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Abstract. This article studies the time evolution of multi-enzyme path-
ways. The non-linearity of the problem coupled with the infinite dimen-
sionality of the time-dependent input usually results in a rather laborious
optimization. Here we discuss how the optimization of the input enzyme
concentrations might be efficiently reduced to a calculation of reachable
sets. Under some general conditions, the original system has star-shaped
reachable sets that can be derived by solving a partial differential equa-
tion. This method allows a thorough study and optimization of quite
sophisticated enzymatic pathways with non-linear dynamics and possi-
ble inhibition. Moreover, optimal control synthesis based on reachable
sets can be implemented and was tested on several simulated examples.
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1 Introduction

1.1 Multi-Enzyme Pathways

In this paper, we consider a set of chemical reactions catalysed by several
enzymes. Such reactions take place inside cells and are also used in synthetic
biology, e.g. in manufacturing of chemical compounds, biodegradation, medi-
cine, etc. Currently, there are large databases of enzymes based on which path-
ways can be constructed to turn given substrates into desired products [1]. The
enzyme kinetic optimisation of these processes is high on the agenda as it may
lead to a substantial economy of time and consumables. Such optimisation may
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also provide insights into the evolution of cells since some studies suggest that
optimal pathways are evolutionarily advantageous and can be predicted based
on the genetic information of living cells [2].

We consider an n-step chemical reaction in which the state variables are
the concentrations of metabolites produced and consumed in the course of the
reaction:

S
E0−−→ M1

E2−−→ . . .
En−2−−−→ Mn−2

En−1−−−→ P.

The control here are the concentrations of enzymes Ei, the sum of which is
limited from above. We will prove that under some general assumptions about
the rate equations, one can expect the set of all the possible states of such
systems to be star-shaped at any point in time. As a result, an optimisation of
the pathway using star-shaped reachable sets [3] can be implemented to obtain
the maximum concentration of the final product and the corresponding optimal
profile of enzymes.

1.2 Mathematical Setup

For a pathway consisting of n consecutive steps, we will use the following nota-
tions: ei is the concentration of the enzyme responsible for step i; xi is the
metabolite concentration; fi(x, t), x = (x1, . . . , xn), is the reaction rate per unit
of the enzyme concentration ei. We assume that fi includes all the individual
kinetic parameters such as kcat and KM and may depend on the concentrations
of all the metabolites involved (e.g., systems with cross-inhibition are included).
Moreover, the dependence of all the variables on t is implied in all the cases
below, but we will omit this explicit notation for the sake of simplicity. In prac-
tice, all the rates fi are non-linear, which significantly complicates any treatment
of such systems.

According to enzyme kinetics, the time evolution of a multi-enzyme system
over the time t ∈ [0, T ] can be described as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = e0f0(x ) − e1f1(x ),
ẋ2 = e1f1(x ) − e2f2(x ),
. . .
ẋn−1 = en−2fn−2(x ) − en−1fn−1(x ),
ẋn = en−1fn−1(x ).

(1)

In order to make sure that none of the concentrations becomes negative, we
will require that for any metabolite i the rate fi−1 is non-negative and fi is
non-positive at xi = 0. In other words, metabolite i is not consumed when its
concentration is already zero.

We will consider the following control set:

e ∈ E =

{

(e0, . . . , en−1)

∣
∣
∣
∣
∣
ei ≥ 0, i = 0..n − 1,

n−1∑

i=0

ei ≤ Emax

}

,

which indicates that at any moment in time the total enzyme concentration
must not exceed a certain predefined value Emax. This limitation, for example,
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describes limited resources of a cell that force it to choose which enzyme to
produce or maintain at any point in time.

As far as the starting points are concerned, we will consider the following
two most wide-spread frameworks: (A) all xi(0) = 0 and f0 ≥ 0 (there is a con-
stant supply of the initial substrate); or (B) the initial concentration x1(0) = 1,
xi(0) = 0 for i = 2..n, and f0 ≡ 0 (the first metabolite is the initial substrate
being consumed in the course of the reaction).

