penetration depth is on the order of one
wavelength. The wave is not transversal and is termed an evanescent wave. Remark-
ably, there is no transfer of energy across the interface and this phenomenon is called
Total Internal Reflection (TIR). This can be shown by calculating the projection of
the time averaged Poynting vector onto the normal of the interface, which is given
by the expression

c

8π
Re

{
(E × B∗)

w2

n2

}
= c

8π
Re

{
n2|E|2 w2

n2

}
= 0 (2.70)

In the special situation when w1 =
√

n2
1 − n2

2 or sin θ1 = n2/n1 the wave prop-

agates along the direction q̂, where total internal reflection starts, and the angle
satisfying this condition is called “critical angle” (see Fig. 2.9).

It is important to note here that when TIR occurs, there is a phase shift between
the incident and reflected waves. From the matrix equation (2.59) we get

E+
p,1

E+
p,2

= 1

2

(w

n
+ n

)
(2.71)
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E−
p,1

E+
p,2

= 1

2

(
−w

n
+ n

)
(2.72)

Since, w is imaginary, each factor contributes to an additional phase term exp(±iφ)

and a total phase shift between the incident and reflected wave as

�φp = −2 tan−1

(
Imw

n2

)
(2.73)

Similar is the case for s-waves and one can calculate the phase shift as

�φs = −2 tan−1 (Imw) (2.74)

Figure2.10 shows the calculated phase shifts for p-waves and s-waves at different
incident angles. Since there is a phase shift between the incident and the total inter-
nally reflected rays, an interference is observed which leads to a shift in the reflected
beam in the plane of the incidence towards the direction of propagation, which is
known as Goos-Hänchen Shift.

2.3.2 Thin Layers and Frustrated Internal Reflection

We now consider the case where there are several thin layers stacked on top of each
other. For the beginning, let us first consider the casewhere light traverses through two
interfaces as shown in Fig. 2.11, separating three dielectric media (ni , i = 1, 2, 3).
To complete the picture, let us assign a thickness d for medium 2 sandwiched in
between. Writing the transfer matrix for a p-wave at the second interface (between
media 2 and 3), we have

(
E+b

p,2

E−b
p,2

)
= 1

2

( w23
n23

+ n23 −w23
n23

+ n23

−w23
n23

+ n23
w23
n23

+ n23

) (
E+

p,3

E−
p,3

)
(2.75)

where E±b
p,2 are electric fields at the second interface traveling in themedium2 towards

(+) and away (−) from the interface, wi j = wi/w j and ni j = ni/n j . Similarly, at
the first interface, another transfer matrix can be constructed

(
E+

p,1

E−
p,1

)
= 1

2

( w12
n12

+ n12 −w12
n12

+ n12

−w12
n12

+ n12
w12
n12

+ n12

)(
E+t

p,2

E−t
p,2

)
(2.76)

where now E±t
p,2 are electric fields at the first interface traveling in the medium 2

towards (+) and away (-) from the interface.
The connection between the two sets of fields inside the medium 2 is given by the

phase difference when a wave travels a distance d in the medium.
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Fig. 2.11 A thin dielectric layer with refractive index n2 is situated between two materials with
refractive indices n1 and n3. The electric field vectors for the light rays above and below the first
and second interface are shown here together with their polarizations

(
E+b

p,2

E−b
p,2

)
=

(
e−iw2d 0

0 eiw2d

) (
E+t

p,2

E−t
p,2

)
(2.77)

where w2 is the z-component of the wave-vector k2 in the medium. If w2 is real then
the matrix simply represents the phase accumulation for a plane wave propagating
through the homogeneous medium of index n2. Thus, the field in medium 3 can be
written in terms of the field in medium 1 as

(
E+

p,1
E−

p,1

)

= 1

4

(
w12
n12

+ n12 − w12
n12

+ n12

− w12
n12

+ n12
w12
n12

+ n12

) (
e−iw2d 0

0 eiw2d

) (
w23
n23

+ n23 − w23
n23

+ n23

− w23
n23

+ n23
w23
n23

+ n23

)(
E+

p,3
E−

p,3

)

(2.78)

Before proceeding further, let us examine two important phenomena here. For the
first case, let us assume that n3 = n1 > n2. The transfer matrix M̂p for p-waves,
considering boundary conditions for both the interfaces can be written as

M̂p =
(

w
n + n −w

n + n
−w

n + n w
n + n

) (
e−iφ2 0
0 eiφ2

) ( n
w

+ 1
n − n

w
+ 1

n− n
w

+ 1
n

n
w

+ 1
n

)
(2.79)

where w = w2/w1 and n = n2/n1 and φ2 = w2d. Now, when there is TIR (i.e. w2

is imaginary), the propagation matrix carries the loss of amplitude in the EM field
when the plane wave propagates through the medium. M̂p can be simplified into the
form of a 2 × 2 matrix as
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M̂p =
(

A B
B∗ A∗

)
(2.80)

where A = cosφ2 − i/2
(
w/n2 + n2/w

)
sinφ2, B = −i/2

(
w/n2 − n2/w

)
sinφ2.

The matrix looks much similar for s-waves, M̂s can be obtained by putting n = 1 for
the expressions of A and B. As we stated in the previous section, evanescent waves
do not transmit any energy across the interface. However, if there is a third optically
denser medium present, within one wavelength distance, from the first optically
denser medium, these evanescent waves couple through and the energy is transmitted
through the thin intermediate layer into the thirdmedium.This phenomenon is similar
to quantum tunneling and is called frustrated internal reflection, the term “Frustrated"
appearing here due to the loss of energy in the reflected wave in the first optically
rarer medium due to the effective evanescent-wave coupling. We will encounter this
phenomenon later when discussing the interaction of en emitting electric dipole with
a stack of layers.

In the case where E−
3 = 0, one has E+

1 = A · E+
3 . Therefore, the transmission

coefficients are simply given by

Tp,s = E+
3,(p,s)

E+
1,(p,s)

= 1

Ap,s
(2.81)

Let us next consider the case where n1 = n3 < n2. In this case, the component
of the wave vector parallel to the interface q inside the thin layer can exceed the
maximum possible q = k1 in the media with the lower refractive index. Thus, if
one considers a wave such that k2 ≥ q > k1, one has total internal reflection at
the interfaces. The evanescent waves outside cannot transfer energy away from the
stack, and therefore one has multiple reflections inside the thin layer which acts as a
waveguide. However, only for a few values of q, the sandwiched medium acts as a
waveguide. These values depend on the thickness of the layer, the refractive indices
of all the media involved and the polarization of the electric field inside the thin layer.
These values can be found by realizing the conditions that E+

3 �= 0, E+
1 = 0, which

can be done by finding the solutions of A = 0. For p-waves, we have

Ap = cos(w2d) − i

2

(
w

n2
+ n2

w

)
sin(w2d) = 0 (2.82)

where w2 =
√

n2
2 − q2 and k2 ≥ q > k1. The modes for the case of s-waves can be

found similarly by solving for As = 0, where As is given by the expression

As = cos(w2d) − i

2

(
w + 1

w

)
sin(w2d) (2.83)
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2.3.3 Fresnel’s Equations for a Metal Surface

Let us now study the reflection and transmission properties of plane waves upon
incidence on a metal surface. We follow the same notation as in all our previous
sections (for example Sect. 2.3) and define n1 as the dielectric medium above the
interface and ñ2 = n2 + iκ2 as the refractive index of the metal at a frequency ω. Let
us first consider the case of p-waves. The electric field of a plane wave in medium
2 can be written as

E±
p,2(r, t) = E±

p,2ei(k±
2 ·r−ω t)ê±

2p (2.84)

