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Abstract. This paper proves the hardness of the Desktop Tower Defense game.
Specifically, the problem of determining where to locate & turrets in the grid of
size n X n in order to maximize the minimum distance from the starting point to
the terminating point is shown to be NP-hard. The proof applied to the generalized
version of the Desktop Tower Defense.
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1 Introduction

Tower Defense (TD) is a type strategy video game that concentrates on protecting some
part of the territory from waves of enemies, also known as “creeps”. Enemies always
appear at the entrance and attempt to walk to the exit point. The player must plan defen-
sive strategies for protecting their bases, usually achieved by placing turrets alongside
the enemy’s road. Winning TD can be a painful task since the player needs to concur-
rently optimize many factors, such as resource, location, and enemy’s abilities.

Desktop Tower Defense (DTD) is a popular tower defense game. The major differ-
ence between classic TD and DTD is the player’s ability to control the enemy’s path
from the starting point to the exit point. DTD allows the player to build turrets on any
positions on the map. Turrets can be used as walls for blocking enemies, and force them
to find the new shortest path to the exit point. The only limitation is the player cannot
place turrets in the way such that they completely block the exit. Therefore, the best
strategy for winning DTD is not only optimizing own resources, but also instantly
extending the distance. The DTD’s gameplay is illustrated in Fig. 1.

TD introduces many challenges in problem solving areas, such as resource allocation,
and geometry problems. Therefore, it is interested by researchers in the artificial intelli-
gence field. Avery et al. proposed a framework based on TD for testing artificial intelli-
gence algorithms [3]. The dynamic difficulty adjustment of TD was proposed in [20]. The
resource allocation algorithm for the turn-based game in [11] can also be applied to TD.

However, unlike other puzzle games such as Chess and Go, the hardness of TD and
DTD is still unclear since they contain many sub-problems. This research attempts to
formally prove one of the sub-problems in DTD, the problem of placing turrets on the
map that maximizing the distance of opponent’s path toward the exit point.
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Fig. 1. Desktop tower defense gameplay

This paper is organized into 5 sections. Section 2, some mathematical notations are
presented. The hardness of DTD is proved in Sect. 3. The analysis and discussion are
elaborated in Sect. 4. The conclusion of this research is drawn in Sect. 5.

2 Preliminaries

This section starts by defining grid graph’s terminology and the Hamiltonian path on
the general grid graph. Then, the hardness of many games and puzzles are reviewed.

2.1 Grid Graph Terminology

Suppose G is the infinity graph with vertex set contains all points of the Euclidean
plane with integer coordinates. Any two vertices in G* are connected if and only if the
Euclidean distance between themis 1. Letv = (vx, vy) be a vertex in G* such that v, and
vy are integer coordinates of v in G.

For any positive integer m and n, let R(m, n) be the rectangular grid graph, the grid
graph whose vertex set is V(R(m, n)) = {vll <v,<m 1<y < n}

The arbitrary grid graph G is a finite vertex-induced subgraph of G*. Clearly, each
vertex in arbitrary grid graph has degree at most 4. In other words, the arbitrary grid
graph G is the subgraph isomorphism of the rectangular grid graph R(m, n).

Let G = (V, E) be an undirected graph, and let s, € V be distinct vertices of G. The
Hamiltonian path problem, HamPath(G, s, t), has a solution if there exists a path from
s to t that visits each node in G exactly once. In the decision version, HamPath(G, s, 1),
is used to determine whether there is a path from s to 7 that visits each node in G exactly
once.
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The problem of finding Hamiltonian path in the arbitrary grid graph is known to be
NP-complete [10]. However, there exists linear-time algorithms for some special class
of grid graphs [5, 14, 21, 23].

2.2 The Hardness of Games and Puzzles

Many classic board games were proven to be EXPTIME-complete, such as Chess [19], Go
[17], Chinese checkers [12], and draughts [18]. Several metatheorems for proving the hard-
ness of modern video games were established in [8, 22]. Some modern video games, such
as Price of Persia and Doom, were proven to be PSPACE-complete. Many video games,
such as Tetris and Super Mario Bros, were proven to be NP-hard as well [2, 4]. Kendal
provided the survey of NP-complete puzzles in [13].

3 NP-Hardness of Desktop Tower Defense

This section starts by formally defining DTD in the term of mathematical modeling.
Then, the hardness of DTD is proven.

