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1. Introduction
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Central notions of Oka theory are Oka manifolds and Oka mapsﬂ These are complex
manifolds and holomorphic maps which enjoy natural flexibility properties for holomorphic
maps from Stein manifolds, akin to those which hold for maps from Stein manifolds to
Euclidean spaces but taking into account possible topological obstructions. In particular,
Oka manifolds are the most natural targets of holomorphic maps from Stein spaces, and
many complex analytic problems which can be formulated in terms of such maps have only
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topological obstructions. Oka theory is primarily an existence theory, while holomorphic
rigidity (in particular, Kobayashi hyperbolicity) theory is essentially a holomorphic
obstruction theory. Many of the long-standing complex analytic problems lie in the grey
area between these two theories where there are no obvious obstructions for the existence
of solutions and no methods for solving them either.

The state of the art of Oka theory up to the first half of the year 2017 is summarized in
[28, Chapters 5-7] and the older surveys [27,|34]]). A brief historical account is included in
Section [2] of the present paper for the benefit of readers new to the field. In the remainder
we survey the main new developments since 2017. The paper will be updated periodically,
so that together with [28]] it will maintain presenting the current state of the theory.

The most significant new contributions are due to Yuta Kusakabe [152} 5354} 156} 155, 157]]
and are described in Sections His results provide further conceptual unification of the
theory and give several new constructions and examples of Oka manifolds and Oka maps.
Although the general theory has been fairly well developed by 2010, the subject suffered
from lack of examples. This is no longer the case, at least for noncompact manifolds.
Indeed, Kusakabe showed that the complement C™\ K of any compact polynomially convex
subset K C C™ for n > 1 is an Oka manifold (see Theorem [3.1)); the same holds for
complements of closed rectifiable curves in C" (n > 2) and of several closed noncompact
sets. Analogous results hold for any Stein manifold having Varolin’s density property in
place of C"; such manifolds share many complex analytic properties with Euclidean spaces
(see [5,131,41,159]).

Progress was made in the study of Oka theory for regular algebraic maps from affine
algebraic varieties into algebraic manifolds, mainly by Larusson and Truong [66] and
Kusakabe [55] 58]; see Section[6]

Kutzschebauch, Larusson and Schwarz [60] took steps in the development of an
equivariant version of modern Oka theory, and they introduced the notion of a G-Oka
manifold where G is to a reductive complex Lie group. On the same topic, Kusakabe
(see [155, Appendix]) provided a characterization of (G-Oka manifolds by a G-equivariant
version of his new characterization of Oka manifolds by condition Ell;; Deﬁnition (b).

In another direction, Luca Studer extended modern Oka theory to certain Oka pairs of
sheaves [74], thereby generalizing the classical work of Forster and Ramspott [[17]]. He also
developed an abstract homotopy theorem based on Oka theory [[73]]. See Section

Finally, new approximation theorems of Carleman and Arakelian type for maps to Oka
manifolds were proved by Brett Chenoweth [[12]] and the author [30]; see Section

There were important developments in other fields of analysis and geometry closely
intertwined with Oka theory. One of them is Andersén-Lempert theory which concerns
Stein manifolds with big groups of holomorphic automorphisms. This subject, which
is treated in [28, Chapter 4], has a major impact on Oka theory, both in the proofs of
fundamental results and by way of providing examples. A recent survey from 2019 is
due to Frank Kutzschebauch [59]. Important results on parametric jet-interpolation by
automorphisms were proved by Ugolini [75] and Ramos-Peon and Ugolini [70]. New
notions of tame sets in complex manifolds were introduced and studied by Andrist and
Ugolini [[7] and Winkelmann [78,[77]. A detailed review of this topic is not included here.

Results and methods of Oka theory have lately influenced several other fields of
analysis and geometry. Foremost among them are applications of Oka-theoretic methods
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in the study of minimal surfaces in Euclidean spaces; see the survey by Alarcén and
the author [2]. Another one is the study of holomorphic Legendrian curves in complex
contact manifolds; see [3, [1, 14, 36]]. Recently these results were applied to constructions
of superminimal surfaces in self-dual four-dimensional Einstein manifolds [32} [33]] by
exploring the connection, provided by the theory of twistor spaces, between this class of
Riemannian four-manifolds and three-dimensional complex contact manifolds.

