
Chapter 2
Stein Manifolds

This chapter is a brief survey of the theory of Stein manifolds and Stein spaces,
with emphasis on the results that are frequently used in this book. After the ini-
tial developments by Karl Weierstrass, Bernhard Riemann, Fritz Hartogs, Euge-
nio E. Levi, Karl Reinhardt, Hellmuth Kneser, Henri Cartan, Peter Thullen and many
others, the main contributions were made in the period 1942–1965 by Kiyoshi Oka,
by the French school around Henri Cartan including Pierre Dolbeault, Alexander
Grothendieck and Jean-Pierre Serre, and by the Münster school founded by Heinrich
Behnke and including Karl Stein, Hans Grauert, Reinhold Remmert and Friedrich
Hirzebruch. In 1942, Oka [444, Chap. VI] published the first solution to the Levi
problem on two dimensional domains, while the year 1965 marks the publication
of Lars Hörmander’s fundamental paper [299] in which the ∂-equation was solved
by L2-methods. Another contemporary work using the L2-approach on q-convex
manifolds is due to Aldo Andreotti and Edoardo Vesentini [28]. Together with the
works of Joseph J. Kohn [345, 346], these provide the basis for quantitative methods
in complex analysis. Comprehensive accounts of the theory of Stein manifolds and
Stein spaces are available in [260, 274, 300], while the article of Schumacher [490]
provides a historical survey. An introduction to topics in L2-theory can be found
in Ohsawa’s book [441], while his recent book [442] presents an L2 approach to
problems in several complex variables and differential and algebraic geometry.

2.1 Domains of Holomorphy

A basic notion in complex analysis is that of analytic continuation. Karl Weierstrass
knew already in 1841 that a holomorphic function in an annulus in the complex
plane C admits a development into what is now called a Laurent series. By estimat-
ing the coefficients in this series, Bernhard Riemann showed in his dissertation in
1851 that a function which is analytic in a punctured neighborhood of a point p ∈C

and is bounded near p extends to a holomorphic function in a neighborhood of p. It
was known early on that on any open relatively compact set D � C in C there ex-
ist holomorphic functions that do not extend holomorphically across any boundary
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Fig. 2.1 A Hartogs figure in
the bidisc

point of D. An explicit example on the disc D = {|z| < 1} is Kronecker’s function
f (z) = ∑∞

n=1 zn2
; further examples were given by Weierstrass.

A fundamental discovery was the phenomenon of simultaneous analytic con-
tinuation. In 1897 Adolph Hurwitz showed in his lecture at the first International
Congress of Mathematicians that a holomorphic function of two or more variables
does not have isolated singularities. More interesting examples of analytic continu-
ation were found by Friedrich Hartogs in 1906 [280]. The simplest Hartogs figure
is the domain H in the bidisc D

2 ⊂C
2 defined by

H =
{

(z,w) ∈ D
2 : |z| < 1

2
or |w| > 1

2

}

. (2.1)

(See Fig. 2.1.) Every function f ∈ O(H) extends to a holomorphic function on the
bidisc D

2. Indeed, pick a number 1
2 < c < 1 and consider the Cauchy integral

F(z,w) = 1

2π i

∫

|ζ |=c

f (z, ζ )

ζ − w
dζ, |z| < 1, |w| < c.

Then F is a holomorphic function on D =D× cD which agrees with f on H ∩ D.
(Since the disc {z}×cD is contained in H when |z| < 1

2 , we have f = F there by the
Cauchy integral formula; the equality elsewhere follows by the identity principle.)
This extends f to a holomorphic function on H ∪ D =D

2.
Fifteen years later, Karl Reinhardt [469] studied domains of convergence of

power series
∑

α∈Zn+ cαzα in several variables z = (z1, . . . , zn). It is immediate that
the domain of convergence is a union of open polydiscs centered at the origin. By
introducing the map φ:Cn → ({−∞} ∪R)n,

φ(z1, . . . , zn) = (
log |z1|, . . . , log |zn|

)

we see that each union of polydiscs is of the form Ω = φ−1(D) where D is a domain
in ({−∞}∪R)n such that (x1, . . . , xn) ∈ D and yj ≤ xj for j = 1, . . . , n implies that
(y1, . . . , yn) ∈ D. Reinhardt showed that Ω is the domain of convergence of a power
series if and only if the corresponding domain D ⊂ ({−∞} ∪ R)n is convex. This
gives analytic continuation of holomorphic functions from a complete Reinhardt
domain Ω ⊂C

n to the smallest logarithmically convex complete Reinhardt domain
Ω̃ ⊂C

n containing Ω .
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In 1932 Hellmuth Kneser reformulated Hartogs’ result into a more useful form
known as the Kontinuitätssatz: Given an embedded family of closed analytic discs
Dt ⊂ C

n (t ∈ [0,1]) such that D0 and all the boundaries bDt belong to a domain
Ω ⊂ C

n, every holomorphic function on Ω admits an analytic continuation along
this family to a neighborhood of the disc D1.

Hartogs’ discovery initiated research on ‘natural domains’ of holomorphic func-
tions. Analytic continuation in general yields a multi-valued function. Following
an idea of Riemann, multi-valued functions are considered as single-valued func-
tions on Riemann domains over Cn: a complex manifold X together with a locally
biholomorphic map π :X → C

n. The central concept became that of a domain of
holomorphy—a domain in C

n, or over Cn, with a holomorphic function that does
not extend holomorphically to any bigger domain, not even as a multi-valued func-
tion. (See Oka [444, Chap. II].) Much of the classical theory developed around the
problem of characterizing domains of holomorphy, and of constructing the envelope
of holomorphy Ω̃ of a given domain Ω ⊂ C

n—the largest domain such that every
holomorphic function on Ω extends to a holomorphic function on Ω̃ .

Another important discovery was made by Eugenio E. Levi in 1911 [393].
He investigated domains D � C

n with C2 boundaries. Let ρ:Cn → R be a C2

defining function for D, i.e., D = {z ∈ C
n : ρ(z) < 0} and dρz 	= 0 for every

z ∈ bD = {ρ = 0}. Levi noticed that, if for some boundary point p ∈ bD and
some vector v ∈ TC

pbD that is complex tangent to the boundary (i.e., such that
∑n

j=1
∂ρ
∂zj

(p)vj = 0) the Levi form Lρ,p(v) < 0 is negative, then holomorphic func-

tions on D continue to a neighborhood of p in C
n. The condition Lρ,p(v) < 0

implies that we can holomorphically embed a Hartogs pair (H,Dn) in C
n such

that H is mapped into D but the image of Dn contains a neighborhood of p. Levi
conjectured that any domain D ⊂ C

n as in the following definition is a domain of
holomorphy; this became known as the Levi problem.