Thewave vector k2± can bewritten as k±
2 = qq̂±w2ẑwhere q is the projection of the

wave vector onto the interfacewhosemagnitude is given by q = n1 sin θ1 = ñ2 sin θ̃2

andw2 =
√

k2
2 − q2. Therefore,k2±·r = q(q̂·ρ)±w2z, whereρ is a two dimensional

vector within the interface. Using this relation, the electric field in the metal can be
written as

E±
p,2(r, t) = E±

p,2ei[q(q̂·ρ)−ω t]e±iw2z ê±
2p = E±

p,2ei[q(q̂·ρ)±Re(w2)z−ω t]e∓Im(w2)z ê±
2p

(2.85)

Before proceeding further, we must understand the behavior of the electric fields
represented by Eq. (2.85). The first part of the expression on the right represents
a plane wave propagating in the direction of ρ̂ with a wave vector q; whereas the
second part represents a phase shift (real part ofw2) and an exponential modification
of the magnitude (imaginary part ofw2) of the electric field E±

p,2 with its propagation
along z-direction. Themagnitude entirely depends on the sign of the quantity Im{w2}
where,

w2 =
√

(n2
2 − κ2

2 − q2) + 2in2κ2. (2.86)

The sign of the imaginary part of w2 depends on the sign of the term n2κ2 (principal
square root). From Eq. (2.51), we see that this product is directly proportional to
the specific conductivity which cannot be a negative number. This leads to the fact
that the magnitude of E+

p,2 declines with increasing z and for the case of E−
p,2, the

magnitude falls exponentiallywith the decrease of z. In otherwords, themagnitude of
an electromagnetic wave penetrating the metal surface (z > 0), falls of exponentially
with depth. The magnitude falls down by a factor of e−1 for z = 1/Im{w2}. For
normal incidence, Im{w2} = κ2 ω /c and hence, κ(ω) is also called the extinction
coefficient. It represents the attenuation of the electromagnetic waves propagating
through the medium.

While deriving Fresnel’s equations for the reflection and transmission of plane
waves for a metal surface, one must observe the same boundary conditions for the
electric and magnetic fields at the interface as given in Sect. 2.3. The equations (2.54)
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to (2.64) can be written similarly for the case of a complex refractive index, and the
transformation matrix approach we built in that section is valid here. Hence, the
reflection coefficient for the case of p- and s-waves respectively is given by

Rp = ñ2 − w̃

ñ2 + w̃
(2.87)

and,

Rs = 1 − w̃

1 + w̃
(2.88)

where we used w̃ = w2/w1 and ñ = n2/n1. Figure2.12 shows the reflectivity
(R · R∗) and phase shift �φ for p- and s-waves on a gold/air interface as a function
of wavelength and incident angle θ1. For normal incidence (θ1 = 0), � = �φp −
�φs = −π, whereas for grazing incidence, � = 0. Between these two extreme
cases, there exists an angle θi when � = −π /2 and therefore a linearly polarized
light is reflected as an elliptically polarized light. This angle is, in general, where
the reflection coefficient for the p-waves is a non-zero minimum, and is called the
principle angle of incidence [24].

2.4 The Oscillating Dipole

Any change of charge or current distribution in space produces an EM radiation. The
most fundamental source of an EM wave is an oscillating electric dipole. Almost all
fluorescent organic dyes can be well described as ideal electric dipole oscillators. In
this section we extensively study the behavior of an oscillating electric dipole in a
homogeneous environment which will be vital for our further theoretical discussion
and the work in this thesis.

2.4.1 Dipole in a Homogeneous Environment

Let us consider a dipole at position r = 0 oriented along the z-axis with a distance d
between its two equal but opposite charges (+q and −q) that are oscillating around
the center with a frequency ω. We first derive the field E(r) when the time is frozen,
i.e. the positions of the two charges are fixed in space. The potential ψ at a position
r away from the dipole can be written as

ψ(r) = 1
ε

q

[
1

|r − z+| − 1

|r − z−|
]

= 1
ε

q

[ |z− − z+| cos θ

|r − z+| |r − z−|
]

(2.89)
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Fig. 2.12 Surface plots and contours showing the reflectivity and phase shifts for p- and s- waves
on a gold/air interface. For each wavelength, the reflectivity |Rp|2 reaches a non-zero minimum at a
certain incidence angle θi as can be seen from the top-left surface plot. The bottom two plots show
the phase shift for p- and s-waves

where z± are the positions of the point charges, and θ is the angle between the line
joining position r to the position of the dipole and the axis of the dipole. When the
point of interest is far away from the dipole (r >> d), the product |r − z+| |r − z−|
can be simply approximated as r2. Therefore, the Eq. (2.89) can be written as

ψ(r) = p cos θ

ε r2
(2.90)

p is the dipole moment defined as p = qd, where d = z− − z+. The electric field E
for the dipole can be calculated in the following way

E(r) = −∇ψ = −
(
r̂

∂

∂r
+ θ̂

1

r

∂

∂θ

)
ψ = 2p cos θ

ε r3
r̂ + p sin θ

ε r3
θ̂ (2.91)

Now p cos θ can be written as r̂ · p and p sin θθ̂ as r̂ × (r̂ × p). Substituting these
identities in the Eq. (2.91) gives the relation
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Fig. 2.13 Contour plot of electrostatic potential of a static dipole oriented horizontally showing
electric field lines. The red and blue circles represent the positions of positive and negative charges
respectively. The arrows show the direction and magnitude of electric field lines

E(r) = 2r̂(r̂ · p)

ε r3
+ r̂ × (r̂ × p)

ε r3
= 3r̂(r̂ · p) − p

ε r3
(2.92)

This represents the field of a static electric dipole and it is a stationary electric
field where no propagating EM radiation is generated. The static field is present close
to the dipole whose strength decays rapidly as a r−3 distance relationship form the
center of the dipole. The time-averaged Poynting vector is proportional to r−6. No
energy is transported away from the dipole in this case because anything that falls of
faster than r−2 cannot carry energy away (Fig. 2.13).

EMwaves are generated by non-stationary sources such as a non-uniformly mov-
ing point charge or an oscillating dipole. If we nowwant to calculate the EM radiation
of an oscillating dipole, we need to take into account its temporal variation. Given
non-zero ρ(r, t) and j(r, t), which are now functions of time, it is not so straight-
forward to obtain unique solutions for the fields E(r, t) and B(r, t) from Maxwell’s
equations presented in Sect. 2.2. Information travels with a finite speed and is delayed
in time and in order to incorporate time-varying dipolemoments, one needs to involve
retarded potentials with suitable gauge conditions. Here, we present an alternate way
for obtaining the EM radiation which does not involve such a theoretical complexity.

Representing the time-variation of the oscillating dipole by the usual complex-
valued notation e−iωt the positions of the two charges can be written as

z± = ±d

2
e−i ω t (2.93)

and their respective velocities by
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v± = dz±
dt

= ∓i
d

2
ω e−i ω t (2.94)

The current density, j is given by the sum of the product of charges with their
respective velocities. Therefore,

j = −iqd ω e−i ω t = −i p ω e−i ω t (2.95)

where p = qd is the amplitude of the dipole moment. The dipole moment vector
p is oriented along the direction from the negative to the positive charge. Therefore
the vector j can be written as

j = −i ωpe−i ω t
δ(r) (2.96)

where,

δ(r) =
ˆ

d3k

(2π)3
eik·r (2.97)

is the Dirac delta function in three dimensions.
Let us now recall Maxwell’s equations from Sect. 2.2 and apply to our oscillating

dipole system. E(r, t) can be written as E(r)e−i ω t . Setting μ to unity (we consider
non-magnetic materials in this thesis only), Eqs. (2.36) and (2.37), using Eq. (2.96)
can be written as

∇ × B = 4π

c
j + 1

c

∂E
∂t

= −4π ik0p δ(r) − ik0E (2.98)

