On the Trade-Offs in Oblivious Execution
Techniques

Shruti Tople®™) and Prateek Saxena

National University of Singapore, Singapore, Singapore
{shruti90,prateeks}@comp.nus.edu.sg

Abstract. To enable privacy-preserving computation on encrypted
data, a class of techniques for input-oblivious execution have surfaced.
The property of input-oblivious execution guarantees that an adversary
observing the interaction of a program with the underlying system learns
nothing about the sensitive input. To highlight the importance of obliv-
ious execution, we demonstrate a concrete practical attack—called a
logic-reuse attack—that leaks every byte of encrypted input if oblivi-
ous techniques are not used. Next, we study the efficacy of oblivious
execution techniques and understand their limitations from a practical
perspective. We manually transform 30 common Linux utilities by apply-
ing known oblivious execution techniques. As a positive result, we show
that 6 utilities perform input-oblivious execution without modification,
11 utilities can be transformed with O(1) performance overhead and 11
other show O(N) overhead. As a negative result, we show that theoret-
ical limitations of oblivious execution techniques do manifest in 2 real
applications in our case studies incurring a performance cost of O(2N)
over non-oblivious execution.

1 Introduction

Many emerging techniques provide privacy preserving computation on encrypted
data. These techniques can be categorized into two lines of work—secure com-
putation and enclaved execution. Secure computation techniques enable oper-
ations on encrypted data without decrypting them. Examples of such tech-
niques include fully homomorphic encryption [24-26], partially homomorphic
encryption [20,31,50,52,61], garbled circuits [34,36,68] and so on. A second
line of research uses hardware-isolation mechanisms provided by Intel SGX [48],
TPM [5], Intel TXT [4], ARM Trustzones [7,44]. Systems such as Haven [10],
XOM [60], Flicker [47] use these mechanisms to provide enclaved execution. In
enclaved execution the application runs in a hardware-isolated environment in the
presence of an untrusted operating system. The sensitive data is decrypted only
in the hardware-isolated environment and the computation result is encrypted
before it exits the enclaved execution. Enclaved execution can be achieved via
hypervisor-based mechanisms as well (cf. OverShadow [14], Inktag [32]).

One fundamental challenge in privacy preserving computation is to make the
program execution input-oblivious. Input-oblivious execution guarantees that the

© Springer International Publishing AG 2017
M. Polychronakis and M. Meier (Eds.): DIMVA 2017, LNCS 10327, pp. 25-47, 2017.
DOI: 10.1007/978-3-319-60876-1_2

26 S. Tople and P. Saxena

execution profile of a program observed by an adversary reveals nothing about
the sensitive input. This challenge goes beyond the mechanism of enabling indi-
vidual operations on encrypted inputs, whether done in enclaved execution envi-
ronments or via cryptographic techniques for secure computation. In concept,
it is easy to show that making all programs oblivious may be undecidable; such
a result is neither surprising nor particularly interesting to practice. We study
this problem from a practical perspective—whether it is feasible to make exist-
ing commodity applications execute obliviously without unreasonable loss in
performance. If so, to what extent is this feasible and whether any theoretical
limitations manifest themselves in relevant applications.

We explain the problem conceptually, considering various channels of leakage
in the scenario of enclaved execution. To highlight the importance of oblivious
execution, we show that enclaved execution is highly vulnerable to leakage of
sensitive data via a concrete attack—called a logic-reuse attack. Specifically, we
show that chaining execution of commonly used utilities can leak every byte of
an encrypted input to the enclaved application.

Next, we study how existing oblivious execution techniques such as padding
of dummy instructions [46], hiding message length [19] or hiding address accesses
using Oblivious RAM [28] proposed in different contexts can be used to block
the leakage in enclaved execution. Our work explains the symmetry among these
lines of research, systematizing their capabilities and explaining the limits of
these techniques in practical applications. Specifically, we manually transform
30 applications from the standard CoreUtils package available on Linux operat-
ing system. As a positive result, we show that 6 utilities perform input-oblivious
execution without modification, 11 utilities can be transformed with O(1) per-
formance overhead and 11 other show linear performance overhead of O(N).

As a negative result, we show that theoretical limitations of oblivious execu-
tion techniques do manifest in 2 utilities which incur an exponential performance
overhead of O(2"V). Of course, they can be made oblivious conceptually, since
everything on a digital computer is finite—in practice, this is hard to do without
prohibitive loss in performance.

Contribution. We summarize our contributions as follows:

— 1. Logic-reuse attack: We demonstrate a concrete attack in the enclaved exe-
cution setting that leaks every byte of encrypted input by chaining execution
of common applications.

— 2. Systematization of oblivious execution techniques: We systematize exist-
ing defenses for oblivious execution and show new limitations for enclaved
execution of practical applications.

— 8. Study of practical applications: To study an empirical datapoint, we man-
ually transform 30 applications from CoreUtils package to make them input-
oblivious using existing defenses and find that 28 applications can be trans-
formed with acceptable overhead. The limitations of oblivious execution tech-
niques manifest in 2 applications which cannot be transformed without pro-
hibitive loss in performance.

On the Trade-Offs in Oblivious Execution Techniques 27

2 The Problem

Baseline Setting. Various existing solutions such as OverShadow [14],
SecureMe [15], Inktag [32], SGX [48], Haven [10] and Panoply [57] support
enclaved execution of applications. Here, the OS is untrusted whereas the under-
lying processor is trusted and secure. The file system is encrypted under a secret
key K to protect the data on the untrusted storage. The trusted application
executes in an enclaved memory which is inaccessible to the untrusted OS. The
secret key K is available to the enclaved memory for decrypting the sensitive
data. This system guarantees confidentiality and integrity of sensitive content
using authenticated encryption. However, the application still relies on the OS to
interact with the untrusted storage using read-write channels such as file system
calls, memory page management and others.

Our baseline setting (shown in Fig.1) is a system (such as Panoply [57])
where the read-write channels correspond to the read and write system calls.
Although our discussion here is for the system call interface, our attack and
defenses are applicable to other read-write operations that expose information
at the granularity of blocks or memory pages, when caching or swapping out
pages (for eg. in Haven [10], OverShadow [14]).

System Call | | Filesystem
Interface | [Management Encrypted Storage
< (Fil

Untrusted OS Read "

Secure Processor

Fig. 1. Baseline setting for enclaved execution with untrusted read-write channels

Attack Model. In our model, the untrusted (or compromised) OS acts as a
“honest-but-curious” adversary that honestly interacts with the application and
the underlying encrypted storage. It passively observes the input/output (I1/0)
profile of the execution, but hopes to infer sensitive encrypted data. The I/0O
profile of an application is the “trace” of read-write file system calls made during
the execution. The execution of an application A with sensitive input I and
output O generates an I/O profile P = (P, Pa,...P,). Each P; is a read/write
operation of the form [type, size, address, time] requested by the application A.
Each P; consists of four parameters:

C1) type of operation (read or write)

C2) size of bytes read or written

C3) address (e.g. file name/descriptor) to read or write the content
C4) time interval between current and previous operation.