Definition 2.1.1 A domain D = {ρ < 0} with a C2 defining function ρ such that
dρ 	= 0 on bD = {ρ = 0} is Levi pseudoconvex if Lρ,p(v) ≥ 0 for every p ∈ bD

and v ∈ TC
z bD. The domain D is strongly pseudoconvex if Lρ,p(v) > 0 for every

p ∈ bD and 0 	= v ∈ TC
pbD.

It is easily seen that the definition is independent of the choice of a defining
function. A strongly pseudoconvex domain is locally at each boundary point bi-
holomorphic to a piece of a strongly convex domain, and is osculated by a ball in
suitable coordinates. This is commonly known as Narasimhan’s lemma, although it
was already known to Kneser in 1936 [338].

An important characterization of domains of holomorphy was obtained by Henri
Cartan and Peter Thullen in 1932. To a compact set K in a complex space X we
associate its O(X)-convex hull, also called O(X)-hull:

K̂O(X) =
{
p ∈ X : ∣∣f (p)

∣
∣ ≤ max

x∈K

∣
∣f (x)

∣
∣, ∀f ∈O(X)

}
. (2.2)

If K is a compact set in C
n then K̂ = K̂O(Cn) is the polynomial hull of K .
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Definition 2.1.2 A compact set K in a complex space X is O(X)-convex if K =
K̂O(X). If X = C

n then such a set K is polynomially convex. A complex space X

is holomorphically convex if for every compact set K ⊂ X its O(X)-hull K̂O(X) is
also compact.

Theorem 2.1.3 (Cartan and Thullen [91]) A Riemann domain over Cn is a domain
of holomorphy if and only if it is holomorphically convex.

The hull of any compact set in a domain Ω ⊂ C
n is a bounded closed subset

of Ω , but it may fail to be compact as is seen in the Hartogs figure (2.1): Since
every f ∈ O(H) extends to a function in O(D2), the maximum principle shows
that the O(H)-hull of the circle {(z0,w) : |w| = 3

4 } is the intersection of the disc
{(z0,w) : |w| ≤ 3

4 } with Ω ; this set is not compact if 1
2 < |z0| < 1.

Theorem 2.1.3 is not difficult to prove. On the one hand, the derivatives of a holo-
morphic function f ∈ O(Ω) satisfy the same bounds on K̂O(Ω) as on K , and hence
the Taylor series of f centered around a point p ∈ K̂O(Ω) has the same domain of
convergence as for points in K . If Ω is a domain of holomorphy, it follows that for
any compact set K ⊂ Ω we have

dist(K̂O(Ω), bΩ) = dist(K,bΩ), (2.3)

so K̂O(Ω) is compact. Conversely, using holomorphic convexity one can easily con-
struct holomorphic functions tending to infinity along a given discrete sequence, so
Ω is a domain of holomorphy.

A more challenging problem was to find a geometric characterization of do-
mains of holomorphy. It follows from (2.3) that any closed holomorphic disc D

in a domain of holomorphy Ω satisfies dist(D,bΩ) = dist(bD,bΩ). This condi-
tion, which can be formulated in terms of Hartogs pairs (biholomorphic images of
a standard pair H ⊂ D

n, where H is a Hartogs figure in the polydisc D
n), is known

as Hartogs pseudoconvexity of Ω . Essentially it means that an analytic disc in Ω

with boundary in Ω must be contained in Ω . Oka showed that in such a case the
function Ω � z 
→ − log dist(z, bΩ) is plurisubharmonic on Ω . Clearly this func-
tion blows up at bΩ , so by adding the term |z|2 we get a strongly plurisubharmonic
exhaustion function on Ω . Similarly, Levi pseudoconvexity of a domain Ω � C

n

easily implies that the function − log dist(· , bΩ) is plurisubharmonic on Ω .
Could this be a characterization of domains of holomorphy?
This Levi problem was solved affirmatively by Oka in 1942 for domains in C

2

[444, Chap. VI]; the higher dimensional case followed ten years later by Oka [444,
Chap. IX], Bremermann [67], and Norguet [437]. In summary, we have the follow-
ing result [300, Theorem 2.6.7].

Theorem 2.1.4 The following conditions are equivalent for a domain Ω in C
n, or

a domain over Cn:

(a) Ω is a domain of holomorphy.
(b) Ω is Hartogs pseudoconvex.
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(c) The function − log dist(· , bΩ) is plurisubharmonic.
(d) There exists a (strongly) plurisubharmonic exhaustion function on Ω .

A domain Ω ⊂ C
n with C2 boundary is a domain of holomorphy if and only if it is

Levi pseudoconvex.

Every domain in (or over) Cn admits an envelope of holomorphy which can be
constructed by ‘pushing analytic discs’ countably many times. A construction of
the envelope in one step for domains in C

2, and also in any two dimensional Stein
manifold, was given by Jöricke in 2009 [314]. For results in this direction see also
Merker and Porten [414].

2.2 Stein Manifolds and Stein Spaces

The class of Stein manifolds was introduced by Karl Stein in 1951 [524].

Definition 2.2.1 A complex manifold X is a Stein manifold if the following condi-
tions hold:

(a) For every pair of distinct points x 	= y in X there is a holomorphic function
f ∈O(X) such that f (x) 	= f (y).

(b) For every point p ∈ X there exist functions f1, . . . , fn ∈ O(X), n = dimX,
whose differentials df1, . . . , dfn are C-linearly independent at p.

(c) X is holomorphically convex (see Definition 2.1.2).

Property (b) means that global holomorphic functions provide local charts at each
point. Property (c) implies that a Stein manifold X admits an exhaustion K1 ⊂ K2 ⊂
· · · ⊂ ⋃∞

j=1 Kj = X by compact O(X)-convex subsets such that Kj ⊂ K̊j+1 holds
for every j = 1,2, . . ..

Here are some basic properties and examples of Stein manifolds:

• An open set in C
n is Stein if and only if it is a domain of holomorphy. (This

follows from the Cartan-Thullen theorem; see Theorem 2.1.3.)
• A Stein manifold does not contain any compact complex subvariety of positive

dimension. (Apply axiom (a) and the maximum principle.)
• The Cartesian product X × Y of a pair of Stein manifolds is Stein.
• A closed complex submanifold X of CN is Stein. (Use coordinate functions re-

stricted to X. For the converse, see Theorem 2.4.1.)
• More generally, a closed complex submanifold of a Stein manifold is Stein.
• Every open Riemann surface is a Stein manifold (Behnke and Stein [50, 51], [260,

p. 134]).
• If X → Y is a holomorphic covering space and Y is Stein, then X is Stein. (This

is due to Stein [525].)
• If X → Y is a finite branched holomorphic covering, then X is Stein if and only

if Y is Stein (Gunning [272, p. 151]).
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• If E → X is a holomorphic vector bundle over a Stein base X, then the total space
E is also Stein.