These applications might indicate the beginning of a new development of Oka theory
towards the study of the Oka principle for holomorphic partial differential relations. The
analogy with the title of Gromov’s monograph [47] is intentional, for I have in mind a range
of complex analytic problems where not only values of maps, but also their jets must satisfy
certain conditions. This includes holomorphic differential equations along with a variety
of open differential relations. Both applications mentioned above, to minimal surfaces and
directed holomorphic curves (such as Legendrian curves), are of this type. The study of
regular holomorphic maps, including immersions, submersions and locally biholomorphic
maps, also fits in this framework. In particular, the structure of the semigroup of locally
biholomorphic self-maps of Euclidean spaces C" remains a complete mystery.

2. A brief history of Oka theory up to 2017

Oka theory evolved from classical works of Kiyoshi Oka [69] (1939), Hans Grauert [43]]
(1958), and Mikhail Gromov [47) 48], the main contributors up to 1989 when Gromov’s
paper [48] appeared. The principal motivation behind the works of Oka and Grauert
was to understand the classification of holomorphic principal bundles and their associated
bundles (in particular, vector bundles) on Stein spaces, and their main results were that
the holomorphic classification of such bundles agrees with the topological one. This early
period in Oka-Grauert theory is summarized by the following heuristic formulation of the
Oka-Grauert principle found on p. 145 of the monograph [46] by Grauert and Remmert:

Analytic problems on Stein manifolds which can be cohomologically formulated have
only topological obstructions.

Problems of this type often reduce to properties of maps to classifying spaces, and hence
it became of interest to understand the class of complex manifolds having the property
that every continuous map from a Stein manifold or a Stein space to such a manifold
can be deformed to a holomorphic map, which some natural additions. It also became
clear that for many interesting geometric applications, such as the problem of the minimal
embedding dimension for Stein manifolds into Euclidean spaces considered in the early
1970’s by Forster [[16] and Eliashberg and Gromov [49], classical methods did not suffice.
This eventually led to the broader perspective initiated by Gromov in his 1986 monograph
[47] and the 1989 paper [48]]. He replaced the cohomological interpretation of the problem
by a homotopy theoretic one and proposed several sufficient conditions in terms of the
existence of dominating holomorphic sprays. His 1989 paper remains a source of new ideas
even after three decades. One of the first major applications of these new methods was a
solution of the optimal embedding problem for Stein manifolds by Eliashberg and Gromov
in 1992 [13]], with an improvement due to Schiirmann [72]]; see the exposition in [28, Secs.
9.3-9.4]. Numerous other applications are described in [28, Chaps. 8—10].

The first steps to understand, explain and develop Gromov’s ideas outlined in [48] were
taken by Jasna Prezelj and myself in the papers [37,138,139,|18]] published during 2000-2002.
These paper in particular contain detailed proofs and some extensions of the main results
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from [48]. The study of the Oka principle for sections of branched holomorphic maps
was initiated in [[19]. At the same time, Finnur Lérusson started developing an abstract
homotopy-theoretic approach which culminated in his construction of a model category for
Oka theory; see [61} 162, 163], [27, Appendix], and [28l Sect. 7.5].

Subsequent developments focused on finding analytic sufficient conditions for the Oka
principle which would also be necessary, or at least close to necessary. An important
step was the author’s paper [22] from 2006, showing that many natural Oka properties
of a complex manifold Y are implied by a simple Runge approximation property for
holomorphic maps from convex sets in Euclidean spaces C™ to Y by entire maps C" — Y;
see Definition [2.1] In [22] and the subsequent papers [20)}, 23| 25] the theory was developed
to a stage when it became clear that most Oka-type properties considered in the literature,
including their parametric versions, are pairwise equivalent. This motivated the following
definition of Oka manifolcﬂ in [23]] which was later adopted in [28], Definition 5.4.1].

Definition 2.1. A complex manifold Y is an Oka manifold if every holomorphic map from
a neigbourhood of a compact convex set K in a Euclidean space C" (for any n € N) into Y
is a uniform limit on K of entire maps C* — Y.