(
(
—
(

28 S. Tople and P. Saxena

We assume the application A is publicly available and known to the adversary.
Thus, the attacker’s knowledge set consists of ¢ = {A, |I|,|O|, P} where |I| and
|O| are the total input and output size, and A is the application logic. We assume
the OS is capable of initiating the execution of any pre-installed application on
encrypted inputs, in any order.

Goal. The goal is to make a benign enclaved application input-oblivious. An
application that exhibits I/O profile P which is independent of the sensitive
inputs exhibits the above security property. This security property guarantees
that an adversary cannot distinguish between any two encrypted inputs of the
same size when executed with the same application,leaking nothing beyond what
is implied by knowledge of .

2.1 Logic-Reuse Attack

To emphasize the importance of input-oblivious execution in the enclaved execu-
tion scenario, we demonstrate a concrete attack called the logic-reuse attack. In
this attack, the adversary chains the execution of permitted applications to do
its bidding (as shown in Fig. 2). Specifically, we show the use of four applications:
nl, fold, split and comm from the CoreUtils package commonly available in
commodity Linux systems [3]. These applications accept sensitive user argu-
ments and file inputs in encrypted form. The attack exploits the execution I/0O
profile to eventually learn the comparison value of any two characters in the
input encrypted file. The result is that the adversary infers the frequency and
position of every byte in the target encrypted file. The 4 attack steps are:

input it ‘ (1) ‘ fold_outxt (3) g:]':;[j

E (Hello) , $nl input.txt I EEI)) —» $split -1 E(1) fold_out.txt —b‘* BO) Js2x |
‘ ! o

) E (H) HE@E) Js300

nl_out.txt ‘ : E (e) (1) I[Ble) Js4uxt |
E(1 Hello) . $fold -w E(1 Hello) nl_out.txt —# g (1)) - $comm -1 -2 s5.txt s6.txt ‘ E()]s5.xt }
20 v B oo

) B e

Fig. 2. Attack example that leaks the frequency and position of characters in an
encrypted file

Step 1 - Get a known ciphertext value: The nl command in CoreUtils
adds a line number to each line in the input and writes the modified line to the
output. The attacker executes this nl program with the target encrypted file
(input.txt in Fig. 2) as its input. Every ciphertext is of 16 bytes given the use
of AES encryption. Thus, the adversary learns that the first ciphertext of each
write call contains the encryption of a number along with other characters (see
nl_out.txt in Fig.2).

On the Trade-Offs in Oblivious Execution Techniques 29

Step 2 - Generate the ciphertext for individual characters: This step uses
the fold program that folds input lines according to the given width size. The
adversary runs this command on the output of the previous step. The ciphertext
for encryption of number “1” (along with other characters) learned in Step 1 is
used as encrypted input argument to the width size. This step folds the input
file such that every line contains the ciphertext of a single character and makes
a separate call to write it. After this step, the ciphertext for every individual
character in the file is available to the adversary (as shown in fold out.txt in
Fig.2).

Step 3 - Save each ciphertext in a separate file: In this step, the adversary
uses the split program that splits an input file either line-wise or byte-wise and
writes the output to different files. The command is run on the output of Step 2.
The ciphertext of the character “1” learned in Step 2 is passed as an option to it.
It generates separate files as output each having encryption of a single character
(sl.txt - s6.txt in Fig.2). Thus, the adversary learns the total number of
characters and their positions in the input file.

Step 4 - Compare the characters in each file: Finally, the adversary exe-
cutes the comm program that takes two files as input and writes the lines present
in both the files as output. Any two files generated as output in the previous
step can be provided as input to this command. The program does not perform
a write call if there are no common lines in the input files. Thus, the I/O profile
leaks whether two lines (or characters) in the input files are the same.

Result: In the end, this allows the attacker to infer a histogram of encrypted
bytes. Once the histogram is recovered, it can be compared to standard frequency
distribution of (say) English characters [1]. Using the values in the histogram
and the positions learned in Step 3, the adversary learns the value of every byte
in the encrypted file!

Remarks. Note that, the adversary neither tampers the integrity of the sensitive
input nor disrupts the execution process in any manner throughout the attack.
It simply invokes the applications on controlled arguments and honestly executes
the read-write operations from the application without tampering any results.
The adversary only passively observes the input-dependent I/O profile of the
execution. Thus, we establish that it is practical to completely leak every byte
in an encrypted file system in the absence of input-oblivious execution, when
program logic running in enclave is sufficiently expressive.

3 Analysis of Information Leakage Channels

Recall that in our model, parameters in I/O profile P form the four channels
C1 to C4 discussed in Sect. 2. The type parameter is either R (read) or W (write)
call, size is the bytes read or written to the untrusted storage, and the address

30 S. Tople and P. Saxena

signifies the file descriptor (fd) in use. Let time be the difference in the time-
stamp! for the occurrence of present and previous call. This section analyses
the channels C1 to C4 in P for information leakage and their role in expanding
attackers knowledge set .

1 rsize = read(infile, inbuffer, 1, infilesize);

2 linel = getline (inbuffer);

3 while((line2 = getline (inbuffer)) != NULL)
4 if ((linecompare(linel , line2)) = true)
5 match = true;

6 else

7 if (match = true)

8 wsize = write(repeat out, linel, 1,strlen(linel));

9 match = false;

10 else

11 wsize = write(uniq_out, linel, 1, strlen(linel));

12 linel = line2;

Fig. 3. Sample program which writes repeated lines in the input to repeat_out file and
the non-repeated lines to uniq_out file.

Throughout the rest of the paper, we consider a running example similar
to the uniq Unix utility (refer to Fig.3) that has 4 information leakage chan-
nels. The example reads the data from an input file (line 1) and writes out
consecutive repeated lines to repeat_out file (line 8) and non-repeated lines to
uniq out file (line 11). The code performs a character-by-character comparison
(line 4) to check whether two lines are equal. Figure 4 shows the I/O profile that
this program generates for two different inputs of the same size and the overall
information learned about each input file. The I/O profile leaks the total number
of input lines, output lines, repeated and non-repeated lines in the encrypted file.

Sequence of Calls (C1). The sequence of calls is an input-dependent parameter
that depends on the if and loop terminating conditions in the application. In
particular, the sequence of calls in the example are control-dependent on the bits
from the sensitive input used in branch conditions.