3.1 Desktop Tower Defense Problem Definition

Letm, n, k be some positive integers. Suppose 7'is a rectangle grid of size m X n. Without
loss of generality, assume that each element in T is indexed by row-major order (i.e.,
the square grid’s index starts from 7T1][1] at the upper left corner to 7[m][n] at the lower
right corner). Each element in 7 is marked by O or 1, which indicates a path and a wall
respectively. Let W be a set of positions in T such that the position (x, y) in T is marked
as a wall. Namely,

W= {(x,») ITIx]ly] = 1 wherex < mandy < n}.

Let s = (x,,y,) be a starting point and t = (x,,y,) be a terminating point in 7, for
some 1 <x,x, <nmand 1 <y,y, <m. The generalized DTD, DtD(T, W, k,s,1t), is to
determine where to locate k additional walls to the rectangle grid 7 so that they can
maximize the shortest path from s to t. The only restriction is the position of all £ walls
must not completely block the terminating point t. Therefore, there always has at least
one path from s to t.

The generalized DTD can be also stated in the decision form. Let d be a shortest
distance from s to t. The decision version, denote as DDtd(T, W, k, s, t, d), is to determine
if there is a way to place k walls in T such that the shortest path is increased to d or more.
The output is “yes” if there is a path of length at least d after placing k additional walls,
and “no” otherwise.
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3.2 The Hardness of Desktop Tower Defense

The NP-hardness of DTD can be shown by transforming an instance of the Hamiltonian
path for an arbitrary grid graph problem to an instance of the generalized DTD. Formally,
the arbitrary grid graph G C R(m,n) is transformed to the rectangle grid of size
(2m — 1) X (2n — 1)such that the solution of the generalized DTD yields the Hamiltonian
path in the arbitrary grid graph G.

Theorem 1. The Generalized DTD is NP-hard.

Proof. Suppose that G = (V, E) C R(m,n)be an arbitrary grid graph with |El edges and
IVl vertices. Given the instance of the Hamiltonian path problem HamPath(G, s, t), we
construct the instance of DTD by first placing vertices and edges of G to the
(2m — 1) X (2n — 1)-rectangle grid in the way such that each vertex becomes a blank
square and each edge becomes a blank square. Second, flag two squares that represent
vertex s and vertex ¢ as the starting point, s, and terminating point, t, respectively. The
last step, fill the rest squares that do not flagged as a blank square with walls. For example,
Fig. 2 illustrates the transformation of an arbitrary grid graph G C R(4,6) to (7 X 11)-
rectangle grid 7.

2 3 45 6 7 8 91011

Fig. 2. Transform grid graph to DTD

To prove that the transform process is correct, it suffices to show that the original
instance of HamPath(G, s, t) is a “yes” instance if and only if the transformed
DDtd(T, W, k,s,t,d) instance is also a “yes” instance. The proof is shown in the
following lemma.

Lemma 1. HamPath(G, s, t) has a solution if and only if DDtd(T, W, k, s, t, d), where
k=||E| - (V]| — 1)]and d = 2|V| — 1, has a solution.

Proof. Suppose that HamPath(G, s, t) has a solution. There exists a path between vertex
s and vertex ¢ that visits each vertex in G exactly once. Note that, Hamiltonian path is
also a longest path from s to ¢. This path has length exactly IVl — 1 since it needs to
connect |V] vertices without forming a cycle. This implies that ||E| — (|V| — 1)| edges
are not included in the Hamiltonian path of the grid graph G. Each edge in G is repre-
sented by a blank square in 7. This implies that if ||E| — (|V| — 1)| blank squares that
are not included in Hamiltonian path are filled with walls. The shortest path in 7" must
follow the Hamiltonian path of graph G. The distance in the transformed grid can be
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calculated by subtracting all blank squares with the number of walls. The minimum
distance from s to t is

d=|E|+|V| -k
=|El+|V|I=(EI=(VI-1))
=2|V| -1,

since the shortest path must take all available cells. Therefore, the shortest path in
DDtd(T, W, k,s, t,d) is maximized by the longest path from s to ¢ of G.