• (The Serre problem.) There exist holomorphic fibre bundles over the disc or the
plane, with fibre C

2 and with transitions maps given by polynomial automor-
phisms of C2, whose total space is not Stein; see Theorems 8.3.12 and 8.3.13.

The notion of a Stein space was introduced by Grauert in 1955 [251]. The stan-
dard definition is the following one.

Definition 2.2.2 A second countable complex space X is said to be a Stein space
if it satisfies properties (a), (c) in Definition 2.2.1 and also

(b′) Every local ring OX,x is generated by functions in O(X).

Condition (b′) means that there is a holomorphic map X → C
N which embeds

a neighborhood of x as a local complex subvariety of CN . Grauert showed in [251]
that one gets an equivalent definition by keeping (c) and replacing (a) and (b) (resp.
(b′)) by the following property.

Definition 2.2.3 A complex space X is called K-complete if for every point x ∈ X

there is a holomorphic map f :X → C
N (with N = Nx ) such that x is an isolated

point of the fibre f −1(f (x)).

It is immediate that axiom (a) implies K-completeness. In summary:

Theorem 2.2.4 ([251]) A complex space X is a Stein space if and only if it is holo-
morphically convex and it satisfies one of the following two properties:

(i) Holomorphic functions separate points on X (axiom (a) in Definition 2.2.1).
(ii) X is K-complete in the sense of Definition 2.2.3.

For further characterizations of Stein spaces see [260, p. 152].

2.3 Holomorphic Convexity and the Oka-Weil Theorem

The following Oka-Weil theorem generalizes Runge’s theorem. See Theorem 2.6.8
for an analogous result concerning sections of coherent analytic sheaves.

Theorem 2.3.1 If X is a Stein space and K is a compact O(X)-convex subset
of X, then every holomorphic function in an open neighborhood of K can be ap-
proximated uniformly on K by functions in O(X).

Theorem 2.3.1 was proved for domains of holomorphy by Oka [444, Chap. I]
using his Oka lemma; see [300, Lemma 2.7.5]. It is an immediate consequence of



2.4 Embedding Stein Manifolds into Euclidean Spaces 51

the definition that an O(X)-convex set K can be approximated from the outside by
analytic polyhedra, i.e., by Stein open sets of the form

U = {
x ∈ X : ∣∣hj (x)

∣
∣ < 1, j = 1, . . . ,m

}
, h1, . . . , hm ∈ O(X).

By adding more functions, we can ensure that h = (h1, . . . , hm):X → C
m embeds

U properly into the polydisc Dm ⊂C
m. The key point proved by Oka is that for any

function f ∈O(U) there is a function g ∈ O(Dm) such that g◦h = f . (This is a spe-
cial case of the Oka-Cartan extension theorem, see Corollary 2.6.3.) By expanding
g in power series and approximating it by Taylor polynomials P ∈ C[z1, . . . , zm]
we get functions P ◦ h ∈O(X) approximating f on K .

Another proof of the Oka-Weil theorem can be given by the L2-methods for
solving the nonhomogeneous ∂-equation. We follows this approach in Sect. 2.8 to
prove a stronger parametric version of the Oka-Weil theorem, combined with the
Oka-Cartan extension theorem; see Theorem 2.8.4.

Definition 2.3.2 A domain Ω in a complex space X is Runge in X if every holo-
morphic function f ∈ O(Ω) can be approximated uniformly on compacts in Ω by
functions in O(X); equivalently, if the subalgebra {f |Ω : f ∈ O(X)} of O(Ω) is
dense in O(Ω) in the compact-open topology.

Theorem 2.3.3 ([300, p. 91]) A Stein domain Ω in a Stein space X is Runge in X

if and only if for every compact set K ⊂ Ω we have K̂O(Ω) = K̂O(X).

There exist several notions of ambient holomorphic convexity of a compact set
(see [534]); we shall use the following ones.

Definition 2.3.4 Assume that K is a compact set in a complex space X.

(i) K is a Stein compact if it admits a basis of Stein neighborhoods in X.
(ii) K is holomorphically convex if it admits an open Stein neighborhood Ω in X

such that K is O(Ω)-convex.

2.4 Embedding Stein Manifolds into Euclidean Spaces

An important characterization of Stein manifolds is that they are embeddable as
closed complex submanifolds of complex Euclidean spaces. It is an immediate
consequence of Definition 2.2.1 that for every relatively compact domain Ω in a
Stein manifold X there is a holomorphic map f :X → C

N for a big enough N

such that f |Ω :Ω → C
N is an injective holomorphic immersion. In 1956, Rem-

mert proved a substantially stronger result that every Stein manifold admits a
proper holomorphic embedding into some Euclidean space C

N [470]. In 1960–
1961, Bishop and Narasimhan independently proved that Remmert’s theorem holds
with N = 2 dimX+1. We now summarize these classical results. (For smooth man-
ifolds, part (a) is due to Whitney [571].)
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Theorem 2.4.1 ([58], [423, Theorem 5], [424])

(a) If X is a Stein manifold of dimension n, then the set of proper holomorphic maps
X → C

n+1 is dense in O(X)n+1, the set of proper holomorphic immersions
X → C

2n is dense in O(X)2n, and the set of proper holomorphic embeddings
X → C

2n+1 is dense in O(X)2n+1.
(b) If X is a Stein space of dimension n, then the set of holomorphic maps X →

C
2n+1 which are proper, injective, and regular (immersions) on the regular part

Xreg is dense in O(X)2n+1.
(c) If X is a Stein space of dimension n and of finite embedding dimension m,

then for N = max{n + m,2n + 1} the set of proper holomorphic embeddings
X ↪→C

N is dense in O(X)N .

More precise embedding theorems for Stein manifolds and Stein spaces are
proved in Sects. 9.3–9.5, and for Riemann surfaces in Sects. 9.10–9.11. Unlike The-
orem 2.4.1, those results depend on the Oka theory developed in Chaps. 5 and 6.

Since every real analytic manifold admits a Stein complexification [255], we get
the following consequence of Theorem 2.4.1 which answers a question of Whitney
[571, p. 645].

Corollary 2.4.2 ([255, Theorem 3]) Every real analytic manifold admits a proper
real analytic embedding into a Euclidean space RN .