Ezxample. The program in Fig. 3 uses a separate write call (highlighted) to output
a new line?. Every time the adversary observes a write call in the I/O profile, it
learns that a newline is written to the output file. This is beyond the allowed set
1 because it leaks the total number of lines in the output. From the I/O profiles
in Fig.4, the adversary learns that input 1 and 2 yield total of 3 and 4 lines as
output respectively.

! The granularity of the clock is units of measurement as small as what the attacker
can measure (e.g., ms, ns or even finer).

2 This is a common programming practice observed in legacy applications such as
CoreUtils as shown later in Sect. 6.

On the Trade-Offs in Oblivious Execution Techniques 31

Difference in Size of Bytes (C2). The return values of the read and write
system calls act as the size channel for information leakage. As the size parame-
ter in the I/O profile P shows a direct data dependency on the input values, any
difference in the value of this parameter leaks information about the encrypted
inputs.

Example. In Fig. 4, the adversary observes that the difference in the size of total
read and write bytes for input 1 is 130 bytes, inferring that 1 line is repeated.
For input 2 the difference is 185 (90 + 95) bytes. Observing the size values in
the profile for input 2, the adversary can infer that it has 2 lines repeated since
no other combination of sizes result in a difference of 185 bytes.

Encrypted Inputs P <type, size, address, time> Information learnt
Itl . R,600,1,00 | No. of input lines =4
npu - W, 130,2,50 ! No. of output lines = 3

mp | W 130,2,50 ! 0. of output lines
600 Bytes ‘ :/NV, 128) g: ig | Repeated lines =1
X X | 5 5 9, ! i i =
Application co—-—---—— Uniquelines 2
I R,600,1,00 | No. of input lines =6
GB%P];H Zes -—) - w 1;8 3 ;8 i mmp |No. of output lines = 4
YU W 120,310 | Repeated lines =2
I o o En | Unique lines =2
| W, 95,2,50 | —

Fig. 4. I/0 profiles generated for two different inputs Inputl and Input2 of size 600
bytes. The numbers 1, 2 and 3 in the I/O profile are the file descriptors for infile,
repeat_out and uniq_out respectively. The last part shows the information learned by
observing the I/0O profile.

Address Access Patterns (C3). We consider the file descriptor (fd) to the
read and write system call as the address parameter in the I/O profile P. This
is assuming the OS organizes its underlying storage in files. The untrusted OS
infers the input dependent accesses patterns to different files from this parameter,
as shown in the example below.

Ezxample. In Fig. 4, the address parameter in P leaks that input 1 reads the
repeat_out file (fd =2) once and input 2 reads it twice leaking that they contain
1 and 2 repeated lines respectively. Similar observation for uniq_out file (fd = 3)
leaks that input 1 and input 2 both have 2 unique lines.

Side Channels - Time (C4). There are several well-known side channels
such as power consumption [41], cache latency [51], time [11,42] that could leak
information about sensitive inputs. We focus on the computation time difference
between any two calls as a representative channel of information leakage. Our
discussion applies more broadly to other observed channels too.

Ezxample. In Fig. 4, readers can see that the computation time before a call that
writes to repeat_out file is 50 units and uniq_out file is 10 units. A careful
analysis of the time difference between all consecutive calls reveals that input 1
and 2 have 1 and 2 repeated lines respectively. This is because for repeated lines

32 S. Tople and P. Saxena

the character-by-character comparison (line 4 in Fig. 3) proceeds till the end of
the line, thus taking more time. However, the comparison fails immediately if
the lines are not the same, reducing the time difference.

The above explanation with our running example establishes that every para-
meter in the I/O profile acts as an independent channel of information leakage.
Each channel contributes towards increasing the ¥ of an adversary.

Table 1. Systematization of existing defenses to hide leakage through I/O profile and
their known limitations. ‘D’ and ‘L’ denote defenses and limitations.

Channel | D/L | Determinising 1/O Profile Randomizing 1/O Profile
Type D Memory trace obliviousness [46] | RandSys [38]
Ascend [22], CBMC-GC [34] RISE [9]
L Undecidability of Infeasible sequences [33,64]
static analysis [21,43]
Size D | Rounding [13,67], Random padding [13],
BuFLO [19] Random MTU padding [19]
L Storage Overhead Assumption about
input distribution
Address |D | Linear Scan [30,40,63,71] ORAM [28], [59]
L Access Overhead [30,63] polylog N overhead [56]
Time D Normalized timing [11,37] Fuzzy Time [35]
Language-based
Approach [6,17,49,70]
L Worst Case Insufficient Entropy [27]
Execution Time [65]

4 Defense: Approaches and Limitations

To block the above information channels (C1 to C4), the execution of an appli-
cation should be input-oblivious i.e., the adversary cannot distinguish between
two inputs by observing the I/O profile. We formally define the security property
of “input-oblivious execution” as:

Definition 1 (Input-Oblivious Execution). The execution of an application
A is input-oblivious if, for any adversary A given encrypted inputs E(i), E(j)
and a query profile P, the following property holds:

AdvA := |Pr[P = P[E(i)]] — Pr{P = P[E(j)]]| <€ (1)
where € is negligible.

There are two common approaches to achieve input-oblivious execution: (a)
determinising the I/O profile and (b) randomizing the 1/O profile. We study
these existing defenses and show whether their limitations manifest in practical
applications. Table 1 systematizes existing defenses and their limitations.

On the Trade-Offs in Oblivious Execution Techniques 33

4.1 Approach 1: Determinising the Profile

The idea is to make the execution of an application input-oblivious by deter-
minising the parameters in the I/O profile. This forces a program operating on
different inputs of the same size to generate equivalent I/O profiles. Figure5
shows the modified code for our example (in Fig.3) and its determinised I/0
profile.

Channel C1 - Type. To determinise the type parameter in P, a program should
have the same sequence of calls for different inputs irrespective of the path it
executes. This requires making the execution of read/write calls independent
of the sensitive data used in the branches or loops of a program. One way to
achieve this is to move the read/write calls outside the conditional branches or
the loop statements. This removes their dependence on any sensitive data that
decides the execution path. The other method is to apply the idea of adding
dummy instructions to both the branches of an if condition, as proposed in
works on oblivious memory trace execution [22,46]. This makes the I/O profile
input-oblivious with respect to the if statements in the program. Loops can
be determinised by fixing a upper bound on the number of iterations. Previous
work on privacy preserving techniques use this method to remove the input-
dependence in loops [34,46].

