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Abstract. Automated detection of retinal blood vessels plays an impor-
tant role in advancing the understanding of the mechanism, diagnosis and
treatment of cardiovascular disease and many systemic diseases. Here, we
propose a new framework for precisely segmenting vasculatures. The pro-
posed framework consists of two steps. Inspired by the Retinex theory,
a non-local total variation model is introduced to address the challenges
posed by intensity inhomogeneities and relatively poor contrast. For bet-
ter generalizability and segmentation performance, a superpixel based
line operator is proposed as to distinguish between lines and the edges,
and thus allows more tolerance in the position of the respective con-
tours. The results on three public datasets show superior performance to
its competitors, implying its potential for wider applications.

Keywords: Vessel - Segmentation - Total variation - Retinex - Super-
pixel - Line operator

1 Introduction

The accurate detection of retinal vessels is essential for many clinical applications
to support early detection, diagnosis and optimal treatment. Manual annotation
of vascular structure is an exhausting task for graders, and computer-aided auto-
matic/semi automatic vascular detection methods can significantly reduce the
amount of time. However, many factors cause inaccuracy in vessel segmenta-
tion, including poor contrast, noise and pathologies such as micro-aneurysms,
hemorrhages, and exudate.

Over the past two decades, a tremendous amount of vessel segmentation
methods have been developed for different types of medical images. Numerous
fully automated, semi-automated methods have been proposed, as evidenced by
extensive reviews [1-3]. In general, all established automated segmentation meth-
ods may be categorized as either supervised segmentation [4-9] or unsupervised
segmentation [3,10-15] regarding the overall system design and architecture.
© Springer International Publishing AG 2017

M. Valdés Herndndez and V. Gonzalez-Castro (Eds.): MIUA 2017, CCIS 723, pp. 15-26, 2017.
DOI: 10.1007/978-3-319-60964-5_2



16 T. Na et al.

Unsupervised segmentation refers to methods that achieve the segmentation of
blood vessels without using training data or explicitly using any supervised clas-
sification techniques [16]. This category includes most segmentation techniques in
the literature, such as active contour models [13,22], wavelets [14], line operator
[10] and our new framework, as described in this paper. In contrast, supervised
methods [4-8,17,28] require a manually annotated set of training images for clas-
sifying a pixel either as vessel or non-vessel. Most of these methods in supervised
catergory use Support Vector Machine, AdaBoost, Neural Networks, Conditional
Random Field, etc.

However, the computer-aided vessel segmentation have yet to completely
solve the challenging problems, such as posed by the high degree of anatom-
ical variation across the population, and to the increasing complexity of the
surrounding tissue and varying scales of vessels within an image. Moreover, arti-
facts during image acquisition, such as noise, poor contrast and low resolution,
exacerbate this problem.

In this paper, we proposed a novel vessel segmentation framework. It com-
prises two main phases: a non-local total variation regularized intensity inhomo-
geneity correction, and superpixel based line operator segmentation model. The
contributions of this work may be summarized as three folds: (1) A Retinex-
based inhomogeneity correction method is introduced to normalize the imbalance
illumination. When it is extended to vessel image intensity inhomogeneity cor-
rection, it has showed good performance and facilitates the subsequent processes.
(2) The sensitivity for the detection of vessels is significantly improved after the
superpixel adapted to the line operator. (3) The proposed segmentation frame-
work achieves the best performance in the comparison studies on three publically
available datasets.

2 Method

In this section, we describe the proposed method for the extraction of vessels
by using Retinex-based inhomogeneity correction and superpixel enabled line
operator segmentation. The main steps of our approach are illustrated in Fig. 1.

2.1 Retinex-Based Inhomogeneity Correction

The retinal images acquired with a fundus camera sometimes have poor contrast
due to too strong or too low illumination conditions, it usually inherited from
image acquisition. To this end, an inhomogeneity correction method is proposed
to handle these problems in this paper.