Since Stein manifolds are complex submanifolds of Euclidean spaces, it is not
surprising that they can be approximated by affine algebraic manifolds. It was
proved by Stout [533] that any relatively compact domain in a Stein manifold is
biholomorphically equivalent to a domain in an affine algebraic manifold. (For the
real algebraic case, see Nash [428].) More precise algebraic approximation results
were obtained by Demailly, Lempert and Schiffman [117, 390] and by Lisca and
Matič [398] (see Theorem 10.7.1 on p. 506).

2.5 Characterization by Plurisubharmonic Functions

It is a fundamental fact that Stein manifolds and Stein spaces are characterized by
plurisubharmonicity (see Theorem 2.5.2). Quite often, the most efficient way to
show that a complex space is Stein is to find a strongly plurisubharmonic exhaus-
tion function on it. This is how Siu proved in 1976 [504] that a Stein subvariety
of any complex space has a basis of open Stein neighborhoods (see Theorem 3.1.1
on p. 66). Stein neighborhoods often allow us to transfer a problem on a complex
space to a more tractable problem on an ambient Euclidean space; Chap. 3 focuses
on such methods.

It follows from holomorphic convexity that every Stein space X is exhausted
by an increasing sequence of compacts K1 ⊂ K2 ⊂ · · · ⊂ ⋃∞

j=1 Kj = X such that
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Kj = K̂j and Kj ⊂ K̊j+1 for every j ∈ N. Using such exhaustions and axioms (a),
(b′), one can easily find strongly plurisubharmonic exhaustion functions of the form

ρ =
∞∑

j=1

|fj |2 : X →R+, fj ∈ O(X), j = 1,2, . . . .

By a more precise argument one obtains the following result on approximation of
compact O(X)-convex subsets of a Stein space by sublevel sets of strongly plurisub-
harmonic functions (see [300, Theorem 5.1.6, p. 117]).

Proposition 2.5.1 If K is a compact O(X)-convex set in a Stein space X, then for
every open set U ⊂ X containing K there exists a smooth strongly plurisubharmonic
function ρ:X → R such that ρ < 0 on K and ρ > 1 on X \ U . Furthermore, there
exists a plurisubharmonic exhaustion function ρ:X → R+ such that ρ−1(0) = K

and ρ is strongly plurisubharmonic on X \ K = {ρ > 0}.

Note that the function ρa :CN → R+ given by ρa = |z− a|2 is strongly plurisub-
harmonic on any complex subvariety X ⊂C

N ; if X is closed, then this is an exhaus-
tion function on X. Furthermore, if X is smooth, then ρa|X is a Morse function on
X for most choices of the point a ∈C

N .
These observations show that a Stein space admits plenty of smooth strongly

plurisubharmonic exhaustion functions. The following converse is the most useful
characterization of Stein manifolds and Stein spaces.

Theorem 2.5.2

(a) [128, 255] A complex manifold which admits a strongly plurisubharmonic ex-
haustion function is a Stein manifold.

(b) [163, 425] A complex space which admits a strongly plurisubharmonic exhaus-
tion function is a Stein space.

Furthermore, if ρ:X → R is a strongly plurisubharmonic exhaustion function, then
each sublevel set {x ∈ X : ρ(x) ≤ c} is O(X)-convex.

Corollary 2.5.3 For every compact set K in a Stein space X, the O(X)-hull of K

coincides with its plurisubharmonic hull:

K̂O(X) = K̂Psh(X).

Hence, every holomorphic function in a neighborhood of a compact Psh(X)-convex
set K = K̂Psh(X) is a uniform limit on K of functions in O(X).

The most efficient proof of Theorem 2.5.2 and Corollary 2.5.3 can be given by
the L2-method for solving nonhomogeneous ∂-equations with weights of the form
e−ρ with ρ ∈ Psh(X) (see e.g. [299, 300, 442]; see also Sect. 2.8 where we prove a
parametric version of the Oka-Weil approximation theorem).

Theorem 2.5.2 implies the following solution of the Levi problem.
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Corollary 2.5.4 Let X be a Stein space. If a domain Ω ⊂ X admits a plurisubhar-
monic exhaustion function ρ:Ω → R, then Ω is Stein. In particular, every Levi (or
Hartogs) pseudoconvex domain in a Stein space is Stein.

The notion of a holomorphically convex set and of a Stein compact was intro-
duced in Definition 2.3.4. Proposition 2.5.1 and Theorem 2.5.2 imply the following
characterization of these notions by plurisubharmonicity.

Proposition 2.5.5 A compact set K in a Stein space X is holomorphically con-
vex if and only if there exists a plurisubharmonic function ρ:U → R+ in an open
neighborhood U of K such that ρ−1(0) = K and ρ is strongly plurisubharmonic on
U \ K = {ρ > 0}.

The sets Ωc = {x ∈ U : ρ(x) < c} for small c > 0 then form a basis of Stein
neighborhoods of K such that K is O(Ωc)-convex.

Here is another useful sufficient condition for a set to be Stein compact.

Proposition 2.5.6 Let K be a compact set in a complex space X. Assume that there
exist a neighborhood U ⊂ X of K , a strongly plurisubharmonic function ρ:U →R,
and a weakly plurisubharmonic function τ :U → R+ such that K = {τ = 0}. Then,
K is a Stein compact.

Proof Fix an open neighborhood V � U of K . It is easy to find a fast growing con-
vex increasing function χ :R→ R such that the strongly plurisubharmonic function
φ = ρ +χ ◦τ :U →R satisfies φ|K < 0 and K ⊂ Vc = {φ < c} � V for some c > 0.
The domain Vc is then Stein by Theorem 2.5.2. �

The closure of a smooth weakly pseudoconvex domain D � C
n need not be a

Stein compact; an example is the worm domain [121]. For the existence of bounded
strongly plurisubharmonic exhaustion functions on weakly Levi pseudoconvex do-
mains see [120].

2.6 Cartan-Serre Theorems A & B

The famous Theorems A and B were proved in Cartan’s seminar in 1951–1954; see
[87, 90, 260]. It would be impossible to overstate the importance of these results for
the development of analytic and algebraic geometry.

Theorem 2.6.1 Let F be a coherent analytic sheaf on a Stein space X. Then:

(A) The stalk of Fx of F at any point x ∈ X is generated as an OX,x -module by
global sections of the sheaf F .

(B) Hp(X;F) = 0 for all p = 1,2, . . ..
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The corresponding results hold for every coherent algebraic sheaf over an affine
algebraic variety X ⊂CN (Serre [497, p. 237, Théorème 2]).

An analogue of Theorems A and B for coherent analytic sheaves with continuous
boundary values on strongly pseudoconvex domains was proved by Heunemann
[293] and Leiterer [385].