Ezample: We show how to apply this idea to our running example. In Fig.5,
we determinise the sequence of calls by moving the write call outside the loop
making them data-indpendent. All the lines are combined into a single buffer
and are written outside the loop. This makes the profile P deterministic with
respect to the type parameter while retaining the performance.

rsize = read(infile, inbuffer, 1, infilesize);
while(next = getline(inbuffer) != NULL)
{

Deterministic I/O Profile

Hide C1 i.f(match == true) P [type, size, address, time]
el:;rcat(repeat_buffer, linel) R 600, 1,00
strcat(uniq_buffer, linel) mmp | W, 600, 2,400
& W, 600, 3, 10

. pad(repeat_buffer, rsize);
Hide C2 pad(uniq_buffer, rsize);

Hide C4 /I add dummy instructions

S

Hide C3

write(repeat_out, repeat_buffer, 1, rsize);
write(unig_out, uniq_buffer, 1, rsize);

Fig. 5. Modified code with the defense to hide the channels of information leakage in
1/0 profile and a deterministic I/O profile for input of size 600 bytes.

34 S. Tople and P. Saxena

Channel C2 - Size. To hide the leakage through size parameter, a straight-
forward method is to pad the data with dummy bytes up to a certain maximum
value. Padding technique is used in several other contexts to hide leakage through
message length. Chen et al. and Wright et al. use the idea of rounding messages
to fixed length to prevent information leakage in web applications and encrypted
VoIP conversations [13,67]. Dyer et al. proposed the idea of BUFLO (Buffered
Fixed Length Obfuscator) as a countermeasure against traffic analysis [19]. Sim-
ilarly, in program execution, padding can be used to determinise channel C2 by
forcing the same value of size parameter in profile P.

Ezxample: In Fig. 5, we pad the arguments to the write calls upto the size of total
read bytes. This is because in our running example, the maximum output size
equals the total input size when none of the input lines are repeated.

Channel C3 - Address. The pattern of address (file descriptor) parameter
in profile P acts as a channel of information leakage. This is analogous to the
memory access patterns observed in RAM memory. A memory address in the
RAM model corresponds to a file descriptor in our setting. The simple approach
to hide the address access patterns is to replace each access with a linear scan of
all addresses [40]. In the context of secure two-party computations, Wang et al.
and Gorden et al. show that linear scan approach is efficient for small number
of addresses [30,63]. Privacy preserving compilers such as PICCO use the linear
scan approach to access encrypted indexes [71]. Linear scanning approach can
be used to determinise the I/O profile with respect to the address parameter.

Example: In Fig. 5, we modify the program to access both the repeat_out and
uniq_out file for every execution no matter whether the input file contains any
repeated or unique lines. This makes the execution oblivious with respect to the
address parameter.

Channel C4 - Time. Even if channels C1 to C3 are deterministic, the time
parameter in the I/O profile leaks information about the sensitive input. Previ-
ous work have proposed hiding timing channels by making execution behaviour
independent of sensitive values such that the security of program counter is pre-
served [17,49]. Other approach is to transform applications to satisfy a specific
type system that guarantees to hide the leakage through timing channel [6,70].
For determinising the time parameter in P, we can use the idea of adding dummy
instructions in the program to make the execution time a constant value as sug-
gested in [11,37].

Ezample: The input-oblivious version of the program (in Fig. 5) takes a constant
time between the read and write calls in the I/O profile. For all inputs of size
600 bytes, the program will always take time of 400 units before it performs the
first write call. The second write call follows immediately, thus taking less time.

4.2 Limitations of Determinising I/0 Profile

Readers will notice that all the defenses to determinise the channels C1 to
C4 exhibit one common characteristic. Each of the solution modifies their

On the Trade-Offs in Oblivious Execution Techniques 35

corresponding parameters in the 1/O profile to the worst-case execution time.
This introduces a performance trade off in most of the applications. Determin-
istic approach requires statically deciding the upper bound for the worst-case
values of all the profile parameters. This is not always possible due to the theo-
retical limitations of static analysis [21]. Statically identifying the upper bounds
for loops is itself an undecidable problem and notoriously difficult in practice
too [43,54]. To explain the limitations, we use the split utility from CoreUtils
package (shown in Fig. 6) which reads from an input file (line 1), splits a given
input file line-wise (line 3) and writes the maximum B bytes as output to N
different files (line 8).

1 n read = safe read (STDIN FILENO, buf, bufsize);
2 while (true)

3 bp = memchr (bp, ’\n’, eob — bp + 1);
4 if (bp = eob)

5 break;

6 ++bp;

7 if (+4+n >= n_lines)

8 cwrite (new file flag, bp out, bp - bp_out);
9 bp out = bp;

10 new _file flag = true;

11 n = 0;

Fig. 6. split program code that splits the lines in input file and writes to different
output files

Type. In Fig. 6, it is difficult to statically decide a “feasible” upper bound on
the number of loop iterations. In the worst case, a file can have a single character
on each line in the input file. To explicitly decide an upper bound for a file of
size around 1 GB, a determinised profile will execute the loop for N = 239 times
(assuming one byte on each line) which is not a reasonable solution.

Address. The simple strategy of linearly accessing all addresses suffers from
an overhead proportional to the maximum addresses an application uses during
the execution [63]. In split program performing linear access incurs a total
overhead of N? i.e., accessing N files for each of the N loop iterations (where
N = 23Y in worst case). This is impractical for real usage, unless N is small.

Size. Padding data with dummy bytes up to a maximum output size incurs
huge storage overhead as shown in previous work [13,19]. In our split example,
for a 1 GB input file, the maximum possible bytes in a line is B = 1 GB, when
no newline characters are present in the file. Thus, determinising the split
program results in total storage overhead of N GB. It becomes N? GB when
the I/O profile is determinised with respect to address channel.

Time. Determinising the time channel results in worst case execution time for
the application for different inputs of the same size [11,65]. For a file of 1 GB,

36 S. Tople and P. Saxena

split program will take equal time for input file having single character on every
line or the whole file having just a single line.

4.3 Approach 2: Randomizing the I/O Profile

The second approach to making application execution input-oblivious is trans-
forming the original I/O profile to a randomized profile. Randomizing the 1/0
profile involves addition of sufficient noise to every parameter in P. One advan-
tage of randomization over determinising the profile is that it scales better in
terms of performance for most of the applications. We explain this paradigm of
randomization techniques using the split example in Fig. 6.

Oblivious RAM. A strategy for randomizing the address access patterns
which is the focus of many current research works is to use Oblivious RAM
(ORAM) [28,56,58,59,62]. ORAM technique replaces each read/write opera-
tion in the program with many operations and shuffles the mapping of content
in the memory to hide the original access patterns [28]. With the best ORAM
techniques, the application only needs to perform poly log N operations to hide
the access pattern where N is the total address space [56,58]. This is strictly
better as compared to linear overhead of N operations in the trivial approach.
Use of ORAM has been proposed in various areas such as cloud storage [29],
file system [66] and so on. Similarly, we can apply ORAM to randomize the file
descriptor parameter in the I/O profile during program execution.