∇ × E = −1

c

∂B
∂t

= ik0B (2.99)

where we set k0 = ω /c. Using equations (2.98) and (2.99) we get

∇ × ∇ × E = ik0∇ × B = ε k2
0E + 4π k2

0p δ(r) (2.100)

Applying a spatial Fourier transform to the above equation, we get

−k × k × Ẽ − ε k2
0Ẽ = (k2 − ε k2

0)Ẽ − k(k · Ẽ) = 4π k2
0p (2.101)

Multiplying both sides of Eq. (2.101) with k, this simplifies to

k · Ẽ = −4π

ε
k · p (2.102)

Substituting Eq. (2.102) back in (2.101) we obtain
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Ẽ = 4π

ε(k2 − ε k2
0)

[
ε k2

0p − k(k · p)
]

(2.103)

Passing back to real space from Fourier space, E(r) can be obtained using

E(r) =
ˆ

d3k

(2π)3
Ẽ(k)eik·r

Using Eq. (2.103) we get

E(r) = 4π

ε

ˆ
d3k

(2π)3
ε k2

0p − k (k · p)
(
k2 − ε k2

0

) eik·r (2.104)

Now, one can observe that

∇ · (
peik·r) = i(k · p)eik·r

and therefore,

∇ (∇ · (peik·r)
) = −k(k · p)eik·r (2.105)

Using the last relationship, one can write the electric field E(r) as

E(r) = 1

2π2 ε

(
ε k2

0 + ∇ (∇·))
[
p
ˆ

eik·r

k2 − ε k2
0

d3k

]
(2.106)

The integral on the right hand side can be simplified by switching into spherical co-
ordinate system such that the vector r is along the polar axis and the dipole oriented
at an angle α to this direction. Thus, k can be written as

k = k (sin θ cosφ, sin θ sin φ, cos θ)

∴ k · r = kr cos θ

Using this, the integral can be treated as

ˆ
eik·r

k2 − ε k2
0

d3k =
ˆ ∞

0
dk k2

ˆ π

0
dθ sin θ

ˆ 2π

0
dφ

eikr cos θ

k2 − ε k2
0

= 2π
ˆ ∞

0
dk k2

ˆ π

0
dθ sin θ

eikr cos θ

k2 − ε k2
0

by making the substitution ζ = cos θ in the second integral, we get
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Fig. 2.14 Closed contour showing the inclusion of the pole at +√
εk0 for our integration

ˆ
eik·r

k2 − ε k2
0

d3k = 2π

ˆ ∞

0
dk k2 1

ikr

eikr − e−ikr

k2 − ε k2
0

= 2π

ir

ˆ ∞

0
dk k

eikr − e−ikr

k2 − ε k2
0

= 2π

ir

[ˆ ∞

0
dk k

eikr

k2 − ε k2
0

−
ˆ ∞

0
dk k

e−ikr

k2 − ε k2
0

]

Substituting in the second integral −k with k, we finally get

ˆ
eik·r

k2 − ε k2
0

d3k = 2π

ir

ˆ ∞

−∞
dk k

eikr

k2 − ε k2
0

(2.107)

The right hand side of Eq. (2.107) represents an integral over complex plane with
two singularities k = ±√

εk0. Using Cauchy’s residue theorem,3 we select a contour
which includes only the outgoing waves from the dipole, which are physically rea-
sonable. i.e. the pole at k = +√

εk0, as shown in Fig. 2.14. Since r is always positive,
we take the positive imaginary values for k so that eikr → 0 when |Im(k)| → ∞.

2π

ir

ˆ ∞

−∞
dk k

eikr

k2 − ε k2
0

= 2π

ir

‰
�

dk k
ei

√
εk0r

k2 − ε k2
0

(2.108)

= 2π2 eikr

r
(2.109)

3If f (z) has singularities at N points in space, then

1

2π i

˛
C

f (z)dz =
N∑

n=1

Res( f, zn)

Refer to “Complex Analysis” by Ahlfors [25].
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Putting Eq. (2.109) in (2.106) we obtain the expression

E(r) = 1
ε

(
k2 + ∇ (∇·))

[
p

eikr

r

]
(2.110)

where we used k = √
εk0. When explicitly performing the differential operations on

the r.h.s., one obtains

∇ (∇·)
[
p

eikr

r

]
= ∇

[(
ik

r
− 1

r2

)
(p cosα) eikr

]

=
[(

−k2

r
− 2ik

r2
+ 2

r3

)
(p cosα) r̂ − 1

r
(p sinα) θ̂

(
ik

r
− 1

r2

)]
eikr

=
[(

−k2

r
− 2ik

r2
+ 2

r3

) (
p · r̂) r̂ − 1

r
r̂ × (

r̂ × p
) (

ik

r
− 1

r2

)]
eikr

Finally, using the expansion r̂× (
r̂ × p

) = r̂(r̂ ·p)−p rearranging the terms, we
find the electric field E(r, t) of the dipole

E(r, t) =
{

k2

r

[
p − r̂(r̂ · p)

] +
(

ik

r2
− 1

r3

) [
p − 3r̂(r̂ · p)

]}
eikr−i ω t (2.111)

Equation (2.111) represents the complete electric field of an oscillating electric
dipole. As one can see, if we set k = 0, it reduces to the electric field of a sta-
tic dipole (2.92). This is where the velocity of light c = 1/

√
ε comes into the picture.

If one takes c = ∞, k = 0 and the solution to the potential is an instantaneously
varying static field governed by the dipole moment p at any time t .

The terms scaling with r−2 and r−3 constitute the near-field of the dipole which
plays a major role when considering its interactions with another oscillating dipole in
its vicinity or in an inhomogeneous environment such as close to a surface or inside
a nanocavity. The part of the field scaling with r−1 is the far-field component which
contributes to the transport of radiation energy away from the dipole.

The magnitude of the electric field depends on the length of the vector[
p − r̂(r̂ · p)

]
which can be written as p sinα where, α is the angle between p

and the vector towards the point of interest r as shown in Fig. 2.15. It also scales
as the inverse of the distance r. The direction of the field points towards the vector
r̂× (p̂× r̂) which is perpendicular to r in the plane containing both the vectors r and
p. Thus, the amplitude of the electric field

∣∣E(p̂)
∣∣ along the direction of the dipole

moment is zero at all times. Figure2.16 shows the magnitude of the electric field in
the plane of a dipole at a fixed time. The waves are propagating radially away from
the center of the dipole with the electric field vector E(r) pointing in the direction
perpendicular to the position vector r at each point.

The magnetic field can be derived by taking the curl of the electric field in
Eq. (2.110) as follows
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B(r) = c

i ω
∇ × E(r) = 1

ik0
∇ ×

[
1
ε

(
k2 + ∇ (∇·))

[
p

eikr

r

]]

Since∇×(∇a), where a is a scalar field, is always zero, the above equation reduces to

B(r) = k2

ik0 ε
∇ ×

[
p

eikr

r

]
. (2.112)

Assuming again that the dipole is along the ẑ, this brings us to the expression

B(r, t) = r̂ × p
nmed

(
k2

r
+ ik

r2

)
eikr−i ω t (2.113)

Note that here we used the relations k = k0
√

ε and
√

ε = nmed. The magnetic
field lines can be drawn as concentric circles around the dipole vector p where the
magnitude at point r is ∼ p sinα/r pointing normal to the plane containing r and
p. This result is also consistent to the fact that the field B is always perpendicular to
the motion of charges or current direction. Thus the magnetic field does not perform
any work on the oscillating dipole.

So far, we derived the complete radiation field of an oscillating dipole in a classical
framework. Next we are interested in the angular distribution of the energy radiated
away from the dipole, which we will consider in the following section.