Finally, we will assume that the standard existence and uniqueness results
hold for the solutions to (1) over the whole relevant time interval for any mea-
surable input ē ∈ E [4,5], which is usually the case in enzyme kinetics since the
state vector denotes real concentrations limited from above and below. We will
provide some examples of such systems in the following sections.

1.3 Optimal Control

In this framework, several objectives for optimal control are possible. Usually,
one is interested in maximizing the final product, which can be formulated either
as the minimization of the transition time tf to drive xn to some predefined
level [6] or by maximizing xn at a fixed point in time [7]. Other definitions of the
transition time are also possible [8–10]. Moreover, a multi-objective optimization
problem can also occur [11]. For the sake of simplicity, we will be considering
the maximization of the final product at a given point in time although more
general target functions can also be used (see below).

There are two main groups of methods commonly used to find optimal solu-
tions: the so-called direct and indirect methods. The former usually imply a
transformation of the original problem into non-linear programming by time-
discretization and approximation of the control variables either alone or together
with the states (for a comprehensive review see [11]). The advantages include a
great variety of solvers, a general applicability, and an intuitive implementation.
Nonetheless, these methods require some preliminary proof of the existence and
stability of the solution. Moreover, global optima finders are much more com-
putationally expensive than local ones, and due to the innate infinite dimen-
sionality, the costs of refining the grid are high. Finally, if the target function is
changed, e.g. to account for other metabolites, the entire calculation has to be
repeated.

The indirect methods suggest analytical treatment of the problem, e.g., by
using Pontryagin’s maximum principle [2,6,9,10]. The main advantages include
a more comprehensive analysis of the system behaviour and simpler numerical
methods. However, Pontryagin’s maximum principle is only a necessary condi-
tion, and the exact analytical solutions are usually difficult to obtain even in
the case of simple linear systems. The proof of a global maximum is again com-
plicated, and any change of the model, e.g. addition of cross-inhibition, may
completely invalidate the analysis.

In this article, we suggest an alternative indirect method based on exact
reachable sets [12,13], i.e. the states of a multi-enzyme system reachable from
the initial point for all the possible enzyme profiles. While this method is more
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computationally intensive than the maximum principle, it provides the time-
evolution of the system in full since all the possible states are analysed. This
allows for some flexibility in choosing the target functional after the calculation
of reachable sets. Optimal control synthesis may be implemented in various ways
once the sets are calculated, and the global optimality is implied automatically.
No change to the model will require any qualitative re-analysis. Moreover, geo-
metric state constraints may be taken into account, which extends the applica-
bility of the method to, e.g. the problems with metabolite constraints due to
metabolite toxicity. Finally, given some relatively broad assumptions about the
reaction rates, the reachable sets are star-shaped, which reduces the problem
dimensionality by one and enhances its computational efficiency and applicabil-
ity. The summary table comparing the approaches mentioned above is given in
the Supplement (table S1).

2 Star-Shaped Reachable Sets

We will now briefly define reachable sets and their applications to optimization,
provide the evolution theorems for star-shaped sets, and formulate the main
theoretical result for the systems in question.

2.1 Reachable Sets and Optimization

Reachable sets provide an important tool for the analysis of the time evolution
of systems as they demonstrate how systems might behave given every possible
control input. In order to demonstrate a general idea, consider the following
differential inclusion:

ẋ ∈ F (t,x ), x (t0) ∈ X0, t ∈ T = [t0, t1], (2)

where X0 is a compact subset of Rn and F is a continuous multivalued map from
T ×Rn to compact convex subsets of Rn. For instance, (1) can be formulated in
the above terms if one takes the union of the right-hand side of the equations over
e ∈ E. This differential equation generates a bundle of trajectories; consequently,
its behaviour may be translated into that of the bundle. Let the reachable set X[t]
be the set of all possible states of the system at time t. The intuitive strategy to
find X[t] by inserting different values from F (t,x ) may work only if an explicit
analytical solution is available, which is hardly ever the case even for linear
systems. However, under some general assumptions on F, the reachable set can
be found as the solution to an evolutionary equation [14]. While this equation
is usually difficult to solve, a great variety of methods has been developed to
calculate such sets [12,13,15].