The Retinex theory has been successfully adopted to computer vision
field [18], in order to remove unfavorable illumination effects from images to
improve their quality and contrast. The Retinex theory shows that any given
image I can be modeled as a component-wise multiplication of two components,
the reflectance R and the illumination L: I = L * R. Typically, R reveals the
reflectance of the object of interest more objectively, and can thus be regarded
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Fig. 1. Overview of the main steps of our method: (A) A random selected color fun-
dus image; (B) The green channel of (A); (C) Results after applying Retinex on (B);
(D) Superpixelized results of (C); (E) Vessel response of the proposed method; (F)
Segmentation result by the proposed method.

as the enhanced image I. A look-up-table log operation can transfer this multi-
plication into an addition, resulting in ¢ = log(I) = log(L) + log(R) =1 + r [18].
Clearly, the recovery of [ or 7 is an ill-posed inverse image decomposition prob-
lem.

In this paper, a non-local total variation (TV) regularized model supporting
the Retinex theory is adopted. It is very effective that the TV regularizer in
recovering edges of images [19]. Such phenomenon coincides with the partial
differential equation based Retinex method: the reflectance corresponds to the
sharp details in the image and the illumination is spatially smooth. The non-local
TV regularized model can be formulated as an energy minimization problem as:

1
R = arguin{t [ Vil + 3V( - )3} 1)
0]

where [ < i. Here, f o |Vwl| indicates the regularization term, and it is able to
find the sharp details. V(I —)|3 is Ly term of the gradient of the illumination,
it ensures to smooth the illumination. ¢ is the parameter to balance two terms.
{2 is the support of the image. For a given image, the non-local weight between
pixel x and y can be defined as

—K * (I(x) — 2
K409~ L)y o)

w(x,y) = eXP{ 573
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Fig. 2. Illustrative results of image enhancement by using non-local total variation
based Retinex approach. (A) and (C): The green channel of two random selected color
fundus image. (B) and (D): Results after applying Retinex on (A) and (C).

where K is the Gaussian kernel, and h is the control parameter. The non-local
gradient operator at pixel x can be defined by the yielded non-local weights, as
the vector of all partial difference V,,I(x, ):

Vul(x,y) = (I(y) = I(x)Vw(x,y), Yy € £. 3)

Hence, the non-local TV regularizer can be defined as

[ 19l = [ ([ (1) = 160wty ay) ax. (4)

Figure2 shows two enhanced results produced by applying the non-local TV
based Retinex model. It has successfully corrected the contrast between vessels
and background well, as well as the region of optic disc. In consequence, the
vessels are more easily identifiable.

2.2 Superpixel-Based Line Operator

The basic line operator considers 12 angles, and the angular resolution is 15
degree. The largest average grey level L is found, which the pixel lies on a line
passing through the target pixel. Then the line strength of the pixel is defined
as

S(i) = L(i) - N(i), (5)

where N (i), is the average grey-level of a square window, centered on the target
pixel i, with edge length equal to p. The winning line is aligned within a vessel
if the line strength is large, while the line strength is lower if the line is partially
overlapped. In general, the length y is empirically chosen, such as 15 in [10], and
5 in [20].

However, it usually has varying scales of vessels within an image, and a single
value of p always yield imbalance responses on the vessels. Therefore, in order
to achieve better segmentation performance, in this work we applied a modified
line operator on the superpixel generated patches rather than on entire image,
in particular in regions with low signal noise ratio. The length p was set to be
half of the minimum object length of corresponding superpixel.



Superpixel-Based Line Operator for Retinal Blood Vessel Segmentation 19

Fig. 3. Illustration of different superpixel numbers generated on an example image:
(A) The green channel of a random selected color fundus image; (B) 400 superpixels;
(C) 800 superpixels; (D) 1200 superpixels.

To achieve this, we first generate the superpixel upon the vesselness map. The
SLIC superpixel algorithm [21] is adapted to replace the rigid structure of the
pixel grid. The SLIC is a k-means clustering based method, and is able to assign
each pixel to a superpixel according to their intensities and spatial locations.
The superpixel clustering procedure starts with the generation of initial cluster
centers. Then a distance measure D to cluster centers for all pixels is defined,
aims to associate to their nearest cluster centers. The Euclidean distance (d..)
and spatial distance (ds) are used to define this measure:

D=/ +(2)2m2, (6)

where S = y/N/k is the grid interval. k is the desired superpixel number and N
is the total number of pixels. m indicates a parameter to balance the weighting
of intensity and coordinates. Figure 3 shows an example of superpixel represen-
tation, with 400, 800, and 1200 superpixels, respectively.