Suppose that HamPath(G, s, t) has no solution. Then, the grid graph G does not have
a Hamiltonian path between vertex s and vertex ¢. Therefore, there does not exist a path
of length at least | V| — 1 that passes each node exactly once. This fact is also applied to
the transformed grid 7 since all opponents in DTD always take the shortest path. They
must not turn back to cells that have been passed. It follows that all paths from s to t in
the transformed grid takes at most 2|V| — 1 available cells. Thus, DDtd(T, W, k, s, t, d)
has no solution since it is impossible to get the minimum distance at least 2| V| — 1 after
placing | |[E| — (|V] — 1)| walls. [

By Lemma 1, HamPath(G, s,t) <, DDtd(T, W, k,s,t,d), and the result follows. [J

4 Discussion

The proof in this research only considers the problem of maximizing the minimum
distance. There are many problems that are embedded in the game.

In the real gameplay, there are many types of turrets. Each of them has its own
firepower, ability, range, price, and cost of upgrading. The player should determine the
number of turrets to buy so that the total price is less than or equal to the given gold.
Moreover, the total firepower should be large enough for intercepting enemies. This
problem can be classified as 0-1 Unbounded Multiple Constraint Knapsack Problem.
Gens and Levner proved that this variant of Knapsack problem is NP-complete [9].

Enemies in DTD also have distinct abilities, such as the resistance to certain types
of turrets, the weakness against some types of turrets, the ability to spawn itself after
getting the damage, and the ability to fly over the map. The player must plan the defense
strategy for the given combination of enemies. The hardness of planning can be shown
to be NP-hard using the 3-SAT framework for proving Pushing Block puzzles [6, 7].

The problem of maximizing the shortest distance does not appear in the classic TD
game. Enemies in the classic TD always walk on the predetermined road. The player
cannot place any obstructions on this road. Therefore, the main problem in the classic
TD is to find where to place turrets such that their ranges cover the road as much as
possible. This problem can be seen as the special case of the Art Gallery problem. The
Art Gallery problem and its variations are also shown to be NP-hard [1, 15, 16].
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5 Conclusions

This research formally proves the hardness of maximizing the shortest path problem in
the Desktop Tower Defense. The hardness of DTD follows from the NP-hardness of the
Hamiltonian path problem. The proof shows that the instance of HamPath(G, s, t) can
be transformed to the instance of DDtd(T, W, k,s,t,d) where the number of walls is
||E| = (|V] — 1)| and the minimum distance is 2|V — 1.

There are open problems related to DTD and TD that have not been proven yet. The
first problem is the resource allocation problem. It is easy to see that this problem is
similar to the Knapsack problem. The second problem is the area coverage problem.
This problem resembling the Art Gallery problem. The major difference between the
Art Gallery problem and the area coverage in TD game is sentinels in the Art Gallery
problem must cover all internal regions in the polygon. In contrast, turrets in TD only
need to cover some limited area around the polygon edge.

References

1. Aggarwal, A.: The art gallery theorem: 1its variations, applications and algorithmic aspects.
Ph.D. thesis (1984)

2. Aloupis, G., Demaine, E.D., Guo, A., Viglietta, G.: Classic nintendo games are
(computationally) hard. Theor. Comput. Sci. 586, 135-160 (2015). http://dx.doi.org/10.1016/
j-tcs.2015.02.037

3. Avery, P., Togelius, J., Alistar, E., van Leeuwen, R.P.: Computational intelligence and tower
defence games. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2011, New Orleans, LA, USA, 5-8 June, 2011, pp. 1084-1091. IEEE (2011). http://dx.doi.org/
10.1109/CEC.2011.5949738

4. Breukelaar, R., Demaine, E.D., Hohenberger, S., Hoogeboom, H.J., Kosters, W.A., Liben-
Nowell, D.: Tetris is hard, even to approximate. Int. J. Comput. Geometry Appl. 14(1-2), 41—
68 (2004)

5. Chen, S.D., Shen, H., Topor, R.W.: An efficient algorithm for constructing hamiltonian paths
in meshes. Parallel Comput. 28(9), 1293-1305 (2002)

6. Demaine, E.D., Demaine, M.L., Hoffmann, M., O’Rourke, J.: Pushing blocks is hard. Comput.
Geom. 26(1), 21-36 (2003). doi:10.1016/S0925-7721(02)00170-0

7. Demaine, E.D., Demaine, M.L., O’Rourke, J.: Pushpush and push-1 are nphard in 2d. In:
Proceedings of the 12th Canadian Conference on Computational Geometry, Fredericton, New
Brunswick, Canada, 16-19 August 2000 (2000). http://www.cccg.ca/proceedings/
2000/26.ps.gz

8. Forisek, M.: Computational complexity of two-dimensional platform games. In: Boldi, P.,
Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 214-227. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13122-6_22