In this paper, we will use the fact that under some general assumptions (see
the Supplement), inclusion 2 has reachable sets that are star-shaped [16,17], i.e.
they are compact, and for any λ ∈ [0, 1] the set λX[t] ⊆ X[t]. Such sets are
uniquely defined by their radial function:

r(l , t) = r(l |X[t]) = max{λ ≥ 0 : λl ∈ X[t]}



Multi-Enzyme Pathway Optimisation Through Star-Shaped Reachable Sets 13

that is the viscosity solution to the following partial differential equation on an
n-dimensional sphere Sn :

∂r

∂t
= ρ

(

−∂sr

∂l
+ rl

∣
∣
∣
∣
1
r
F (t, rl)

)

, (3)

where ρ(l |F ) = sup{∑i liyi|y ∈ F} is the support function. This result, together
with viscosity methods [18,19], provides a powerful tool for an exact calculation
of reachable sets, e.g. for multi-enzyme reactions as demonstrated below.

As soon as one calculates the reachable set X[t], the optimal solution to
maximizing xn at time T is tantamount to finding the point in X[T ] with the
maximal value of coordinate xn. In general, any target function dependent only
on the final metabolite concentrations can be used since given X[T ], the initial
optimal control problem turns into a relatively simple optimization of the func-
tion over the set X[T ]. And once the optimal point has been found, one may
apply control synthesis strategies to find the control profile that will lead the
system to this optimum [3].

2.2 Star-Shaped Sets Generated by Multi-Enzyme Pathway

We will now apply the results of the previous subsection to the multi-enzyme
systems (1) for initial conditions (A), i.e. some constant supply of the substrate,
and (B), in which the first substrate is being consumed without any supply. The
direct adaptation of Assumption S to (1) leads to the following results:

Proposition 1. Suppose for system (1) with initial condition (A) the rate func-
tions fi(x) are Lipschitz-continuous with the constant independent of t. If for any
λ ∈ (0, 1] and x : fi(λx) �= 0 ⇒ 0 ≤ λfi(x)/fi(λx) ≤ 1, the radial function of the
reachability set r(l, t) = r(l|X[t]) is the pointwise limit of rε(l, t) for any l ∈ Sn

and t ∈ [0, T ], where rε(l, t) is the viscosity solution to the following equation on
Sn × [0, T ] :

∂rε

∂t
= Emax max

i

{

fi(rεl)
(

1
rε

(
∂srε

∂li
− ∂srε

∂li+1

)

− li + li+1

)}

,

rε(l, 0) = ε → +0.

(here for i = 0 symbols ∂sr/∂li and li should be omitted).

As far as initial condition (B) is concerned, we will replace the coordinate x1

with x∗
1 = x1 − 1. If in addition to the above we require that fi is non-negative

and non-decreasing in x1, the following holds:

Corollary 1. Suppose for (1) the initial concentration x1(0) = 1, xi(0) = 0 for
i = 2..n, and f0 ≡ 0. Moreover, suppose that in addition to the requirements of
Proposition 1 on fi, the fi that depend on x1 are non-negative and non-decreasing
in x1. Then for (1) with the new coordinate x∗

1 = x1 − 1 Proposition 1 holds.

The proofs of the statements above are given in the Supplement.
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2.3 Examples

Here we will list the examples of (1) relevant to the enzyme kinetics, for which
Proposition 1 holds:

1. Linear mass-action kinetics fi(x ) = kixi;
2. Michaelis-Menten kinetics: fi(x ) = kixi/(Ki + xi), with substrate inhibition:

fi(x ) = kixi/(Ki + xi + Nix
2
i ), or with cross-inhibition: fi(x ) = kixi/(Ki +∑

j Nijxj);
3. Power law fi(x ) = kix

c
i with c ∈ (0, 1);

All the above functions may be present in any combination, thereby providing
a significant flexibility for the model selection.