Ezample: In Fig. 6, split program splits the input file and writes the output to
N files, we can make the I/O profile oblivious by making the program write only
to poly log N files using ORAM. Thus, the overhead reduces to N.polylog N and
is strictly better than N? in the case of determinising the profile.

Addition of Noise. Randomization involves addition of random noise to the
parameters in profile P such that the I/O profiles for two different inputs are
indistinguishable. For this to work, we assume the enclaved application has access
to a secure source of randomness. We can employ the techniques similar to
those used in determinising the profile such as insertion of calls, padding of
bytes and addition of dummy instructions to randomize the I/O profile as well.
Randomization as a defense is popularly used in Instruction Set Randomization
(ISR) and Address Space Layout Randomization (ASLR) techniques to prevent
attacks on execution of benign applications [9,39,55]. RandSys combines these
two techniques and proposes randomization at the system call interface layer [38].
This approach can be used to randomize the sequence of calls in the I/O profile
of applications. Hiding of message length using random padding is explored in
depth in previous work in the context of web applications [13,19]. Effects of
using same random number for all messages versus different random number for
each message was shown in [19]. Recent work has focussed on use of differential
privacy techniques [18], to randomly pad the traffic in web application [8]. We
can apply similar techniques to randomize the bytes in the I/O profile of an
application. Finally, to randomize the time channel, we can use existing ideas

On the Trade-Offs in Oblivious Execution Techniques 37

that makes all the clocks available to the adversary noisy for reducing the leakage
through timing channels [35].

Example: For a file size of 1 GB, an efficient random padding technique for split
program in Fig. 6 writes bytes less than the maximum value for most of the write
calls. This requires storage less than the worst case scenario.

4.4 Limitations of Randomizing I/O Profile

Although randomizing I/O profile provides better performance in most applica-
tions, it does not imply ease of deployment in real applications.

Infeasible Sequence. Randomizing the type parameter in the I/O profiles may
introduce sequence of system calls which are not possible for a given application.
An adversary detecting such infeasible sequences learns about the additional
(fake) system calls inserted to make the profile input-oblivious. This is a valid
threat as adversary has access to the application logic and hence can notice
any irregular sequences. We call this as the “infeasible profile detection” attack.
To avoid this, an application needs to guarantee that a randomized sequence is
always a subset of feasible sequences. This requires generating a complete set
of feasible sequence of calls for a given application which is a theoretical and
practical limitation using path-feasibility analyses (eg. symbolic execution) [43].

Example: A simple example is the split program in Fig. 6 which compulsorily
performs a read operation followed by a series of writes to different files. A ran-
domized sequence of calls such as read, write, write, read, write alarms
the adversary that the second read call is a fake. This immediately leaks that at
most 2 lines are written out by the program before the occurrence of the fake call
i.e., the value of variable n (at line 7 in Fig. 6) is at most 2. The adversary can
iterate the execution sufficient number of times and collect different samples of
I/0O profile for the same input. With the knowledge of infeasible sequences and
identifying the fake calls in each profile, the adversary can recover the original
sequences in finite time and learn the actual number of lines in the encrypted
input file.

Assumption About Input Distribution. The randomization approach often
performs better than determinising the profile as it does not always effect the
worst case behaviour. However, to reap the performance benefits of randomiza-
tion, it is necessary to know the input distribution [13].

Example: To efficiently pad the size channel in the split program, the distrib-
ution of output bytes (B) for an input file with English sentences can be known
using possible sentence lengths in English [53]. But the distribution is differ-
ent for a file that contains numerical recording of weather or genome sequence
information. When we compile the application, we may not know this distrib-
ution. However, a significant challenge is to know beforehand the appropriate
distribution of all possible inputs to an application. It is practically infeasible
for common applications such as found it CoreUtils which take variety of input.

38 S. Tople and P. Saxena

Insufficient Entropy. With insufficient entropy, the adversary can perform
repeated sampling to remove the randomization effect and recover the original
profile. Gianvecchio et al. show how entropy can be used to accurately detect
covert timing channel [27]. Cock et al. perform empirical analysis to show that
although storage channels are possible to eliminate, timing channels are a last
mile while thwarting leakage through side channels [16]. Similarly, other channels
can be recovered if the source of randomness does not provide sufficient entropy—
well-known from other randomization defenses [55]. It is necessary to ensure that
the source of random number which the application uses is secure and the amount
of entropy is large enough.

5 Insufficiency of Hiding Selective Channels

Defenses for both determinising and randomizing the profile have limitations that
affect their use in practical applications. One might hope to selectively hide one
or more leakage channels so that the transformed applications are still practical
to use. This hypothesis assumes that blocking one channel as well hides the
leakage through other channels. This section attempts to answer the question:
Is it sufficient to hide partial channels to get input-oblivious execution? Or, does
hiding one channel affect the amount of leakage through another channel?

Hiding Only the Address Channel. In the logic-reuse attack (Sect.2.1),
recall that the split application writes the ciphertext of each character in the
input to a separate output file (refer Fig. 2). Using ORAM in the split program
hides the exact file to which the ciphertext is written. It replaces every write call
with poly log N calls where N is the total number of characters in the input
file. But this is not sufficient to mitigate the attack. The adversary can get the
ciphertext for number “1” by brute forcing all the ciphertexts written by the first
poly log N calls. ORAM just makes it harder for the adversary to get exactly
the required ciphertext. With ORAM, the adversary has to try the Step 2 of
attack with poly-log input ciphertext. This is expected as ORAM only blocks
the leakage through address parameter but does not hide the sequence of calls.
Recall that the leakage through other parameters like type, size and time are
sufficient for the attack to succeed. The adversary can observe the partially
oblivious I/O profile and still infer every byte in the encrypted file. Our logic-
reuse attacks even works in the presence of ORAM defense for hiding address
access patterns.