2.4.1.1 Angular Radiation Distribution of an Oscillating Dipole

The magnitude of the Poynting vector |S| is proportional to nmed |E|2 and it points
along the propagation direction k̂. Before we calculate the average power radiated

Fig. 2.15 A schematic showing the orientations of the dipole moment vector p, and its projection
along the line of sight r. The vector shown in red represents the direction and the magnitude of the
electric field vector E(r). The magnetic field B(r) points into the plane of the paper as shown. The
Poynting vector S(r) always points in the direction of r̂
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Fig. 2.16 Contour plot showing the magnitude of the far-field component of an oscillating dipole’s
electric field which is oriented along ẑ. The radius of the image is ≈ 2.5λ

by an oscillating dipole, it is important to mention that the fast decaying near-field
components which scale with the distance as r−2 and r−3 do not contribute in the
transport of energy away from the dipole, since the surface integrals of these com-
ponents over a sphere of say radius r yield a net flux proportional to r−2 and r−4

respectively which vanish for large values of r (r � λ). Thus these near-field com-
ponents are also termed the non-propagating components which can be neglected in
the current section where we consider dipole oscillating in a homogeneous space.
However, these near-field terms play a key role when studying dipole-dipole inter-
actions and resonance energy transfer (such as FRET), or when considering dipoles
situated close to an interface separating a dielectric or conducting medium. We shall
study the latter situations closely in the forthcoming sections which will complete
our theoretical foundation for Metal-Induced Energy Transfer (MIET). For now, we
can approximate the electric and magnetic fields around an oscillating dipole as

E(r) ∼ k2 [
p − r̂(r̂ · p)

] eikr

r
and (2.114)

B(r) ∼ k2
[
r̂ × p

] eikr

rnmed
(2.115)

Therefore the far-field Poynting vector is given by

S(r) ∼ ck4

8πr2nmed
r̂
[

p2 − (r̂ · p)2
]

(2.116)

= ck4 p2 sin2 θ
8πr2nmed

r̂ (2.117)
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Fig. 2.17 The angular distribution of radiation from a dipole which is oscillating along the double
arrow in the center. The distance of the surface from the center represents the probability of obtaining
an emitted photon when the dipole is repeatedly excited. It follows the sin2 α law, where α is the
angle measured from the dipole moment vector p

Thus S(r) points away from the dipole’s position and towards the point of interest.
The magnitude of the flux density declines as the inverse of the square of the distance
from the dipole. The total power radiated from an oscillating dipole is obtained by
integrating the radial component of the Poynting vector over the sphere with radius
r , and since the vector S is always normal to the surface, we have

S =
ˆ π

0
dα sinα

ˆ 2π

0
dφ r2

ck4 p2 sin2 α

8πr2nmed
= 1

3nmed
ck4 p2. (2.118)

Replacing k by
√

εk0, we have

S = 1

3
cnmedk4

0 p2. (2.119)

The angular distribution of the power per solid angle d� is given by

r2dS

sinαdαdφ
= cnmedk4

0 p2

8π
sin2 α (2.120)

which directly gives the sin2 α dependence of the radiation power from the dipole,
where α is measured from the dipole’s axis. Thus, the angular distribution looks like
a torus with its axis along the dipole moment vector p. This is shown in Fig. 2.17.

The total power radiated by the dipole can also be calculated using the integral
over the normal component of the time-averaged Poynting vector through a surface
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enclosing the source

S =
‹

(〈S〉 · n̂)dA (2.121)

Using the Divergence theorem,4 this can be written as

S =
ˆ

V
〈∇ · S〉 dV = c

4π

ˆ
V

〈∇ · (E × B)〉 dV

= c

4π

ˆ
V

〈[(∇ × E) · B − E · (∇ × B)]〉 dV

Plugging in Maxwell’s equations and taking the time average, this yields

S = −1

2
Re

(ˆ
V
E · j∗dV

)
(2.122)

where j is the current density in the source. Thus, the radiation power is equal to
the negative work done per unit of time by the field acting on the source. Using the
current density for the oscillating dipole given by the Eq. (2.96), the total power can
be written as

S = 1

2
ωp · Im (E) (2.123)

From a physics point of view, the above equation translates into the fact that the
power radiated by an electric dipole is proportional to that component of the electric
field which is along the direction of the dipole’s axis and which is by π /2 out of
phase with respect to the oscillation of the dipole moment.

Themost important point to note from the Eq. (2.119) is the k4 ∼ λ−4 dependence
of the radiation power. The same law holds true for Rayleigh scattering theory of
light, such as on density variations, which are smaller in size than the wavelength
of the EM radiation scattered by them. Rayleigh scattering results from the electric
polarization of the gas molecules due to their interaction with the radiation causing
them to behave as oscillating dipoles. Thus, the above theory can be also applied
to calculate the field around scattering particles. As shown in the above relation,
the scattering cross section increases inversely proportional to the fourth power of
the wavelength, and therefore the sky appears blue in color. Another interesting
observation is the direct dependence of the radiation power on the refractive index
of the medium. A dipole radiates more energy per unit of time if it is situated inside
a medium of higher refractive index such as glass (n = 1.5) or water (n = 1.33). In
a quantum mechanical picture, this translates to the fact that the excited molecules

4If F is a continuously differentiable vector over a volume V and its neighborhood, then
´

v(∇ ·
F)dV = ‚

A(F · dA), where the vector element dA points normal at each point to the surface of the
volume V . For derivation, refer to [26].
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return faster from their excited state to the ground state when placed in such media.
In other words, the average lifetime of the excited state τ f is shorter in water or glass
as compared to air. The purely radiative decay rate, or spontaneous emission rate
of a classical dipole oscillator is given by the ratio of the average radiation power
of the dipole and its total initial energy. Assuming no damping in the oscillations,
which will be considered in a later section, the spring constant is given by k = ω2 m,
where m is the effective mass of the dipole and ω is the angular frequency of the
oscillating spring system. If x0 is the initial oscillation amplitude, the initial energy
of the oscillation system is given by

U0 = 1

2
kx2

0 = 1

2
m

2
ω

p2
0

q2
. (2.124)

The radiation power is the rate of change of this initial energy which is given by
Eq. (2.119).

∴ dU

U0
= −2

3

q2 ω2 nmed

mc3
dt (2.125)

which gives us the radiative rate κ0 of the dipole.

κ0 = 2

3

q2 ω2 nmed

mc3
(2.126)

which is the inverse excited state lifetime (if there are no other de-excitation
channels).

In the next section, we will study the behavior of a dipole emitter situated close
to an interface separating two such dielectric media.

2.4.2 Dipole on a Planar Dielectric Interface

So far, we studied the properties of a dipole oscillating in a homogeneous environ-
ment. For our discussion in this section, let us consider a dipole situated on top of an
interface separating the upper media (z < 0) with dielectric constant ε1 and a lower
medium (z > 0) with dielectric constant ε2. Let the dipole moment vector be p at
position r0. Let us further consider that r0 is a point in the medium 1, z0 < 0. First,
we write down the plane wave representation of the dipole’s field in a homogeneous
space with a dielectric constant ε1 using (2.104).

E(r) = 4π

ε1

ˆ
d3k

(2π)3
ε1 k2

0p − k (k · p)
(
k2 − ε1 k2

0

) eik·R (2.127)
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Fig. 2.18 The general geometry of the vectors considered in this section. The interface separates
two media ε1 and ε2 as shown. The unit vectors ê

±
i p represent the directions of electric field vectors

in the plane of incidence, whereas the unit vectors ês point in the direction perpendicular to the
plane of incidence. θ1 and θ2 are the angles of the vectors k+

1 and k+
2 with respect to the normal

of the interface, and ψ is the angle the plane of incidence makes with respect to a fixed x-axis. r0
marks the position of the dipole p. Note that p is doubly degenerate, and hence we show using a
double arrow

where R = r − r0. Let us denote, as before, by q and w the horizontal (parallel to
the interface) and vertical (orthogonal to interface) components of the wave vector
k. Performing in the above plane wave representation the integration over w and
applying Cauchy’s residue theorem leads to the so-called Weyl representation of the
electric field of an oscillating dipole in homogeneous space,

E(r) = i

2π ε1

ˆ
d2q

[
k2
1p − k±

1 (k±
1 · p)

]

w1
ei[q·(ρ−ρ0)−w1|z−z0|] (2.128)

where k±
j = {q,±w j } and w1(q) =

√
k2
1 − q2 with k1 = √

ε1k0, and k1+ applies

for z > z0 and k1− applies for z < z0. When applying Cauchy’s residue theorem, we

have taken into account only the polew1 = +
√

k2
1 − q2 with positive real or positive

imaginary value so that the Weyl representation integrates only over outgoing (or
with distance exponentially decaying) planewaves, but not incomingor exponentially
increasing plane waves (Fig. 2.18).