Let P, € T be a viable local representation as a superpixel ¢ (t = 1,2,--- ,T),
and let I indicate the input image. The line strength of the pixel in superixel P
is defined as Sp, (i) = Lp, (i) — Np,(¢). In practice, the line path is hard to be
exactly matched the pixel grid, hereby, the line and region averages at arbitrary
orientations are obtained by using nearest neighbour interpolation instead of
bi-linear interpolation.

Multiscale analysis is also performed in this framework. The line strength of
the pixel under multi-level superpixel is defined as

P
S(i) = 5 > 8(0)(PYli € PY). 7)

where P indicates the levels of superpixels that the input image is segmented
to. Parameter tuning for optimal numbers of superpixels and levels (P and M)
will be discussed in Sect. 4.2. The second column of Fig. 4 demonstrate the final
vessel responses of the proposed method. In order to extract the vessel from
the response map, our previous proposed infinite perimeter active contour with
hybrid region (IPACHR) method [23] is employed for its good performance. The
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IPACHR uses an infinite perimeter active contour model for its effectiveness in
detecting vessels with irregular and oscillatory boundaries. For more details, we
refer readers to the original paper [23]. The third column of Fig.4 depict the
segmentation results.

Fig. 4. Examples of vessel segmentation by the proposed method on 3 datasets. From
left to right: green channel of random selected color fundus images, results after super-
pixel enabled line operator, automated segmentation results, and manual annotations.

3 Datasets and Evaluation Metrics

Three publically available retinal datasets are used in this work to evaluate
the proposed segmentation framework: STARE!, DRIVE?, and a newly released
dataset IOSTAR?. The image resolutions of these datasets are 565 x 584, 700 x
605, and 1024 x 1024, respectively.

The segmentation performance is measured by sensitivity se, specificity
sp, and accuracy acc. They are defined as se = #,sp = %,acc =

%, respectively. Here, true positive ¢p is the count of pixels marked

as vessel pixels in both the segmented image and its ground truth. Similarly,

! http://www.ces.clemson.edu/~ahoover /stare/.
2 http://www.isi.uu.nl/Research /Databases/DRIVE/.
3 http://www.retinacheck.org.
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false positive fp identifies the number of incorrectly identified vessel pixels; true
negative tn is the number of correctly identified non-vessel pixels; false negative
fn indicates the number of incorrectly identified non-vessel pixels. In general,
reporting the se and sp obtained at highest acc is a common way in the retinal
image segmentation. However, it is possible to produces imbalanced results where
a higher sp is favored since vessel has relatively lower amount than background.
In such a case, acc will be skewed by the dominant classes. Consequently, in
order to evaluate the performance of the proposed vessel segmentation method,
the receiving operator characteristics (ROC) curve is computed with true posi-
tive ratio versus the false positive ratio. The area under the ROC curve (AUC)
is calculated to quantify the performance of the segmentation, since it has the
ability to reflect the trade-offs between the sensitivity and specificity.

4 Experimental Results

In this experiment, the green channel of the color fundus images were used for
vessel segmentation. Figure 4 illustrates examples of vessel detection performance
on three datasets, and manual annotation from observer 2 of the DRIVE and
STARE dataset were used as groundtruth.