Hiding Only the Type Channel. Let us assume that the size parameter for
write calls in our running example in Fig.3 always has the same value. This
is possible when all the lines in an input file have the same length. Such an
1/0 profile is deterministic with respect to the size channel. To hide the leakage
through type channel, let us move the write calls outside the loop (as shown in
Fig.5). In this case, the type channel is determinised but the leakage is not actu-
ally blocked. The leakage is shifted to the size channel which now has different
values depending on the number of repeated lines and unique line. This shows
that in determinising the type channel the leakage simply gets “morphed” to the

On the Trade-Offs in Oblivious Execution Techniques 39

1 while ((bytes_read = fread (buf, 1, BUFLEN, fp)) > 0)
2 unsigned char xcp = buf;
3 length += bytes_read;
4 while (bytes read——)
5 crc = (crec << 8) ~ crctab[((crc >> 24) ~ xcp++) & OxFF|;
6 if (feof (fp))
7 break;
8 printf (“%u %s", (unsigned int) crc, hp);
Fig. 7. cksum code with no channel of information leakage
1 for (int i = 0; i < n_lines; i++)
2 char xconst *p = line + permutation|i];
3 size_t len = p[l] — p[0];
4 if (fwrite (p[0], sizeof *p[0], len, stdout) != len)
5 return —1;

Fig. 8. shuf utility code that leaks the number of lines in input file

size channel, not really eliminated. This shows that its often misleading to selec-
tively hide some subset of information channels due to this channel morphism
problem.

In summary, transforming an application to input-oblivious execution
involves two important steps: (a) correctly identifying all the channels of informa-
tion leakage in profile P and (b) applying either deterministic or randomization
approach to hide all the channel simultaneously.

6 Case Studies

Selection of Benchmarks. We select CoreUtils and BusyBox that are com-
monly available on Unix system as our benchmarks [2,3]. We choose all the 28
text utilities® from GNU CoreUtils package, 1 utility (grep) from BusyBox and
the file utility as our case studies. All of them perform text manipulation on
input files. With this benchmark, our goal is to answer the following questions.

(a) Does information leak through I/0 profile in practical applications?
(b) Is it possible to convert practical applications to input-oblivious execution?

6.1 Analysis Results

We analyze these 30 applications for read /write channels and manually transform
them to perform input-oblivious execution. We use the strace utility available

3 The class of utilities that operate on the text of the input files. Other classes in
coreutils include file utilities that operate on file metadata and shell utilities.

>
[en)

S. Tople and P. Saxena

if ((m = file is_tar(ms, ubuf, nb)) != 0) /«Tar checkx/
file printf(ms, “%s", code mime);

if ((m = file trycdf(ms, fd, ubuf, nb)) != 0)/«CDF checkx
file printf(ms,“%s", code mime);

/+xtext checkx/

if ((m = file ascmagic(ms, ubuf, nb, looks text)) != 0)
file _printf(ms, “%s", code_mime);

0 O U= W N+

Fig. 9. file utility code that leaks the file type through the time channel

in Linux system to log all the interactions of the application with the untrusted
OS. The “-tt” option of strace gives the time-stamp for every system call made
by the application. We categorize each application into one or more channels
(discussed in Sect.3) which need to be blocked for providing input-oblivious
execution. The type, size, address and time channel leak information in 22, 11,
2, 24 applications respectively. Table 2 summarizes our analysis results.

No Channels. Out of the 30 case studies, 6 applications perform nearly input-
oblivious execution without modification. These programs include sum, cksum,
cat, base64, od and md5sum. Figure 7 shows the code for cksum program as a
representative to describe the behaviour in these applications. The while loop at
line 1 uses the input size for termination which is a part of adversary’s knowledge
set 1. Therefore the program generates the same sequence of calls for different
inputs of the same size. As the same computation is performed on every character
(line 5), the time interval between the calls is the same for different inputs.
Thus, the I/O profile of the program execution does not depend on sensitive
input. These 6 applications generate deterministic profiles by default and thereby
exhibit the property of input-oblivious execution.

Type. Of the remaining 24, 22 generate sensitive input-dependent sequence of
calls. We observe that 8 of the 22 applications specifically leak the number of
newline characters present in the input file. Figure 8 shows the code for shuf util-
ity that shuffles the arrangement of lines in the input file and outputs every line
with a separate write call (line 4). These 8 applications include ptx, shuf,
sort, expand, unexpand, tac, nl and paste. Other applications such as
cut, fold, fmt, tr, split and so on leak additional information about the
sensitive input depending on the options provided to these applications. Recall
that in our logic-reuse attack, the command “fold -w E(1 Hello)” leaks the
ciphertext for individual characters in the input file.

Size. In our case studies, applications that writes as output either partial or
complete data from the input file are categorized as leaking channel through size
parameter. 11 of our 30 case studies fall under this channel namely tr, comm,
join, uniq, grep, cut, head, tail, split, csplit and tsort. All these
applications as well leak information through the type parameter. This means
that none of the 11 utilities leak information exclusively through size parameters.

On the Trade-Offs in Oblivious Execution Techniques 41

Such a behaviour indicates that even if one of the channels is blocked, information
is still leaked and shifted over to another channel (refer Sect. 5).

Address. Most of the applications in our case studies read and write to a single
file with the exception of two utilities. The split and csplit programs access
different output files during the execution process. Thus, these two application
leak information via the address access pattern. From Table 2, readers can see
that these are the only two applications that leak information through all the
four channels in the I/O profile.

Time. All the 24 applications that do not fall in the no channel category leak
information through the time parameter in the I/O profile. Readers can observe
from Table 2 that only two programs i.e., wc and file leak information explicitly
through timing channel. The code snippet of file utility in Fig. 9 explains this
behaviour. The file reads the input and checks it for each file type (line 1, 4 and
7). The I/O profile contains only one read and write call but the time difference
between the them leaks information about the input file type.

Table 2. Categorization of CoreUtils applications into different leakage channels. v*
denotes that the channel should be blocked to make the application input-oblivious

paste |sort |shuf |ptx |expand |unexpand [tac [grep |cut [join |uniq |[comm
Type v v IV v vV IV W
Size v v
Address
Time v v v W v vV IV
fold |fmt |nl |pr |split csplit tr |head |tail [tsort |file [wc
Type v v v W v v v
Size v v
Address v v
Time v v v v VA A A A I
|N0 Channel - cat , cksum , sum , base64 , md5sum , od

6.2 Can Be Transformed to Input-Oblivious Execution?

To answer our second evaluation goal, we manually transform the applications
using the defenses discussed in Sect. 4. Since all the applications leak information
through timing channel for a fine grained measurement by adversary, we ignore
the timing channel in our manual transformation. We find some positive results
where the existing defenses can be directly applied to make commonly used
applications input-oblivious. Surprisingly, our findings yield negative results as
well. We show that the limitations of oblivious execution techniques do manifest
in 2 real applications.

Transformed with O(1) Overhead. We find that 11 applications can execute
obliviously by the determinising the profile with respect to the type parameter.

42 S. Tople and P. Saxena

These are the applications in Table 2 which fall only under type and time chan-
nels and no others. In all these applications the sequence of call can be made
independent of the loops that use sensitive data for termination. The code for
shuf in Fig.8 is an example of such an application. Thus, there is no perfor-
mance overhead due to determinising the type channel. We consider this to be
a positive result as the applications can be transformed with O(1) overhead.