The vector k2
1p − k±

1 (k±
1 · p) is a projection of p perpendicular to the direction

of k±
1 , and can thus be expanded into a system of two orthogonal unit vectors which

are both orthogonal to k±
1 , in particular
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ê±
1p = 1

k1

(±w1qx

q
,
±w1qy

q
,−q

)

and

ês = 1

q
(−qy, qx , 0)

Both these vectors are indeed perpendicular to k±
1 = {

qx , qy,±w1
}
, whereas ê±

1p lies
within the plane which is spanned by k±

1 and the normal to the interface (p-wave),
and ês lies parallel to the interface (s-wave). Thus, the Weyl representation can be
rewritten as

E(r) = ik2
0

2π

¨
dq
w1

[
ê±
1p(ê

±
1p · p) + ês(ês · p)

]
ei[q·(ρ−ρ0)+w1|z−z0|] (2.129)

Now it is obvious that theWeyl representation (2.129) is an expansion of the dipole’s
electric field over plane p- and s-waves. If w1 is imaginary, they are which decay
exponentially with distance away from the plane of the dipole (z = z0). In order to
calculate the complete field, one now needs to calculate the fields reflected by and
transmitted through the interface, which can be done in a straightforward way by
using Fresnel’s relations that we had derived in Sect. 2.3. These fields are given by

ER(r) = ik2
0

2π

¨
dq
w1

[
ê−
1p Rp(ê

+
1p · p) + ês Rs(ês · p)

]
ei[q·(ρ−ρ0)+w1|z0|−w1z],

(2.130)

and

ET (r) = ik2
0

2π

¨
dq
w1

[
ê+
2pTp(ê

+
1p · p) + ês Ts(ês · p)

]
ei[q·(ρ−ρ0)+w1|z0|+w2z].

(2.131)

where we have introduced also the unit vector

ê+
2p = 1

k2

(
w2qx

q
,
w2qy

q
,−q

)

which is perpendicular to k+
2 = {

qx , qy, w2
}
with w2(q) =

√
k2
2 − q2, and Rp,s and

Tp,s are Fresnel’s q-dependent reflection and transmission coefficients for plane p-
and s-waves, respectively. Here, Eq. (2.130) is the reflected field (z < 0), and (2.131)
is the transmitted field (z > 0). The term eiw1|z0| in both the reflected and transmitted
fields takes into account the additional phase shift due to the plane wave propagation
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form the dipole’s position to the interface. Two important points can be read off from
Eq.2.131

1. The magnitude of the transmitted and reflected electric field depends on the ori-
entation of the dipole vector pwith respect to the plane of incidence. This is taken
care of by the scalar products ê±

j p · p and ês · p.
2. The magnitudes of these electric fields clearly depend on the reflection and trans-

mission coefficients Tp,s and Rp,s , which are themselves functions of the angle
of incidence and thus q of the plane waves with respect to the interface.

Let us now examine two important particular cases. In the first case, when n1 < n2

i.e., the dipole is in an optically rarer medium, such as water, on top of an optically
denser medium, such as glass. In this case, all propagating waves in medium 1 are

also propagating in medium 2 (since w2 =
√

k2
2 − k2

1 + w2
1 which is always real for

w1 � k1 and k2 > k1). However, the amplitude of vector q can be larger than k1 (it
actually can go up to infinity). Thus, for the range of q-values with k1 < q ≤ k2, one
has non-propagating and exponentially decaying plane waves in medium 1 (iw1|z0|
is real and negative), which, however, become propagating inmedium 2, contributing
to the far field radiation in the lower half-space. This is similar to frustrated internal
reflection which we studied before. We had seen that this process results in an energy
reduction of the reflected plane (as compared to TIR) and a partial energy transfer
to the denser medium beneath the thin layer. In the situation here, one can visualize
this as a dipole losing more energy per time than one within a homogeneous medium
1 without any interface (energy tunneling into denser medium). This leads to an
increase in total radiated power S and, as a resulting, to an decrease of the excited state
lifetime τ f . Finally, for values of q larger than k2, all plane waves are exponentially
decaying, and they do not contribute to any far-field energy propagation. The second
case is the opposite, when the dipole is located in the optically denser medium
(n1 > n2). In this case, there exist propagating plane waves in medium 1 which
cannot propagate in medium 2 (for k2 < q ≤ k1). For these values of q, the absolute
values of the reflection coefficients Rp and Rs are equal to one, and depending upon
the distance of the emitter from the surface, constructive or destructive interference
with the directly emitted plane wave along k−

1 takes place in medium 1. In medium
2, these plane waves are evanescent and exponentially decay with distance z.

2.4.2.1 Angular Distribution of Radiation of a Dipole Near a Dielectric
Interface

In the upper half-space (medium 1), the angular distribution of radiation can be
calculated from the time-averaged Poynting vector (S(r) ∝ |E|2) using the dipole’s
direct field together with the reflected field along direction k−

1 . Using the electric
fields from Eqs. (2.129) and (2.130), we find that the energy flux radiated into a
solid angle element d�2 = (q/w1k1)dqdψ into the upper half-space (z < 0) along
direction (q, w1) is proportional to
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d2Su

d�2 ∝ k40 p2

4π2

∣∣
[
ê−1p(ê−1p · p) + ês(ês · p)

]
+

[
ê−1p Rp(ê+1p · p) + ês Rs(ês · p)

]
e2iw1|z0|∣∣2

(2.132)

The exponential term at the end of the reflected term represents the additional phase
shift due to the path difference between the plane directly emitted by the dipole
towards k−

1 , and the plane wave which first propagates towards the interface along
k+
1 , and which is then reflected by it towards k

−
1 . Since p and s-waves are orthogonal

to each other, the modulus can be split into two terms each containing one of these
components separately

d2Su

d�2
∝ k4

0 p2

4π2

[∣∣[ê−
1p + Rp ê

+
1pe2iw1|z0|] · p∣∣2 + ∣∣[1 + Rse2iw1|z0|] (ês · p)

∣∣2
]

(2.133)

Similarly, the energy flux density radiated into a solid angle element d�2 =
(q/w2k2)dqdψ into the lower half-space (z > 0) along direction (q, w2) is given
by

d2Sl

d�2
∝ k4

0 p2

4π2

∣∣∣∣
w2

w1

∣∣∣∣

2 [∣∣Tp ê
+
1p · p∣∣2 + ∣∣Ts ês · p∣∣2

]
e−2Im(w1)|z0| (2.134)

The proportionality factors for each case can be obtained by considering the limiting
casewhen the refractive indices of bothmedia are identical, thus setting Rp = Rs ≡ 0
and Tp = Ts ≡ 1. By comparing the result with the angular distribution of radiation
for a dipole in a homogenous medium with refractive index n = n1 = n2, i.e. with
(cnk4

0/8π)
[

p2 − (r̂ · p)2
]
, one finds the proportionality factors asπ cn/2. This leads

to the final expressions

d2Su

d�2
= cn1k4

0 p2

8π

[∣∣[ê−
1p + Rp ê

+
1pe2iw1|z0|] · p∣∣2 + ∣∣[1 + Rse2iw1|z0|] (ês · p)