We recall the relevant notions; a comprehensive account is available in [261].
Let X be a complex space. An analytic sheaf (or OX-sheaf) on X is a sheaf F
of OX-modules; that is, a sheaf whose stalk Fx over any point x ∈ X is a mod-
ule over the local ring OX,x . The sheaf F is locally finitely generated if for every
point x0 ∈ X there exist an open neighborhood U ⊂ X and finitely many sections
f1, . . . , fk ∈ F(U) = Γ (U,F) whose germs at any point x ∈ U generate Fx as an
OX,x -module. The simplest example is Ok

X , the direct sum of k copies of the struc-
ture sheaf OX for any k ∈ N; this is the sheaf of holomorphic sections of the trivial
bundle X ×C

k → X.
An analytic sheaf is coherent if it is locally finitely generated and if for any

set of local sections f1, . . . , fk ∈ F(U) the corresponding sheaf of relations R =
R(f1, . . . , fk) is also locally finitely generated. The latter sheaf has stalks

Rx =
{

(g1,x , . . . , gk,x) ∈ Ok
X,x :

k∑

j=1

gj,xfj,x = 0

}

, x ∈ U. (2.4)

From the above description, we see that an analytic sheaf F over X is coherent if
and only if each point x ∈ X has an open neighborhood U ⊂ X and a short exact
sequence of analytic sheaf homomorphisms

Om
U

α−→ Ok
U

β−→ F |U −→ 0 (2.5)

where

β(g1,x , . . . , gk,x) =
k∑

j=1

gj,xfj,x .

Hence, β maps the standard basis sections ej = (0, . . . ,1, . . . ,0) of Ok
U onto the

generators fj of F |U and R = kerβ = imα is the sheaf of relations (2.4). If X is
a Stein space then a resolution (2.5) exists over any relatively compact open subset
U � X.

Here are the main examples of coherent sheaves on a complex space X:

• The structure sheaf OX (Oka [444, Chap. VII]; see also [261, p. 59] and [435]).
• The sheaf of ideals OA of a complex subvariety A in X (the Oka-Cartan coher-

ence theorem; [90, p. 631], [261, p. 84], [435]).
• A locally free analytic sheaf, i.e., a sheaf of holomorphic sections of a holomor-

phic vector bundle. In particular, we have the tangent sheaf TX and the cotangent
sheaf T ∗

X on a complex manifold X.
• The Whitney sum E ⊕F and the tensor product E ⊗F of coherent sheaves.
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• The sheaf Hom(E,F) of OX-homomorphisms E → F between a pair of coher-
ent analytic sheaves. In particular, the dual E∗ of a coherent analytic sheaf.

• If β:F → G is a homomorphism of coherent analytic sheaves, then the kernel
kerβ and the image imβ are coherent analytic sheaves. In summary, given a short
exact sequence of homomorphisms of OX-analytic sheaves

0 −→ E α−→ F β−→ G −→ 0,

if two sheaves are coherent then so is the third one [261, p. 236].
• The direct image of an OX-coherent sheaf by a proper holomorphic map X → Y

of complex spaces is a coherent OY -sheaf (Grauert’s coherence theorem; see
[261, p. 207]).

Each coherent analytic sheaf F can be represented as the sheaf of germs of fi-
brewise linear holomorphic functions on a linear space π :L → X [158]. More pre-
cisely, there is a contravariant equivalence between the category of coherent analytic
sheaves and the category of linear spaces such that locally free sheaves correspond
to vector bundles. The sheaf of germs of holomorphic sections X → L of any linear
space is also coherent [158, p. 53, Corollary].

Given a coherent analytic sheaf F on a complex space X, the O(X)-module
F(X) = Γ (X,F) of all global sections is endowed with a Fréchet space topology
(the topology of uniform convergence on compacts in X) such that for every point
x ∈ X the natural restriction map F(X) 
→ Fx is continuous (see [260, Theorem 5,
p. 167]). The topology on the stalks Fx is the sequence topology (cf. [259, p. 86ff]).
In particular, F(X) is a Baire space.

We now mention some applications of Theorems A and B; for more on this sub-
ject, see [496] and [260, Chap. V].

Corollary 2.6.2 Let β:F → G be an epimorphism of analytic sheaves over a Stein
space X. If the kernel E = kerβ is coherent, then the induced map on sections
F(X) → G(X), f 
→ β(f ) is surjective.

Proof Since H 1(X;E) = 0 by Theorem 2.6.1, the conclusion follows from the exact
cohomology sequence F(X) → G(X) → H 1(X;E) = 0. �

Applying Corollary 2.6.2 to the exact sequence

0 −→ JA −→ OX −→ OX/JA −→ 0

where A is a closed complex subvariety of X, we obtain

Corollary 2.6.3 (Oka-Cartan extension theorem) Every holomorphic function on
a closed complex subvariety of a Stein space X extends to a holomorphic function
on X.

Corollary 2.6.4 (Cartan’s division theorem) If F is a coherent analytic sheaf on a
Stein space X and if f1, . . . , fk ∈F(X) generate each stalk Fx (x ∈ X), then every
section f ∈F(X) is of the form f = ∑k

j=1 gjfj for some gj ∈O(X).
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Proof Consider the exact sequence 0 → R→ Ok β→F → 0 as in (2.5). Since R=
kerβ is coherent, the conclusion follows from Corollary 2.6.2. �

Corollary 2.6.5 Given a short exact sequence 0 → E → F β→ G → 0 of coherent
analytic sheaves on a Stein space such that G is locally free, there exists a sheaf
homomorphism φ:G →F such that β ◦ φ = IdG .

Proof Consider the induced exact sequence

0 −→Hom(G,E) −→ Hom(G,F)
β−→ Hom(G,G) −→ 0.

Surjectivity of β is due to G being locally free. By Theorem B we have
H 1(X;Hom(G,E)) = 0, and hence β is surjective also on the level of sections.
Hence, IdG lifts to a homomorphism φ:G →F with β ◦ φ = IdG . �

The following is a special case of Corollary 2.6.5.

Corollary 2.6.6 If E′ is a holomorphic vector subbundle of a holomorphic vector
bundle E over a Stein space X, then there exists a holomorphic vector subbundle
E′′ of E such that E = E′ ⊕ E′′ is a holomorphic direct sum.

Theorem 2.6.7 On any Stein manifold X, the Dolbeault cohomology groups van-
ish: H

p,q

∂
(X) = 0 for all p ≥ 0, q ≥ 1.

Proof The sheaf Ωp of holomorphic p-forms on X admits a resolution

0 → Ωp ↪→ Ep,0
∂−→ Ep,1

∂−→ Ep,2 · · · ∂−→ Ep,n −→ 0.