Moreover, the same enzyme can be used in different steps if the following
additional requirement holds: for any enzyme e used in several reactions the
value λfi(x )/fi(λx ) is independent of i for the respective i′s. This will be the
case, e.g. in Michaelis-Menten kinetics since the free enzyme, and consequently,
the denominator of fi, will be the same across the respective i′s. Reversible
reactions are also covered. In other cases when the star-shapedness cannot be
guaranteed, one may still use general reachable set methods [13], albeit forgoing
the advantage of the reduced dimensionality.

We will now proceed to several examples.

Example 1. The first example is a three-metabolite scheme with a constant sup-
ply of substrate zero, and it demonstrates the standard bang-bang optimal profile
[2,9,10] (Fig. 1):

{
ẋ1 = 0.1x0

1+x0
e0 − 0.1x1

0.1+x1
e1,

ẋ2 = 0.1x1
0.1+x1

e1.
, t ∈ [0, 1], x0 ≡ 1, Emax = 10. (4)

This switching between the two regimes stems from the intuitive fact that the
rate of the reaction is increasing with the increase in x1. As a result, the optimal
strategy is to accumulate x1 first and then to switch to production of x2.

Example 2. The second example is a modification of the previous case with a
substrate inhibition of enzyme e1 (Fig. 2):

{
ẋ1 = 0.1x0

1+x0
e0 − 0.1x1

0.1+x1+5x2
1
e1,

ẋ2 = 0.1x1
0.1+x1+5x2

1
e1.

, t ∈ [0, 1], x0 ≡ 1, Emax = 10. (5)

Now, the simple accumulation of x1 will not yield an optimal solution; due to
the inhibition, the reaction rate would decrease for large values of x1. Hence, e1
should be switched on earlier and not to its maximal value as can be seen from
the optimal control synthesis in Fig. 2.
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Fig. 1. The reachable tube of Example 1 (left) and the synthesized optimal control
(right). The red line is the synthesized trajectory from the point with the maximal coor-
dinate x2 backward in time. The green line is the trajectory from the origin calculated
with the filtered optimal control. The calculation time on a regular desktop was 7 s.

Fig. 2. The reachable tube of Example 2 (left) and the synthesized optimal control
(right). The red line is the synthesized trajectory from the point with the maximal coor-
dinate x2 backward in time. The green line is the trajectory from the origin calculated
with the filtered optimal control. The calculation time on a regular desktop was 7 s.

Fig. 3. The reachable set of Example 3 at t = 1 (left) and the synthesized optimal
control (right). The red line is the synthesized trajectory from the point with the
maximal coordinate x3 backward in time. The green line is the trajectory from the
origin calculated with the filtered optimal control. The calculation time on a regular
desktop was 57 s.
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Example 3. Finally, we will also consider a three-dimensional example to demon-
strate the calculability of the method (Fig. 3):

⎧
⎨

⎩

ẋ1 = x0
1+x0

e0 − 2x1
2+x1

e1,

ẋ2 = 2x1
2+x1

e1 − 3x2
1+x2

e2.

ẋ3 = 3x2
1+x2

e2.

, t ∈ [0, 1], x0 ≡ 1, Emax = 10. (6)

In general, the curse of dimensionality leads to a significant increase in compu-
tational costs as the dimensionality of x increases, in contrast to direct methods
that are sensitive to the dimensionality of the control vector. The star-shaped
sets partially alleviate the problem by reducing the dimensionality by one, which
is why a two-dimensional grid was used in this example. Thus, the calculations
for systems with up to 5–6 state variables can be performed on a regular desk-
top in a reasonable time. Otherwise, approximation techniques, e.g., ellipsoidal
calculus [12] or zonotopes [15], might be used.

3 Conclusions

In this work, we studied a multi-enzyme optimization problem. We demonstrated
that under some general assumptions, the reachable sets of such a problem are
star-shaped. Further, we constructed reachable sets using their radial function
that is a viscosity solution to a certain partial differential equation. By doing
so, we were able to visualize the time-evolution of the system given all possi-
ble enzyme profiles. Once calculated, the reachability tube provides means for
optimal control synthesis. Finally, we considered several examples that verified
results obtained by other authors using different techniques as well as provided
some new insights into the behavior of more sophisticated multi-enzyme path-
ways, e.g. the ones with inhibition.
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