∣∣2
]

(2.135)

and

d2Sl

d�2
= cn2k4

0 p2

8π

∣∣∣∣
w2

w1

∣∣∣∣

2 [∣∣Tp ê
+
1p · p∣∣2 + ∣∣Ts ês · p∣∣2

]
e−2Im(w1)|z0| (2.136)

Figure2.19 shows the dramatic change of the angular distribution of radiation for
an emitting dipole on an air/glass interface as compared to the toroidal distribution
in a homogeneous medium. Note that the emission of a vertical dipole is symmetric
around the vertical axis, but not for a horizontal dipole. The enhanced radiation
into the glass medium is one of the key reasons why inverted microscopes that look
from the glass side should be preferred for single-molecule detection and sensitive
bioimaging. The angular radiation distribution of a dipole on the interface for various
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Fig. 2.19 Angular distribution of radiation of a vertical (left) and a parallel (right) dipole on top
of an air/glass interface

values of the refractive index of the lower half space is shown in Fig. 2.20. For
comparison, we also show the emission when there is no interface, i.e. n1 = n2. A
can be seen, the energy emitted into the optically denser medium is much higher for a
vertical dipole than for a horizontal dipole.Moreover, most of the energy is emitted at
high emission angles, which requires a high Numerical Aperture (N.A.) objective to
collect this emission efficiently. The reason is that plane wave components which are
evanescent in the dipole’s medium can tunnel into the optically denser medium of the
lower half space where they become propagating, carrying away energy. Figure2.21
below shows the distribution for various values of dipole orientation angles towards
the interface.

2.4.2.2 Radiation Power of a Dipole on Top of a Dielectric Interface

The total power radiated by the dipole is given by the integral of angular distribution
of radiation over all directions.

S =
ˆ π /2

0
dθ1 sin θ1

ˆ 2π

0
dψ

d2Su

d�2
+

ˆ π /2

0
dθ2 sin θ2

ˆ 2π

0
dψ

d2Sl

d�2
(2.137)

where θ1 and θ2 are the angles of wave vectors in media 1 and 2 (k−
1 and k+

2 ),
respectively, andwhich are connected to the value of q via sin θi = q/ki , for i = 1, 2.
Thus, Eq. 2.137 takes the form

S =
ˆ k1

0
dq

q

k1w1

ˆ 2π

0
dψ

d2Su

d�2
+

ˆ k2

0
dq

q

k2w2

ˆ 2π

0
dψ

d2Sl

d�2
(2.138)

The upper limits for the integrations over q in the equation above are k1 and k2 for
the upper and lower half-space, respectively. They represent the maximum possible
projections of the wave vecotr into the plane of the interface for propagating waves
in the respective half-space. The total power of emission S obtained is inversely
proportional to the excited state lifetime of the dipole. In other words, the ratio of
S with the total power of emission of a free dipole in a homogeneous medium of
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refractive index n1 (S0), where S0 is the total power of a dipole in vacuum (n1 = 1),
gives us the inverse of the ratio of the excited state lifetimes in both cases.

It can be shown that the total emission power of a dipole with arbitrary orientation
α towards the vertical axis is given by the sum of the emission of a parallel and a
vertical dipole with dipole moments which are its projections on the horizontal and
vertical axis, respectively

S(α, z0) = Stot ⊥(z0) cos
2 α + Stot ‖(z0) sin2 α (2.139)

When the dipole is situated in the optically rarer medium close to the interface,
|z0| < λ, non-propagating near-fieldmodes of the dipole can tunnel into the optically
denser medium where they become propagating, which leads to an increase of the
total radiation power. This can be observed as a faster decay of the excited state of a
fluorescing molecule. An inverse effect takes place when the molecule is situated in
the optically denser medium. Figure2.22 shows the total power radiated by a dipole
at different positions above a glass/water interface for both, horizontal and vertical
orientations. Let us notice that the radiation power shows a periodic behavior with
distance from the interface, with a period of λ/π n1. This is also shown in Fig. 2.23.

Fig. 2.20 Angular distribution of radiation power from a vertical and a paralle dipole located at
the interface separating two dielectric media of refractive indices as shown above and below the
dipole’s position
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Fig. 2.21 Angular distribution of radiation of dipoleswith various orientations on top of an air/glass
interface. α denotes the angle between the dipole and the vertical direction

Fig. 2.22 Figure showing the distribution of power as a function of distance from a water/glass
interface for a vertical and parallel dipole present inwater. For a dipole situated at the interface, about
70% of total radiation power is transmitted into the glass half-space which shows the prominence
of the effective near-field field coupling with the interface
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Fig. 2.23 The top figure shows the total energy radiated as a function of dipole’s distance from the
interface for both, vertical and parallel dipoles. The energy is normalized against the total radiation
power of a dipole in an unbounded water medium. The oscillation amplitude of the curves goes
to zero and the power converges to 1 (or 1.5/1.33) when the distance is on the order of a few
wavelengths. The bottom figure shows the relative excited state lifetime as a function of distance
from the interface normalized to the values in water

2.4.3 Dipole on a Metal Surface

Let us now investigate the behavior of a dipole in the vicinity of a metal surface. The
properties of a dipole change dramatically in the vicinity of a metal surface. Due to
the complex dielectric constant of a metal, a part of the electromagnetic radiation
that is incident on them is absorbed. This absorption can be seen as a transfer of
energy from the radiation to the oscillating plasmons on the surface. The situation is
more complex when an oscillating dipole is present close to a metal. Not only does
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a part of its radiated energy gets absorbed into the metal, but a near-field coupling
between the dipole and the surface plasmons takes place. This changes the rate of
energy emitted by the dipole dramatically. This is similar to what was presented in
Sect. 2.4.2 for a dipole that is situated close to a dielectric interface in an optically
rarer medium. There we saw that a few non-propagating modes of a dipole tunnel
through and propagate in the optically densermedium. In case ofmetals, however, the
energy that is transferred to the surface plasmons is attenuated along the z-direction.
Therefore, the energy that is absorbed from the dipole’s near-field is lost as heat in
the metal internally and is not available for optical detection.

Several experimental studies have measured the effect of a metal surface on the
fluorescence lifetime. During the early 70s, Drexhage and coworkers showed the
influence of a reflecting mirror on a monolayer of phosphorescent europium chelate
complexes experimentally, and developed a model to explain the variations in flu-
orescence lifetimes based on the interference of a dipole’s field with itself [27].
This model could explain well the oscillatory behavior of the radiation rates at large
distances from the metal surface, but failed to account for the experimental results
at short distances (z0 < λ) where efficient nonradiative energy transfer from the
excited molecule to the metal surface takes place. At short distances, the europium
complexes were quenched since the transferred energy was lost to the metal com-
pletely. The situation becomes slightly different for a thinmetal film. The reduction of
the thickness to a few nanometers leads to two things: 1) The coupling of the dipole’s
field with the surface plasmons present on the bottom side of the metal leading to
a further modification of the distance-dependent energy loss. 2) Some part of the
energy transferred to the metal can now propagate into the lower dielectric medium.
This was demonstrated experimentally by Amos et al. by varying the thickness of a
thin silver film on top of a glass coverslide [28].