9. Gens, G., Levner, E.: Complexity of approximation algorithms for combinatorial problems:
asurvey. SIGACT News 12(3), 52-65 (1980). http://doi.acm.org/10.1145/1008861.1008867

10. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM 1J.
Comput. 11(4), 676-686 (1982)

11. Johnson, R.W., Melich, M.E., Michalewicz, Z., Schmidt, M.: Coevolutionary optimization of
fuzzy logic intelligence for strategic decision support. IEEE Trans. Evol. Comput. 9(6), 682—
694 (2005)


http://dx.doi.org/10.1016/j.tcs.2015.02.037
http://dx.doi.org/10.1016/j.tcs.2015.02.037
http://dx.doi.org/10.1109/CEC.2011.5949738
http://dx.doi.org/10.1109/CEC.2011.5949738
http://dx.doi.org/10.1016/S0925-7721(02)00170-0
http://www.cccg.ca/proceedings/2000/26.ps.gz
http://www.cccg.ca/proceedings/2000/26.ps.gz
http://dx.doi.org/10.1007/978-3-642-13122-6_22
http://doi.acm.org/10.1145/1008861.1008867

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

Desktop Tower Defense Is NP-Hard 25

Kasai, T., Adachi, A., Iwata, S.: Classes of pebble games and complete problems. In: Austing,
R.H., Conti, D.M., Engel, G.L. (eds.) Proceedings 1978 ACM Annual Conference,
Washington, DC, USA, 4-6 December 1978, vol. II, pp. 914-918. ACM (1978). http://
doi.acm.org/10.1145/800178.810161

Kendall, G., Parkes, A.J., Spoerer, K.: A survey of np-complete puzzles. ICGA J. 31(1), 13—
34 (2008)

Keshavarz-Kohjerdi, F., Bagheri, A.: Hamiltonian paths in some classes of grid graphs. J.
Appl. Math. 2012 (2012)

Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inform.
Theory 32(2), 276-282 (1986). http://dx.doi.org/10.1109/TIT.1986.1057165

O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press Inc., New York
(1987)

Robson, J.M.: The complexity of go. In: IFIP Congress. pp. 413-417 (1983)

Robson, J.M.: N by N checkers is exptime complete. STAM J. Comput. 13(2), 252-267 (1984).
http://dx.doi.org/10.1137/0213018

Shannon, C.E.: Programming a Computer for Playing Chess. In: Levy, D. (ed.) Computer
chess compendium, pp. 2—13. Springer, New York (1988)

Sutoyo, R., Winata, D., Oliviani, K., Supriyadi, D.M.: Dynamic difficulty adjustment in tower
defence. In: Procedia Computer Science, pp. 435-444 (2015)

Umans, C., Lenhart, W.: Hamiltonian cycles in solid grid graphs. In: FOCS, pp. 496-505.
IEEE Computer Society (1997)

Viglietta, G.: Gaming is a hard job, but someone has to do it! Theory Comput. Syst. 54(4),
595-621 (2014). http://dx.doi.org/10.1007/s00224-013-9497-5

Zamfirescu, C., Zamfirescu, T.: Hamiltonian properties of grid graphs. SIAM J. Discrete Math.
5(4), 564-570 (1992)


http://doi.acm.org/10.1145/800178.810161
http://doi.acm.org/10.1145/800178.810161
http://dx.doi.org/10.1109/TIT.1986.1057165
http://dx.doi.org/10.1137/0213018
http://dx.doi.org/10.1007/s00224-013-9497-5

2 Springer
http://www.springer.com/978-3-319-60674-3

Trends in Artificial Intelligence: PRICAI 2016 Workshops
PeHealth 2016, 13A 2016, AIED 2016, Al4T 2016, IWEC
2016, and RSAlI 2016, Phuket, Thailand, August 22-23,
2016, Revised Selected Papers

Mumao, M.; Theeramunkong, T.: Supnithi, T.; Ketcham,
M.; Hnoohom, N.; Pramkeaw, P. (Eds.)

2017, X, 187 p. 88 illus., Softcover

ISBM: 978-3-319-60674-3



	Desktop Tower Defense Is NP-Hard
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Grid Graph Terminology
	2.2 The Hardness of Games and Puzzles

	3 NP-Hardness of Desktop Tower Defense
	3.1 Desktop Tower Defense Problem Definition
	3.2 The Hardness of Desktop Tower Defense

	4 Discussion
	5 Conclusions
	References