To reveal the relative performance of our proposed method, we compared
it with several existing state-of-the-art vessel detection methods on the most
popular datasets: DRIVE and STARE. The results are shown in Table1, and
the chosen methods have been ordered by the category the methods belonging
to: the most recent seven supervised methods [4-8,17,28], and nine unsuper-
vised segmentation methods [3,10,14,15,23-27]. Overall, our framework yields
state-of-the-art performance and outperforms most methods reported in most of
the quality metrics used, as it took into account the global features through the
Retinex analysis and the local features through the superpixel-based line oper-
ator, therefore, more fine vessels may be detected. For accurate analysis of the
DRIVE dataset, the proposed method yields the highest sensitivity, accuracy,
and AUC among unsupervised method, and only the sensitivity is lower than
the supervised method proposed by Orlando et al. [17]. Note, to the best knowl-
edge of the authors, only Zhang et al. [27] has tested their segmentation method
on IOSTAR dataset. In consequence, we only compared with the performance
obtained by [27] in the bottom of Table 1, and is by no means exhaustive. In
contrast, our method has better performance in terms of all metrics.

Furthermore, three state-of-the-art vessel enhancement methods were
employed for comparison purposes. These methods were: isotropic undecimated
wavelet filter [14], local phase filter [29] and Combination Of Shifted Filter
Responses (BCOSFIRE) [15]. In the interests of reproducibility, the recom-
mended parameters in the literature were used in the experiments. In Fig. 5,
we show examples of applying different enhancement methods on a represen-
tative patch with multiple vascular bifurcations, curvature changes, intensity
inhomogeneity on large vessel and low intensities on tiny vessels. Overall, the
proposed method is not only able to detect the vessel regions, but also has the
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Table 1. Performance of different segmentation methods, in terms of sensitivity (se),
specificity (sp), accuracy (acc) area under the curve (AUC), on the DRIVE, STARE
datasets, and IOSTAR.

Method DRIVE STARE

se sp acc AUC se sp acc AUC
Second observer 0.776 1 0.972 |0.947 |0.874 0.895 0.938 |0.934 |0.917
Supervised methods
Staal [4] - - 0.946 | 0.952 |- - 0.951 |0.961
Soares [5] 0.733 10.782 |0.946 |0.961 |0.721 |0.975 |0.948 |0.967
Lupascu [6] 0.720 |- 0.959 | 0.956 |- - - -
You [7] 0.741 |0.975 |0.943 |- 0.726 |0.975 [0.949 |-
Marin [8] 0.706 0.980 | 0.945 0.959 0.694 |0.981 | 0.952 0.977
Li [28§] 0.757 10.982 |0.953 |0.974 |0.773 |0.984 |0.963 |0.988
Orlando [17] 0.789 0.968 |- - 0.768 | 0.974 |- -
Unsupervised methods
Ricci [10] - - 0.963 0960 |- - 0.968 | 0.965
Palomera-Perez [24] 0.660 |0.961 |0.922 |- 0.779 |0.940 |0.924 |-
Fraz [3] 0.715 |0.976 |0.943 |- 0.731 |0.968 |0.944 |-
Bankhead [14] 0.703 10.971 |0.937 |- 0.758 |0.950 |0.932 |-
Zhao [23] 0.742 10.982 |0.954 |0.862 |0.780 |0.978 |0.956 |0.874
Yin [25] 0.725 |0.979 |0.940 |- 0.854 |0.942 |0.933 |-
Roychowdhury [26] 0.740 10.978 |0.949 |0.967 |0.732 |0.984 |0.956 |0.967
Azzopardi [15] 0.766 | 0.970 |0.944 |0.961 |0.772 |0.970 |0.950 |0.956
Zhang [27] 0.747 10.976 |0.947 |0.952 |0.768 |0.976 |0.955 |0.961
Proposed method 0.768* | 0.970 | 0.954* | 0.970* | 0.781 | 0.977 | 0.957* | 0.968™

IOSTAR
Zhang [27] 0.755 0.974 | 0.951 0.962
Proposed method 0.761 0.975 | 0.955 0.964

ability to suppress noise and artifacts. In other words, the results obtained by
the proposed method seem more pleasing: stronger enhancement results on tiny
vessels, better responses on bifurcations/crossovers, and higher uniformity on
intensity inhomogeneity.

4.1 The Effectiveness of Superpixel and Retinex

In this section, the effectiveness of line operator enabled with superpixel and
Retinex based image enhancement are validated individually.