A more appropriate theoretical treatment for studying the behavior of a dipole in
the vicinity of ametal surfacewas performed byKuhn in hismodelwhere the dipole is
considered as a damped oscillator and involves the calculation of the reflected field
at the dipole’s position [29]. This way of calculating the total emission rates was
already introduced in Sect. 2.4.1.1 using Poynting’s theorem. Later, Chance, Prock
and Silbey worked out the energy-flux method, which we will introduce briefly as
well. With this model (CPS model) one can separate the total flux and radiation rates
into the upper and lower half-spaces, useful for many practical purposes, such as
calculating the amount of radiation from a dipole that can be detected through a thin
film, etc [23]. The treatment is similar to that shown in the previous section where a
dipole’s reflected and transmitted fields are calculated when it is situated close to an
interface and the total power radiated is calculated by integrating the Poynting vector
for all the propagating waves in both half-spaces. However, here, in order to take
the near-field coupling of a dipole with the metal surface into account, the integrals
are calculated over all possible wave vectors, where q goes from 0 to ∞. We start
our discussion by taking the transmitted and reflected fields of an oscillating dipole
placed on top of an interface from our previous Sect. 2.4.2 using Fresnel’s equations
presented in the previous section.
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ET (r) = ik2
0

2π

¨
dq
w1

[
ê+
2pTp(ê

+
1p · p) + ês Ts(ês · p)

]
ei[q·(ρ−ρ0)+w1|z0|+w2z],

ER(r) = ik2
0

2π

¨
dq
w1

[
ê−
1p Rp(ê

+
1p · p) + ês Rs(ês · p)

]
ei[q·(ρ−ρ0)+w1|z0|−w1z].

Here the reflection and transmission coefficients are complex numbers. The field in
the upper half-space (z < z0) can be written as a superposition of the dipole’s field
with its reflection from the interface

E↑ = ik2
0

2π

¨
dq
w1

[
ê−
1p(ê

+
1p · p)

(
e−iw1(z−z0) + Rpe−iw1(z0+z)

)

+ ês(ês · p)
(
e−iw1(z−z0) + Rse−iw1(z0+z)

) ]
eiq·(ρ−ρ0),

(2.140)

and the field in the bottom half-space above the interface (0 > z > z0) is given by

E↓ = ik2
0

2π

¨
dq
w1

[
(ê+

1p · p)
(
ê+
1pe−iw1(z0−z) + ê−

1p Rpe−iw1(z0+z)
)

+ ês(ês · p)
(
e−iw1(z0−z) + Rse−iw1(z0+z)

) ]
eiq·(ρ−ρ0),

(2.141)

The corresponding magnetic fields are obtained by performing the curl operation on
the above equations followed by division by k0

B↑ = ik2
0n1

2π

¨
dq
w1

[
ês(ê

+
1p · p)

(
e−iw1(z−z0) + Rpe−iw1(z0+z)

)

− ê−
1p(ês · p)

(
e−iw1(z−z0) + Rse−iw1(z0+z)

) ]
eiq·(ρ−ρ0),

(2.142)

B↓ = ik2
0n1

2π

¨
dq
w1

[
ês(ê

+
1p · p)

(
e−iw1(z0−z) + Rpe−iw1(z0+z)

) ]
eiq·(ρ−ρ0)

− (ês · p)
(
ê+
1pe−iw1(z0−z) + ê−

1p Rse−iw1(z0+z)
)
,

(2.143)

Using these equations, one can calculate the power radiated along any direction
(ρ, z − z0). Further, energy flux through any plane can be calculated by taking the
dot product of the Poynting vector with the normal to this plane and integrating over
the whole plane. In this way, the total flux through a plane above the dipole’s position
z < z0 and below 0 ≥ z > z0 can be calculated using the above four equations.
Let us find out the total energy emitted into the lower half-space at the interface
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(z = 0). Using equations (2.141) and (2.143), one can write the Poynting vector
S↓ = c/8πRe{E↓ × B∗

↓}

S↓(ρ, z = 0) = ck4
0

32π3
Re

{¨
dq
w1

¨
dq′

w
′∗
1 k1

ei(q−q′)·(ρ−ρ0)

[ (
k̂1

+ + Rpk̂1
−)

e−iw1z0(e−iw′
1z0)∗(1 + Rp)

∗(ê+
1p · p)(ê+′

1p · p)∗

+
(
k̂1

+ + Rs k̂1
−)∗

e−iw1z0(e−iw′
1z0)∗(1 + Rs)(ês · p)(ê′

s · p)∗
]}

(2.144)

The above equation represents the energy flux at a point on the surface (ρ, z = 0).

By taking the projection of this vector along ẑ, using the relations ẑ · k̂±
1 = ±w1/k1,

and integrating over d2ρ, we get the total radiation power through the interface
S↓ = ´

d2ρ (S↓ · ẑ). This integration can be simplified by using the identity of
Dirac’s well-known delta-function,

ˆ
d2ρe[iρ·(q−q′)] = 4π2

δ
2(q − q′),

since the terms inside the square bracket in equation (2.144) do not depend on ρ.
This reduces equation (2.144) to

S↓ = ck4
0

8π
Re

{¨
dq

|w1|2
qn∗

1

k1

[
w1(1 − Rp)(1 + R∗

p)
∣∣ê+

1p · p∣∣2

+ w∗
1(1 + Rs)(1 − R∗

s )
∣∣ês · p∣∣2

]
e2Im(w1)z0

}
(2.145)

Now, this equation represents the total energy flux at the interface and it contains the
energy that is radiated from the dipole towards the interface together with the amount
of energy reflected back. If a calculation was performed similarly at a plane above
the dipole’s position to give S↑, it would contain the dipole’s radiation into the upper
half space, together with the radiation reflected back as well. The total emission rate
S can be calculated using equation (2.123) with the electric field at the position of
the dipole calculated using either of the two equations (2.141) or (2.140) [30, 31].

Let us now consider closely the case of a vertical dipole, p = pẑ. The integration
over q can be carried out in spherical coordinates

S⊥ ↓ = ck4
0 p2

4
Re

{ ˆ
dq

|k1w1|2
q3n∗

1w1

k1
(1 − Rp)(1 + R∗

p)e
2Im(w1)z0

}
(2.146)

Using (2.140) and after some algebraic manipulations, the total radiation power S⊥
is obtained as
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S⊥ = ck4
0 p2

2
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{ˆ
dq

|k1w1|2
q3n∗

1w1

k1
(1 + Rpe−2iw1z0)

}
(2.147)

Similarly, for a parallel dipole, one has

S‖ ↓ = ck4
0 p2

8
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{ ˆ
dq
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[∣∣w2

1

∣∣
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]
e2Im(w1)z0

}

(2.148)

and the total radiation power,

S‖ = ck4
0 p2

4
Re

{ ˆ
dq

|w1|2
qn∗

1w1

k1

[∣∣w2
1

∣∣

k2
1

(1 + Rpe−2iw1z0) + (1 + Rse−2iw1z0)

]}

(2.149)

All the integrals above were performed for all possible q (0 to ∞) values together
with positive imaginary solutions of w1(q) only. This gives the total power emitted
by the dipole into both the half-spaces S↑ and S↓. In order to calculate the rate of
energy detectable in both the half-spaces, one limits the upper-limit of the integrals
to propagating wave vectors only. An important point to note here is that for the
integrals (2.146) and (2.148) when q < k1, Im(w1) = 0, and therefore the integrals
do not depend on the dipole’s position. These then represent the “trivial transfer” of
radiation power to the metal surface from the far-field of the dipole [23]. In other
words, this shows the fraction of energy that is absorbed by the metal.

In order to complete the discussion here and to make use of what we just derived,
we calculate the total power that is detectable in both half-spaces for the two cases
of dipole orientations for a thin metal film on top of a glass coverslip. We do this
by calculating the ratio of the net propagating part of the radiation power to the
total power in both half-spaces. The above equations are true for such a stratified
conducting/dielectric layer system, as long as one uses the effective reflection coef-
ficients [24]. For a thin metal film sandwiched between glass and air, one has:

Rp,s = r12p,s + r23p,s exp(2iw2h)

1 + r12p,s r23p,sexp(2iw2h)
(2.150)

where the subscripts refer to p- and s-polarization, r12p,s and r23p,s are the Fresnel
reflection coefficients for an air-to-metal and metal-to-glass interface, and w2 =√

(n2
2 − 1)k2

0 + w2
1, where n2 is the complex refractive index of metal.