This Runge approximation condition was introduced in [22] as the convex approximation
property (CAP); it suffices to test it on compact convex polyhedra (see Lemma [3.5). An
Oka manifold Y enjoys all Oka properties previously considered in the literature: every
continuous map fo : X — Y from a reduced Stein space X to Y is homotopic to a
holomorphic map f; : X — Y if fy is already holomorphic on a neighbourhood of a
compact &'(X)-convex subset K of X then a homotopy f; : X — Y (¢t € [0,1]) from
fo to f1 can be chosen holomorphic and uniformly close to fy on K; if in addition fy is
holomorphic on a closed complex subvariety A C X then the homotopy f; can be chosen
fixed on A (and fixed to any given order along A if fy is holomorphic on a neighbourhood
of A); finally, the corresponding properties hold for continuous families of maps X — Y.
See [28, Theorem 5.4.4 and Corollary 5.4.5] for precise statements. Furthermore, these
Oka-type properties are pairwise equivalent as shown in [28, Sect. 5.15]. (For recent
developments and additional characterizations of the class of Oka manifolds, see Section
Bl) Grauert’s results [43] 44] say in particular that every complex homogeneous manifold is
an Oka manifold. Modern Oka theory may be summarized as follows:

Analytic problems on Stein manifolds which can be formulated in terms of maps to Oka
manifolds have only topological obstructions.

Like any heuristic principle, this must be taken with a grain of salt. For instance, to
construct proper holomorphic maps one needs stronger geometric assumptions.

The concept of Oka map generalizes that of Oka manifold. A holomorphic map
h : Z — Y between complex manifolds is said to be an Oka map if it is a topological
fibration (i.e, a Serre fibration or a Hurewicz fibration, these conditions being equivalent for
maps between manifolds and refer to the homotopy lifting property) which enjoys the above
mentioned Oka properties for lifts of holomorphic maps f : X — Y from reduced Stein
spaces X to holomorphic maps X — Z. For example, every continuous lift X — Z of

2The terms Oka manifold and Oka map were proposed by Lérusson [62] in 2004. The notion of Oka
manifold was formally introduced by the author in [23, Definition 1.2] (2009) when the above mentioned
equivalences were established. The term became widely used after the publication of the monograph [26] in
2011. Oka manifolds coincide with Ell, spaces introduced by Gromov in [47, p. 73] and [48| Definition 3.1.A].
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f is homotopic (through lifts of f) to a holomorphic lift, with similar additions concerning
approximation, interpolation, and parametric versions that hold for maps to Oka manifolds.
For a precise definition, see Larusson [[62]] or [28, Definition 7.4.7]. In particular, a complex
manifold Y is an Oka manifold if and only if the map ¥ — point is an Oka map. A new
characterization of Oka maps due to Kusakabe [54] is presented in Section 4]

The main lines of questions in Oka theory are the following:

(a) Find examples of Oka manifolds and Oka maps, as well as new sufficient conditions,
characterizations, and operations preserving these classes of manifolds and maps.

(b) Develop the Oka theory for algebraic manifolds.

(c) Develop the Oka theory for maps to singular targets, i.e., complex spaces, and for
sections of branched holomorphic maps.

(d) Find new applications of Oka theory.

Oka manifolds are the very opposite of Kobayashi hyperbolic manifolds, the former
being strongly dominable by Euclidean spaces while the latter not admitting any
nonconstant holomorphic maps from C. A big majority of complex manifolds display at
least some holomorphic rigidity; this holds in particular for all compact complex manifolds
of general type since these are not dominable by Euclidean spaces according to Kobayashi
and Ochiai [51], and hence no such manifold is Oka.

For a long time it had seemed that Oka manifolds are few and very special. However,
in May 2020 it became clear through the work of Kusakabe [57]] that they are much more
plentiful than previously thought, especially among noncompact complex manifolds; see
Section[5] These results open entire new vistas of possibilities.

3. Elliptic characterization of Oka manifolds

In this section we present a new conceptual unification of Oka theory, due to Yuta
Kusakabe [53] (2018), which establishes the equivalence between the Oka property of a
complex manifold and Gromov’s ellipticity type condition Ell;; see Definition (b) and
Theorem [3.3] This provides an affirmative answer to a question of Gromov [47, p. 72]. A
more recent result of Kusakabe [54] from 2020 gives the analogous characterization of Oka
maps by convex ellipticity; see Theorem [4.5] An important consequence is a localization
theorem for Oka manifolds (see Theorem[3.6) which has already led to many new examples.
A fascinating application of this new characterization is the fact that the complement of any
compact polynomially convex set in C™ for n > 1 is Oka (see Section[3).