Figure 6 demonstrates the segmentation results obtained by the proposed
models with and without superpixel enabled. It can be observed from Fig. 6(C)
that superpixel contributes significantly to the final performance - more tiny
vessels have been detected, and helps to improve the sensitivity of the vessel
segmentation. This observation is also confirmed by the ROC curves over three
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4 bifurcation
tiny vessel

Fig. 5. A comparative study with other enhancement techniques on a selected region
with tiny vessel (yellow arrow), bifurcation (green arrow), and crossover (red arrow).
(A) The green channel of a selected region of a color fundus image. (B) isotropic
undecimated wavelet filter. (C) Local phase. (D) BCOSFIRE. (E) Proposed method.
(Color figure online)

Fig. 6. Segmentation results of the proposed method, and the snapshot of selected
region with small vessels. (A) Original image. (B) Segmentation result without super-
pixel applied. (C) Segmentation result with superpixel applied. (D) Groundtruth.
(Color figure online)

different datasets, as illustrated at Fig.7 (red line). Most existing line operator
based segmentation approaches have a certain edge length p, such as 15 pixels
in [10], and 5 pixels in [20]. In this work, the edge length is self-adapting, and
it is more sensitive to capture the varying scales of vessels within an image, and
this leads to higher se, acc, and AUC.

In addition, the ROC curves of the proposed method with or without Retinex
enhancement applied are illustrated at Fig.7 (green line). Overall, Retinex
process affects the final performance significantly, since the optic disk and foveal
area always have inhomogeneous intensities, and these inhomogeneities were cor-
rected after Retinex applied. In contrast, the segmentation performances were
relative poorer in dataset STARE and IOSTAR than DRIVE when without
Retinex applied. That is because STARE and IOSTAR dataset contain some
images with pathologies, e.g. presents bright lesions or exudates, blurring vessel,
and these features cause more false detections (lower sp). While the proposed
Retinex method is capable to normalize these regions to a similar level with the
background, and increase the contast between the vessels and background, as
thus to avoid the false detection (higher sp), and raise the sensitivity score.
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Fig. 7. The ROC curves of the proposed framework with and without the Retinex
enhancement applied and superpixel-based the line operator applied over three different
datasets respectively. (The reader is referred to the color version of this figure.)
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Fig. 8. The ROC curves of the proposed method with (left) different numbers of super-
pixels: 400,800, 1200, 1600, and 2000; (right) different numbers of levels, after setting
the optimal number of the superpixels to 1200. (The reader is referred to the color
version of this figure.)

4.2 Parameters Tuning

In this section, we experimentally investigate the suitable numbers of superpixels
M and levels of superpixel partition P. It is known that too large number of
superpixel leads to false detection, and on the contrary, too few superpixels result
in a loss of the edge information of the vessel [30]. To this end, in this experiment,
the numbers of superpixels were set to be successively 400, 800, 1200, 1600, and
2000. The left column of Fig.8 shows the ROC curve of the proposed method
under these numbers, and the proposed method achieves the best result when the
superpixel number is 1200. As aforementioned at Sect. 2.2, multiscale analysis
was used to detect vessel more precisely when an image contains varying scales
of vessels. The right column of Fig. 8 shows the segmentation performance under
different superpixel levels when the number of superpixels was set to 1200, and it
can clearly be seen that the proposed method yields the best performance when
the number of levels is 3. In consequence, the number of superpixels at the other
two levels are % x 1200 = 400, and % x 1200 = 800.
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5 Conclusions

In this paper, we have presented a new framework for vessel segmentation, which
exploits the advantages of non-local total variation based Retinex model for
intensity inhomogeneity correction, and superpixel-based line operator for vessel
segmentation. Quantitative evaluations on publically-available datasets showed
that, compared to established methods, the proposed method achieves competi-
tive vessel segmentation performance. In particular, it shows better performance
in handling small, bifurcation, and crossover vessels, even in the case of poor
contrast. It has the potential to become a powerful tool for quantitative analysis
of vasculature for the management of a wide range of diseases.

Acknowledgments. This work was supported by National Science Foundation Pro-
gram of China (61601029, 61602322), China Association for Science and Technology
(2016QNRCO001), and National Key Research and Development Program of China
(2016 YFB0401202).
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