Since the sheaves Ep,q of smooth (p, q)-forms on X are fine, their cohomology
vanishes. Leray’s theorem implies that H

p,q

∂
(X) ∼= Hq(X;Ωp). Since the sheaf Ωp

is coherent analytic, these groups are zero by Cartan’s Theorem B. �

Another proof of Theorem 2.6.7 is obtained by Hörmander’s L2 theory.
Serre proved that each element of a de Rham cohomology group Hp(X;C) (p =

1,2, . . . ,dimX) of a Stein manifold is represented by a closed holomorphic p-form
on X (see [496, Theorem 1], [260, p. 155]). The de Rham cohomology of an affine
algebraic manifold is represented by algebraic forms (see Grothendieck [270]).

We have the following approximation theorem for sections of coherent analytic
sheaves over Stein spaces (see e.g. [260, p. 170]).

Theorem 2.6.8 (Oka-Weil theorem for coherent analytic sheaves) Let F be a co-
herent analytic sheaf on a Stein space X. If K is a compact O(X)-convex set in X,
then any section of F over an open neighborhood of K can be approximated uni-
formly on K by sections in F(X). More precisely, if sections f1, . . . , fm ∈ F(X)

generate every stalk Fx , x ∈ K , then every section of F over an open neighborhood
of K can be approximated uniformly on K by sections of the form

∑m
j=1 gjfj for

some gj ∈O(X).
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Proof Assume that f is a section of F over an open neighborhood Ω ⊂ X of K . We
may assume that Ω is Stein and relatively compact in X. Since a coherent analytic
sheaf F is locally finitely generated, there exist sections f1, . . . fm ∈ F(X) which
generate every stalk Fx for x ∈ Ω . By Corollary 2.6.4 we have f = ∑m

j=1 hjfj for
some functions h1, . . . , hm ∈ O(Ω). By Theorem 2.3.1 we can approximate every
hj uniformly on K by a function gj ∈ O(X). The section F = ∑m

j=1 gjfj ∈ F(X)

then approximates f on K . �

2.7 The ∂-Problem

The ∂-problem asks for a solution of the equation ∂u = f for a given ∂-closed
form f . By Theorem 2.6.7, this problem is always solvable on a Stein manifold.
A more direct approach, which also gives L2 estimates of solutions, is provided
by Hörmander’s theory [299, 300]; see also Andreotti and Vesentini [28], Kohn
[345, 346], and the monographs [95, 442].

We shall frequently use the following result for (0,1)-forms. Let dλ denote the
Lebesgue measure on C

n =R
2n.

Theorem 2.7.1 ([300, Theorem 4.4.2, p. 94]) Let Ω be a pseudoconvex (Stein)
domain in C

n and φ be a plurisubharmonic function in Ω . For every (0,1)-form
f = ∑

fj dz̄j such that fj ∈ L2
loc(Ω) and ∂f = 0 (in the weak sense) there exists

u ∈ L2
loc(Ω) such that

∂u = f and
∫

Ω

|u|2
(1 + |z|2)2

e−φdλ ≤
∫

Ω

n∑

j=1

|fj |2e−φdλ.

If f is smooth then so is u.

By taking Ω bounded and φ = 0 we get the estimate

∂u = f and
∫

Ω

|u|2dλ ≤ C

∫

Ω

∑

j

|fj |2 dλ, (2.6)

where the constant C depends on the radius of Ω and on the dimension n. The
analogous results hold on relatively compact domains in Stein manifolds.

To pass from L2 to Ck estimates, one needs the following well-known lemma
which follows from the Bochner-Martinelli formula [215, Lemma 3.2].

Lemma 2.7.2 (Interior elliptic regularity estimates) Let Bn denote the open unit
ball in Cn. For each s ∈ Z+ there is a constant cs > 0 such that if f ∈ Cs+1(rB) for
some r > 0 and α ∈ Z

2n+ is a multi-index with |α| = s then

cs

∣
∣∂αf (0)

∣
∣ ≤ r−n−s‖f ‖L2(rB) +

∑

|β|≤s

r |β|+1−s
∥
∥∂β(∂f )

∥
∥

L∞(rB)
.



2.8 Cartan-Oka-Weil Theorem with Parameters 59

In particular, we have the sup-norm estimate

c0
∣
∣f (0)

∣
∣ ≤ r−n‖f ‖L2(rB) + r‖∂f ‖L∞(rB). (2.7)

On bounded strongly pseudoconvex domains in Stein manifolds, the ∂-equation
can also be solved by means of integral formulas with holomorphic kernels. This
kernel method gives optimal Hölder estimates. The first results of this type were
obtained by Henkin [288] and R. de Arellano (see [289]). We shall use the following
result due to Range and Siu [467] and Lieb and Range [395, Theorem 1]; see also
[396, 397], [416, Theorem 1′], and [394].

If D is a domain in a complex manifold X, we denote by Cl
p,q(D) the space of

(p, q)-forms whose coefficients (in any local chart on X) are of class Cl (D), i.e.,
l times continuously differentiable. If D has piecewise C1 boundary then Cl

p,q(D̄)

stands for the space of (p, q)-forms on D̄ of class Cl (D̄). If l = k + α with k ∈ Z+
and 0 < α ≤ 1, then Cl = Ck,α denotes the Hölder space.

Theorem 2.7.3 Given a relatively compact strongly pseudoconvex domain D in a
Stein manifold, there exists a linear operator T :C0

0,1(D) → C1/2(D) such that, if

f ∈ C0
0,1(D̄) ∩ C1

0,1(D) and ∂f = 0 in D then

∂(Tf ) = f and ‖Tf ‖C1/2(D̄) ≤ cD ‖f ‖C0
0,1(D̄).

The constant cD can be chosen uniform for all domains sufficiently C2-close to D.
If D has boundary of class C� for some � ∈ {2,3, . . .} then there exists a linear
operator T :C0

0,1(D) → C0(D) satisfying the following properties:

(i) If f ∈ C0
0,1(D̄) ∩ C1

0,1(D) and ∂f = 0 then ∂(Tf ) = f .

(ii) If f ∈ C0
0,1(D̄) ∩ Cr

0,1(D) for some r ∈ {1, . . . , �) then

‖Tf ‖Cl,1/2(D̄) ≤ Cl,D‖f ‖Cl
0,1(D̄), l = 0,1, . . . , r. (2.8)

Although these results are stated in the original papers for domains with C∞
boundaries, one only needs C� boundary to get estimates up to order �; this is im-
plicitly contained in the paper by Michel and Perotti [416].