Figure2.24 shows the energy emitted that is detectable as a function of height. The
quantum yield for the dipoles was assumed to be one. Note that at distances z0 > λ,
the total radiated energy into both half-spaces approach constant values that represent
the net reflectance and transmittance of the metal film. Two important things should
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Fig. 2.24 N↑, N↓ represent the detectable energy calculated for both the upper and lower half-
spaces, respectively. The top figure shows the detectable radiation of a dipole (� = 1) into the upper
and lower half-spaces for both orientations as a function of distance d (d = z0/ λ, λ = 690 nm).
The thin gold film of 10 nm is enough to quench the dipoles. This can be seen in the plot where
the radiation in the upper and lower half-spaces approach zero when the dipole is placed at very
small distances. A part of the energy that is transferred to the surface plasmons couples out at the
gold/glass interface which propagates into the lower half-space. The bottom figure shows the ratio
of the detectable emission power in the lower half-space versus the upper half-space for both the
orientations as a function of distance from the metal surface. This shows that when a dipole is close
to the surface of a thin film, the chance to detect it optically is higher through the glass beneath



2.4 The Oscillating Dipole 71

be noted from this figure. First, the thin gold film of thickness 10 nm is enough to
quench the dipoles in its vicinity. In other words, the plasmons excited due to the
transfer of energy from the dipole radiate out in the bottom interface between gold
and glass medium. In other words, a part of the energy transferred to the plasmons
from the oscillating dipole close to it is transferred further into the glass medium
where it can propagate again. This energy now propagates in the form of plane waves
and can be detected by our optical system with a high collection efficiency objective.
The possibility to detect single molecules on top of a thin metal film, with some
spacer in between, was first shown by Stefani et al. [32].

Dividing equation (2.147) by the total radiation power of a free dipole in the same
medium (n1S0 = cn1k4

0 p2/3), we get rate associated with the total photon flux from
a dipole close to a metal surface

κ⊥ = κ0

[
1 − 3

2
Re

{ˆ ∞

0

du

w1
u3Rpe−2iw1z0

}]
, (2.151)

where we used u = q/k1 in the above equation, and κ0 is the radiative rate of a
free dipole (see equation (2.126)). On similar lines, the total photon flux of a parallel
dipole can be obtained

κ‖ = κ0

[
1 + 3

4
Re

{ˆ ∞

0

du

w1
u

[
Rs + (1 − u2)Rp

]
e−2iw1z0

}]
. (2.152)

If the quantum yield φ of the free dipole is not unity, then the total rate of photons for
a vertical dipole can be separated into the sum of a radiative (κr ⊥) and a non-radiative
decay rate (κnr ⊥) as

κr ⊥ = κ0

[
� − 3

2
�Re

{ˆ 1

0

du

w1
u3

(
Rp

)
e−2iw1z0

}]
(2.153)

and

κnr ⊥ = κ0

[
(1 − �) − 3

2
�Re

{ˆ ∞

1

du

w1
u3 (

Rp
)

e−2iw1z0

}]
. (2.154)

The above equations are trivial to understand. w1 is real only when u varies from
0 → 1. Since the radiative rate is associatedwith propagating planewaves originating
from the dipole, the integral takes into account only these values of u. The factor
κ0(1 − �) is the intrinsic non-radiative damping constant of the oscillator and it
represents the fraction of energy that is not available for any energy transfer or
emission processes. The effect of the metal or the local environment on the dipole
is realized on the radiative part of the energy which is given by κ0�. Due to the
presence of a metal surface here, a part of this radiative energy appears as non-
radiative energy which is accounted for by the integral term in expression (2.154).
Therefore, this integral represents the metal-induced energy transfer.
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κMIET⊥ = 3

2
κ0�Re

{ˆ ∞

1
Rpe−2iw1|z0|u3 du

w1

}
(2.155)

At distances on the order of a wavelength and closer to the metal surface, both the
radiative as well as the non-radiative rates are modified as according to equations
(2.153) and (2.154), respectively. One more important thing to note here is that the
extent of energy transfer to the metal is directly related to the quantum yield� of the
dye molecules. Therefore, one is bound to know the exact quantum yield in order to
estimate the total radiative rate and fluorescence lifetime as a function of distance.
Figure2.25 shows the variation of lifetimes with distance for the two orientations
of a dipole with various quantum yields. An important observation here is that at
any height |z0| above the surface, the energy transfer scales proportionally with the
quantum yield of the dye, as represented by Eq. (2.155). Therefore, if the free space
lifetimes of two fluorescent molecules, with different quantum yields, are identical,
then at a given distance from a metal surface, lifetime of the molecule with higher
quantum yield is shorter.

For a dipole oriented at an angle α with respect to the normal of the surface,
one can derive the total emission power S(α, z0), using the reflected electric field
from equation (2.130), together with its own field, and equation (2.123) (Poynting’s
Theorem) in terms of the total emission power of a vertical and parallel dipole. If the
quantum yield of the dipole is �, then the rate of excited state decay can be written
by dividing the total emission power by n1S0 (radiation power of a free dipole in the
same medium)

κ(α, z0) = κ0

[
(1 − �) + �

S(α, z0)

n1S0

]
= 1

τ f (α, z0)
(2.156)

Fig. 2.25 The Left figure shows the relative lifetime variation with the distance from a 10 nm gold
film for a vertical dipole with various quantum yield. The right figure shows the same for a parallel
dipole
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Fig. 2.26 MIET calibration curves of Rhodamine 6G in water on top of a thin gold film at various
polar angles. The calculations were done for a thin gold film of thickness h = 10 nm, with water as
a medium above at a wavelength λem = 525 nm. The free space parameters for the dye are taken
from the reference [19]

Fig. 2.26 shows the MIET calibration curves of Rhodamine 6G (τ0 = 1/κ0 = 4.1 ns
and� = 0.95, see reference [19]) for five different dipole orientationswithwater as a
medium above a thin gold film (h=10 nm) at an emission wavelength λem = 525 nm.

Regardless of its quantum yield and orientation α, the excited state lifetime of a
single molecule shows amonotonic relationship with distance from themetal surface
in the near-field limit, and therefore, can be used to locate the emitter from the surface.
This is much similar to FRET where the energy is transferred non-radiatively to
another dipole. However, the distance to lifetime relationship in the case of FRET
shows an inverse sixth power relationship (�τ/τ0 ∝ d−6), whereas in the case of an
infinite plane of a metal surface, it is roughly proportional to d−3 to d−4 [23].

This concludes the theory to explain the concept of metal-induced energy transfer
completely. The emission properties of an electric dipole emitter in the presence of
a dielectric or metallic interface are calculated by expressing its electric field as a
superposition of plane waves, and thereafter calculating the reflected and transmitted
fields by using Fresnel’s equations. The modified spontaneous emission rate is then
obtained directly by calculating the reflected field at its position and applying Poynt-
ing’s theorem (2.122). Energy flux calculations by estimating the Poynting vector
allows one to separate the total energy radiated into both half-spaces, and further, to
picture the angular distribution of emission. This includes the involvement of vari-
ous processes which have not been precisely named in this chapter such as Surface
Plasmon Coupled Emission (SPCE), Surface Plasmon Resonance (SPR), Lossy Sur-
face Waves (LSW), Radiating Plasmons (RP), etc [33–35]. Introducing these terms
and terminology is confusing and is not required in order to explain the necessary
emission properties of a single molecule near a metal surface or a thin metal film.
The theory above is in fact completely identical to the theoretical work of Purcell
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who derived the spontaneous emission probabilities of nuclear transitions in metallic
resonators. The idea is based on the enhancement of the local density of final states
in, for example, a cavity or near a conducting surface.
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