Transformed with O(N) Overhead. We find that 11 applications that leak
information through both the type and size channel can be converted to input-
oblivious execution by making the sequence of calls loop independent as well as
padding the output bytes to the total input size. These transformed applications
incur a performance penalty of O(N) i.e., linear to the size of input file.

Transformed with Exponential Performance Penalty. We find that 2
applications namely split and csplit show the limitation of statically deciding
a feasible upper bound for loops. In these programs, the number of loop iteration
depends on the number of newline characters present in the input file (line 3 in
Fig. 6) which is not known at the compile time. Hence, transforming these appli-
cations to input-oblivious execution is not possible without exponential perfor-
mance overhead of O(2"). We explain this behaviour for split program earlier
in Sect.4. The csplit application is similar to split with additional options
to it and therefore exhibits same limitations. This confirms that limitations of
existing oblivious execution techniques do manifest in practical applications.

7 Related Work

Attacks on Enclaved Systems. On a similar setting as this paper, Xu
et al. demonstrate controlled-channel attack using page faults that can extract
complete text documents in presence of an untrusted OS [69]. This confirms that
enclaved execution techniques are vulnerable to information leakage through dif-
ferent channels. Our work specifically focuses on file system calls as the read-
write channels in these systems. Iago attacks [12] demonstrate that untrusted
OS can corrupt application behaviour and exploit to gain knowledge about sen-
sitive inputs. This attack however assumes the OS is malicious and can tamper
the parameter of return values in memory management system calls like mmap.
In this paper, we have shown that information leakage is possible even with a
weaker i.e., semi-honest adversarial model.

Oblivious Execution Techniques. A discussion of closely related oblivious
execution techniques is summarized in Sect.4 (see Table1l). Here we discuss
a representative set of recent work on these defenses. Liu et al. [46] propose a
type system for memory-trace oblivious (MTO) execution in the RAM model.
In their solution, they add padding instructions to ‘if’ and ‘else’ branches to
achieve memory trace obliviousness. We use this technique to hide the system call
sequences in I/O profile. Along with this, they use the ORAM technique to hide
address access patterns. GhostRider [45] provides a hardware/software platform
for privacy preserving computation in cloud with the guarantees of memory-
trace oblivious execution. Along with hiding address access pattern Ghostrider

On the Trade-Offs in Oblivious Execution Techniques 43

determinises the time channel by making the application take worst case execu-
tion time. Ascend [22] is a secure processor that uses randomizes access pattern
using ORAM and determinises the time channel by allowing access to memory at
fixed intervals. The fixed interval is a parameter chosen at compile time. It uses
the idea of inserting dummy memory access to hide the timing channel. Fletcher
et al. have proposed a solution that provides better performance while still hid-
ing the timing channel [23]. However, their solutions leaks a constant amount of
information, thus introducing a tradeoff between efficiency and privacy.

8 Conclusion

In this paper we demonstrate a concrete attack called—a logic-reuse attack—to
highlight the importance of oblivious execution. We systematize the capabilities
and limits of existing oblivious execution techniques in the context of enclaved
execution. Finally, our study on 30 applications demonstrate that most of the
practical applications can be converted to oblivious execution with acceptable
performance. However, theoretical limitations of oblivious execution do manifest
in practical applications.

Acknowledgements. We thank the anonymous reviewers of this paper for their help-
ful feedback. We also thank Shweta Shinde, Zheng Leong Chua and Loi Luu for useful
feedback on an early version of the paper. This work is supported by the Ministry of
Education, Singapore under Grant No. R-252-000-560-112 and a university research
grant from Intel. All opinions expressed in this work are solely those of the authors.

References

http://letterfrequency.org

BusyBox. http://www.gnu.org/software/coreutils/

GNU CoreUtils. http://www.busybox.net/

Intel Trusted Execution Technology: Software Development Guide. www.intel.
com/content/dam/www /public/us/en/documents/guides/intel-txt-software-
development-guide.pdf

Trusted Computing Group. Trusted platform module, July 2007

6. Agat, J.: Transforming out timing leaks. In: Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2000 (2000)

7. ARM: ARM Security Technology — Building a Secure System using TrustZone
Technology. ARM Technical White Paper (2013)

8. Azab, T.: Differentially private traffic padding for web applications. Ph.D. thesis,
Concordia University Montreal, Quebec (2014)

9. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Random-
ized instruction set emulation to disrupt binary code injection attacks. In: Pro-
ceedings of the 10th ACM conference on Computer and communications security
(2003)

10. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. In: OSDI (2014)

=N

o

http://letterfrequency.org
http://www.gnu.org/software/coreutils/
http://www.busybox.net/
www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf

44

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

S. Tople and P. Saxena

Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Networks
48(5), 701-716 (2005)

Checkoway, S., Shacham, H.: Iago attacks: why the system call API is a bad
untrusted RPC interface. In: ASPLOS (2013)

Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications: a
reality today, a challenge tomorrow. In: IEEE Symposium on Security and Privacy
(SP), pp. 191-206. IEEE (2010)

Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.: Overshadow: a virtualization-based approach
to retrofitting protection in commodity operating systems (2008)

Chhabra, S., Rogers, B., Solihin, Y., Prvulovic, M.: SecureME: a hardware-software
approach to full system security. In: ICS (2011)

Cock, D., Ge, Q., Murray, T., Heiser, G.: The last mile: an empirical study of
timing channels on sel4. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2014 (2014)

Coppens, B., Verbauwhede, I., De Bosschere, K., De Sutter, B.: Practical miti-
gations for timing-based side-channel attacks on modern x86 processors. In: 30th
IEEE Symposium on Security and Privacy, pp. 45-60. IEEE (2009)

Dwork, C., van Tilborg, H.C.A., Jajodia, S.: Differential privacy. Encyclopedia of
Cryptography and Security, pp. 338-340. Springer, New York (2011)

Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T.: Peek-a-boo, i still see you:
why efficient traffic analysis countermeasures fail. In: IEEE Symposium on Security
and Privacy (SP), pp. 332-346. IEEE (2012)

ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10-18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7_2

Fairley, R.E.: Tutorial: static analysis and dynamic testing of computer software.
Computer (1978)

Fletcher, C.W., Dijk, M.V., Devadas, S.: A secure processor architecture for
encrypted computation on untrusted programs. In: Proceedings of the seventh
ACM workshop on Scalable trusted computing, pp. 3-8. ACM (2012)

Fletchery, C.W., Ren, L., Yu, X., Van Dijk, M., Khan, O., Devadas, S.: Suppressing
the oblivious ram timing channel while making information leakage and program
efficiency trade-offs. In: 2014 IEEE 20th International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 213-224. IEEE (2014)

Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129—
148. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_9

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st Annual
ACM Symposium on Theory of Computing (2009)

Gentry, C., Halevi., S.: A working implementation of fully homomorphic encryp-
tion. In: EUROCRYPT (2010)

Gianvecchio, S., Wang, H.: Detecting covert timing channels: an entropy-based
approach. In: Proceedings of the 14th ACM conference on Computer and commu-
nications security. ACM (2007)

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431-473 (1996)

Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Practical obliv-
ious storage. In: Proceedings of the second ACM conference on Data and Applica-
tion Security and Privacy (2012)

http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/978-3-642-20465-4_9

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

On the Trade-Offs in Oblivious Execution Techniques 45

Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: Proceedings
of the 2012 ACM Conference on Computer and Communications Security, CCS
2012 (2012)

Henecka, W., Kogl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: ACM CCS (2010)

Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: InkTag: secure appli-
cations on an untrusted operating system. In: ASPLOS (2013)

Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. J. Comput. Secur. 6(3), 151-180 (1998)

Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computa-
tions in ANSI C. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS 2012 (2012)

Hu, W.M.: Reducing timing channels with fuzzy time. In: IEEE Computer Society
Symposium on Research in Security and Privacy, Proceedings, pp. 8-20, May 1991
Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security Symposium (2011)

Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: IEEE Symposium on Security and Privacy (SP) (2013)
Jiang, X., Wang, H.J., Xu, D., Wang, Y.M.: RandSys: thwarting code injection
attacks with system service interface randomization. In: 26th IEEE International
Symposium on Reliable Distributed Systems, SRDS 2007, pp. 209-218. IEEE
(2007)

Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security, pp. 272-280. ACM (2003)

Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506-525. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45608-8_27

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1_25

Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104-113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5_9

Landi, W.: Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1(4),
323-337 (1992)

Li, X., Hu, H., Bai, G., Jia, Y., Liang, Z., Saxena, P.: DroidVault: a trusted data
vault for android devices. In: 19th International Conference on Engineering of
Complex Computer Systems (ICECCS), pp. 29-38. IEEE (2014)

Liu, C., Harris, A., Maas, M., Hicks, M., Tiwari, M., Shi, E.: GhostRider: A
hardware-software system for memory trace oblivious computation. In: Proceedings
of the Twentieth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 87-101. ACM (2015)

Liu, C., Hicks, M., Shi, E.: Memory trace oblivious program execution. In: CSF
2013, pp. 51-65 (2013)

McCune, J.M., Parnoy, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an execu-
tion infrastructure for TCB minimization. In: EuroSys (2008)

http://dx.doi.org/10.1007/978-3-662-45608-8_27
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9

46

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.

62.

63.

64.

S. Tople and P. Saxena

McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP (2013)

Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156-168. Springer,
Heidelberg (2006). doi:10.1007/11734727_14

Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI - a system for secure
face identification. In: Security and Privacy (2010)

Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1-20.
Springer, Heidelberg (2006). doi:10.1007/11605805_1

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_16

Quirk, R., Crystal, D., Education, P.: A Comprehensive Grammar of the English
Language, vol. 397. Cambridge University Press, Cambridge (1985)

Saxena, P., Poosankam, P., McCamant, S., Song, D.: Loop-extended symbolic exe-
cution on binary programs. In: Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis, pp. 225-236. ACM (2009)

Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, pp. 298-307. ACM (2004)
Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)?)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT 2011. LNCS, vol.
7073, pp. 197-214. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_11
Shinde, S., Le Tien, D., Tople, S., Saxena, P.: Panoply: Low-TCB linux applications
with SGX enclaves. In: NDSS (2017)

Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path oram: an extremely simple oblivious ram protocol. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications Security, CCS
2013 (2013)

Stefanov, E., Shi, E., Song, D.: Towards Practical Oblivious RAM. CoRR (2011)
Thekkath, D.L.C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,
M.: Architectural support for copy and tamper resistant software. In: Proceedings
of the Ninth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS IX (2000)

Tople, S., Shinde, S., Chen, Z., Saxena, P.: AUTOCRYPT: enabling homomorphic
computation on servers to protect sensitive web content. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications Security, CCS
2013 (2013)

Wang, X.S., Chan, T.H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-
Ostrovsky lower bound (2014)

Wang, X.S., Huang, Y., Chan, T., Shelat, A., Shi, E.: SCORAM: Oblivious RAM
for secure computation. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 191-202. ACM (2014)

Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
alternative data models. In: Proceedings of the 1999 IEEE Symposium on Security
and Privacy, pp. 133-145. IEEE (1999)

http://dx.doi.org/10.1007/11734727_14
http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-25385-0_11

65.

66.

67.

68.

69.

70.

71.

On the Trade-Offs in Oblivious Execution Techniques 47

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., et al.: The worst-case
execution-time problem—overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst. (TECS) 7(3), 36 (2008)

Williams, P., Sion, R., Tomescu, A.: PrivateF'S: a parallel oblivious file system.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS 2012

Wright, C.V., Ballard, L., Coull, S.E., Monrose, F., Masson, G.M.: Spot me if you
can: uncovering spoken phrases in encrypted VolP conversations. In: Proceedings
of the 2008 IEEE Symposium on Security and Privacy, SP 2008 (2008)

Yao, A.C.: Protocols for secure computations. In: 23rd Annual IEEE Symposium
on Foundations of Computer Science (1982)

Xu, Y., Cui, W., Peinado, M.: GhostRider: Controlled-channel attacks: determin-
istic side channels for untrusted operating systems. In: IEEE Security and Privacy
2015 (2015)

Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. In: Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2012 (2012)

Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private
distributed computation. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2013 (2013)

2 Springer
http://www.springer.com/978-3-319-60875-4

Detection of Intrusions and Malware, and Yulnerability
Assessment

14th International Conference, DIMVA 2017, Bonn,
Germany, July 6-7, 2017, Proceedings

Polychronakis, M.; Meier, M. (Eds.)

2017, X 412 p. 114 illus., Softcover

ISBM: 978-3-319-60875-4

	On the Trade-Offs in Oblivious Execution Techniques
	1 Introduction
	2 The Problem
	2.1 Logic-Reuse Attack

	3 Analysis of Information Leakage Channels
	4 Defense: Approaches and Limitations
	4.1 Approach 1: Determinising the Profile
	4.2 Limitations of Determinising I/O Profile
	4.3 Approach 2: Randomizing the I/O Profile
	4.4 Limitations of Randomizing I/O Profile

	5 Insufficiency of Hiding Selective Channels
	6 Case Studies
	6.1 Analysis Results
	6.2 Can Be Transformed to Input-Oblivious Execution?

	7 Related Work
	8 Conclusion
	References