2.8 Cartan-Oka-Weil Theorem with Parameters

In this section we prove a parametric version of the classical Oka-Cartan extension
theorem combined with the Oka-Weil approximation theorem; see Theorem 2.8.4.
We begin with the following simple version on C

n.

Proposition 2.8.1 (The Oka-Weil theorem with parameters on C
n) Let K be a

compact polynomially convex set in C
n and let U ⊂ C

n be an open set con-
taining K . Assume that P is a compact Hausdorff space and f :P × U → C is



60 2 Stein Manifolds

a continuous function such that fp = f (p, · ):U → C is holomorphic for every
p ∈ P . Given ε > 0 there exists a continuous function F :P × C

n → C such that
Fp = F(p, · ):Cn →C is holomorphic for every p ∈ P and

sup
z∈K, p∈P

∣
∣Fp(z) − fp(z)

∣
∣ < ε.

Proof Since the set K is polynomially convex, Proposition 2.5.1 gives a smooth
strongly plurisubharmonic function φ:Cn → R such that φ < 0 on K and φ > 0 on
C

n \ U . Let h:R → R+ be a smooth convex increasing function such that h(t) = 0
for t ≤ 0 and h is positive and strictly increasing on t > 0. Then, the function
ψ = h ◦ φ:Cn → [0,∞) is smooth plurisubharmonic, it vanishes in an open neigh-
borhood U0 of K , and is positive on C

n \ U . Pick a neighborhood U1 � U of K

such that

ψ ≥ c > 0 on U \ U1 (2.9)

for some positive constant c > 0. Choose a smooth function χ :Cn → [0,1] such
that χ = 1 on U1 and suppχ ⊂ U . For every p ∈ P set

αp = ∂(χfp) = fp ∂χ =
n∑

i=1

αi,pdz̄i .

Note that αp is a smooth (0,1)-form on C
n with compact support contained in

U \ U1 and depending continuously on p ∈ P . By Theorem 2.7.1 there exists for
every t > 0 a smooth solution up,t :Cn → C of the equation ∂up,t = αp satisfying
the estimate

∫

Cn

|up,t |2
(1 + |z|2)2

e−tψdλ ≤
∫

U

n∑

i=1

|αi,p|2e−tψdλ.

Moreover, since Hörmander’s solution to the ∂-equation is given by a linear solu-
tion operator, we can choose solutions depending continuously on the parameters
p ∈ P and t ∈ (0,+∞). In view of (2.9), the right hand side of the above estimate
approaches 0 when t → +∞. Since the weight ψ vanishes in U0, it follows that

∫

U0

|up,t |2
(1 + |z|2)2

dλ → 0 as t → +∞

and the convergence is uniform in p ∈ P . Note that up,t is a holomorphic function
on U0 since αp vanishes there. By the interior elliptic estimate (see Lemma 2.7.2
and in particular the estimate (2.7)) it follows that

lim
t→+∞ sup

z∈K,p∈P

∣
∣up,t (z)

∣
∣ = 0.

Hence, for a sufficiently big t > 0 the function

Fp = χfp − up,t : Cn →C, p ∈ P

satisfies the proposition. �
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Before proving the general result, we need some preparations. The first one is
Michael’s Convex Selection Theorem [415] which we now present.

Given topological spaces P and B and a set-valued map φ:P → 2B whose values
are subsets of B , we say that a map f :P → B is a selection of φ if f (p) ∈ φ(p)

for every p ∈ P . Such φ is said to be lower semicontinuous if for every open set
V ⊂ B the set {p ∈ P :φ(p) ∩ V 	=∅} is open in P . The following is a special case
of Michael’s theorem; a similar result was proved by Cartan [88, Appendix]. We do
not prove it here.

Theorem 2.8.2 ([415]) Assume that B is a Banach space, P is a paracompact
Hausdorff space, and φ:P → 2B is a lower semicontinuous set-valued map such
that φ(p) is a nonempty closed convex subset of B for every p ∈ P . For every
closed subset P0 of P and every continuous selection f :P0 → B of φ|P0 there
exists a continuous selection F :P → B of φ extending f .

Denote by H∞(D) the Banach space of all bounded holomorphic functions on a
complex space D. We need the following lemma [218, Lemma 3.1] on the existence
of a linear bounded extension operator.

Lemma 2.8.3 Assume that X is a reduced Stein space, X′ is a closed complex
subvariety of X and Ω � Ω ′ are relatively compact Stein domains in X. There
exists a bounded linear extension operator

S:H∞(
X′ ∩ Ω ′) → H∞(Ω)

such that (Sf )(x) = f (x) for every f ∈ H∞(X′ ∩ Ω ′) and x ∈ X′ ∩ Ω .

Proof We replace X by a relatively compact Stein subdomain containing Ω
′

and
embed it as a closed complex subvariety in a Euclidean space C

n. Since every Stein
domain D � X is the intersection D = X ∩ D̃ of X with an open Stein domain
D̃ � C

n, it suffices to prove the lemma for the case X =C
n.

Since Ω ′ is Stein, the restriction operator R:O(Ω ′) → O(X′ ∩ Ω ′) is surjective
by Cartan’s extension theorem (Corollary 2.6.3). Choose a domain Ω1 ⊂ C

n such
that Ω � Ω1 � Ω ′. By the open mapping theorem for Fréchet spaces, the image
by R of the set {f ∈O(Ω ′):‖f ‖L∞(Ω1) < 1} contains a neighborhood of the origin
in O(X′ ∩ Ω ′). This means that there are a relatively compact subset Y � X′ ∩ Ω ′
and a constant M < +∞ such that every h ∈ O(X′ ∩ Ω ′) extends to a function
h′ ∈O(Ω ′) satisfying the estimate

∥
∥h′∥∥

L∞(Ω1)
≤ M‖h‖L∞(Y ).

We may assume that Ω1 ∩X′ ⊂ Y . The restriction h′|Ω1 , being bounded, belongs to
the Bergman space H = L2(Ω1)∩O(Ω1). Note that H is a Hilbert space containing
the closed subspace H0 = {f ∈ H :f |X′ = 0}.

Let H1 be the orthogonal complement of H0 in H . Projecting h′ orthogonally
to H1 gives a function h̃ ∈ H1 such that h̃|X′∩Ω1 = h|X′∩Ω1 and h̃ has the minimal
L2(Ω1)-norm among all L2-holomorphic extensions of h to Ω1. Clearly, such h̃ is
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unique, and S:h → h̃ gives a bounded linear operator S:H∞(X′ ∩ Ω ′) → L2(Ω1).
By restricting h̃ to Ω � Ω1 we get a bounded linear extension operator S:H∞(X′ ∩
Ω ′) → H∞(Ω). �

Theorem 2.8.4 (Cartan-Oka-Weil theorem with parameters) Let X be a reduced
Stein space. Assume that K is an O(X)-convex subset of X, X′ is a closed complex
subvariety of X, and P0 ⊂ P are compact Hausdorff spaces. Let f :P × X → C be
a continuous function such that

(a) for every p ∈ P , f (p, · ):X → C is holomorphic on a neighborhood of K (in-
dependent of p) and f (p, · )|X′ is holomorphic, and

(b) f (p, · ) is holomorphic on X for every p ∈ P0.

Then there exists for every ε > 0 a continuous function F :P × X → C satisfying
the following conditions:

(i) Fp = F(p, · ) is holomorphic on X for all p ∈ P ,
(ii) |F − f | < ε on P × K , and

(iii) F = f on (P0 × X) ∪ (P × X′).

The same result holds for sections of any holomorphic vector bundle over X.

Proof It suffices to show that a function F with the stated properties exists on
P × D, where D � X is any given Stein Runge domain in X containing K ; the
result then follows by an obvious induction over an exhaustion of X. Fix such a
domain D and replace X by a relatively compact Stein neighborhood of D̄. By The-
orem 2.4.1 we can embed this new X as a closed complex subvariety of a Euclidean
space C

n. Choose bounded pseudoconvex Runge domains Ω � Ω ′ � C
n such that

D̄ ⊂ Ω ∩ X. Lemma 2.8.3 furnishes bounded linear extension operators

S:H∞(
X ∩ Ω ′) −→ H∞(Ω), S′:H∞(

X′ ∩ Ω ′) −→ H∞(Ω)

such that

S(g)|X∩Ω = g|X∩Ω, S′(g)|X′∩Ω = g|X′∩Ω

holds for every g is the respective space. With fp as in the theorem we set

hp = S(fp|X∩Ω ′) − S′(fp|X′∩Ω ′) ∈ H∞(Ω), p ∈ P0.

Then, hp belongs to the closed subspace of H∞(Ω) defined by

H∞
X′ (Ω) = {

h ∈ H∞(Ω) : h = 0 on X′ ∩ Ω
}
.

Since these are Banach spaces, Theorem 2.8.2 furnishes a continuous extension of
the map P0 → H∞

X′ (Ω), p → hp , to a map P � p → h̃p ∈ H∞
X′ (Ω). Set

Gp = h̃p + S′(fp|X′∩Ω ′) ∈ H∞(Ω), p ∈ P.

We then clearly have

Gp|X′∩Ω = fp|X′∩Ω (∀p ∈ P), Gp|X∩Ω = fp|X∩Ω (∀p ∈ P0).
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Thus, the family of holomorphic functions Gp|X∩Ω :X ∩ Ω →C (p ∈ P) satisfies
conditions (i) and (iii) in the theorem, but not necessarily the approximation condi-
tion (ii). However, by continuity there is a small open neighborhood P ′

0 ⊂ P of P0

such that condition (ii) does hold for p ∈ P ′
0.

To achieve condition (ii) for all p ∈ P , we proceed as follows. Choose functions
ξ1, . . . , ξm ∈ O(Cn) which generate the sheaf of ideals of the subvariety X′ ⊂ C

n

on the subset Ω ′ � C
n. By using Lemma 2.8.3 in exactly the same way as above,

we can extend the family of holomorphic functions {fp}p∈P from an open neigh-
borhood of the set K in X to an open Stein Runge domain Ω0 ⊂ C

n such that
K ⊂ Ω0 � Ω . As before, we keep their values on the subvariety X′ ∩ Ω0, so we
have Gp = fp on X′ ∩ Ω0. Cartan’s division theorem (see Corollary 2.6.4) gives

Gp = fp +
m∑

i=1

gi,pξi (2.10)

where gi,p ∈ O(Ω0) for p ∈ P and i = 1, . . .m.
We now show that, after shrinking their domain slightly, the families gi,p can be

chosen to depend continuously on p ∈ P .
The Oka-Cartan extension theorem (Corollary 2.6.3) shows that the map

Φ:O(Ω0)
m → OX′(Ω0) = {

h ∈O(Ω0) : h|X′ = 0
}
,

Φ(g1, . . . , gm) =
m∑

i=1

giξi
(2.11)

is surjective. Choose a Stein domain Ω1 ⊂ C
n such that K ⊂ Ω1 � Ω0. Consider

the Hilbert spaces

H = L2(Ω1) ∩O(Ω1), H ′ = {h ∈ H : h|X′ = 0}.
Note that (2.11) defines a linear Hilbert space map Φ:H → H ′. Clearly, the func-
tions (Gp − fp)|Ω1 (p ∈ P) belong to H ′. Let gp = (g1,p, . . . , gm,p) ∈ H be the
unique preimage of (Gp − fp)|Ω1 which is orthogonal to kerΦ; this family is con-
tinuous in p ∈ P . Now, apply Proposition 2.8.1 to approximate gp by a continuous
family of holomorphic maps g̃p = (g̃1,p, . . . , g̃m,p) ∈ O(Ω)m (p ∈ P) and set

G̃p = Gp −
m∑

i=1

g̃i,pξi ∈O(Ω), p ∈ P.

Comparing with (2.10) we see that, if the approximation of g by g̃ is close enough,
the family G̃p satisfies conditions (i)–(iii), except that G̃p need not agree with fp

for p ∈ P0. This is corrected by choosing a continuous function χ :P → [0,1] which
equals 1 on P0 and has support contained in P ′

0, and setting

Fp = χ(p)Gp + (
1 − χ(p)

)
G̃p ∈ O(Ω), p ∈ P.

The family Fp|X∩Ω then satisfies Theorem 2.8.4 on the domain D ⊂ X. This com-
pletes the proof for functions.
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Suppose now that E → X is a holomorphic vector bundle over X and fp (p ∈ P)

is a continuous family of sections of E. As before, it suffices to find a family of sec-
tions {Fp}p∈P satisfying the stated conditions on any given relatively compact open
Stein domain U � X; the proof is then completed by an induction over an exhaus-
tion of X. Replacing X by such a subset, the bundle E → X is finitely generated,
and hence there exists a surjective holomorphic vector bundle map Ψ :X×C

N → E

for some N ∈ N. Let E′ = kerΨ . By Corollary 2.6.6 we can embed E as a holo-
morphic vector subbundle of X × C

N such that X × C
N = E ⊕ E′, and there is

a holomorphic vector bundle projection φ:X × C
N → E with kerφ = E′. Hence,

sections of E can be seen as maps X → C
N . Applying the already proved result for

functions componentwise and projecting the resulting map F :P × X → C
N back

to E by using φ completes the proof. �
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