3.1. Ellipticity conditions. In [47,48|]] Gromov introduced several ellipticity conditions for
complex manifolds and holomorphic maps which provide geometric sufficient conditions
for Oka properties. These conditions are based on the notion of a dominating spray, a prime
example being the exponential map on a complex Lie group.

Let X and Y be complex manifolds. A holomorphic spray of maps X — Y is a
holomorphic map F : X x CV — Y for some N € N. The map f = F(-,0) : X — Y'is
called the core of F', and F'is a spray over f. The spray F is said to be dominating if

0

Oow lw=0
More generally, F' is dominating on a subset U C X if the above condition holds for every
x € U. A more general type of a spray is a holomorphic map F' : E — Y from the total

F(z,w):CN — Tt)Y is surjective for every = € X.
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space of a holomorphic vector bundle 7w : E — X; its core is the restriction of F' to the zero
section of E' (which we identify with X'), and domination is defined in the same way.

Definition 3.1. Let Y be a complex manifold.

(a) (Gromov [48] 0.5, p. 8.5.5]; see also [28], Definition 5.6.13].) Y is elliptic if it admits a
dominating holomorphic spray F': E — Y, where 7 : E — Y is a holomorphic vector
bundle and F'(0,) = y for all y € Y. The manifold Y is special elliptic if it admits a
dominating holomorphic spray as above from a trivial bundle £ =Y x CV.

(b) (Gromov [47, p. 72].) Y enjoys condition Ell; if every holomorphic map X — Y from
a Stein manifold is the core of a dominating holomorphic spray X x CN — Y.

(c) Y enjoys condition C-Ell; (convex Elly) if for any compact convex set K C C”,
open set U C C" containing KX and map f € O(U,Y) there are an open set V' with
K C V C U and a dominating holomorphic spray ' : V x CY — Y over f|y.

Every elliptic Stein manifold Y is also special elliptic. Indeed, by (a small extension of)
Cartan’s Theorem A, any holomorphic vector bundle w : £ — Y over a Stein manifold
admits finitely many (say V) holomorphic sections which span the fibre £, = 71 (y) over
each point y € Y. This gives a surjective holomorphic vector bundle map ¢ : Y xCN — E,
and precomposing a dominating holomorphic spray ' : E — Y by ¢ gives a dominating
spray Y x CN — Y. This fails on non-Stein manifolds. In fact, every compact special
elliptic manifold is complex homogeneous (see [30), Proposition 6.2]).

Condition Ell; can be interpreted as saying that the space 0(X,Y) is dominable by
some CV at every point f € ¢(X,Y). Obviously Ell; implies C-Ell, the latter being a
restricted version of Ell; applying to compact convex sets in Euclidean spaces, and we ask
that a dominating spray exists over a smaller neighbourhood of the set. (This comes very
handy in proofs.)

One of Gromov’s main results in [48] is that every elliptic manifold is Oka (see also [28,
Corollary 5.6.14]). In fact, ellipticity implies CAP (see Definition [2.1); this is a special
case of [28, Theorem 6.6.1]). Conversely, it is easily seen that every Stein Oka manifold
is elliptic [28], Proposition 5.6.15]. Kusakabe constructed in [56] the first known examples
of non-Stein Oka manifolds which fail to be elliptic or even just (weakly) subelliptic. His
more recent results described in Section [5] provide a plethora of such examples. However,
the following problem seems to remain open.

Problem 3.2. Is there a compact Oka manifold which fails to be (sub-) elliptic?

3.2. Characterization of Oka manifolds by condition Ell;. Every Oka manifold satisfies
condition Ell; (see [28] Corollary 8.8.7]). However, it came as a surprise that the converse
holds as well. The following result to this effect is due to Kusakabe [53, Theorem 1.3].

Theorem 3.3. A complex manifold which satisfies condition C-Ell; is an Oka manifold. In
particular, a complex manifold is Oka if and only if it satisfies condition Ell; (or C-Ell;).

It follows that conditions Ell;, Elly and Ell,, introduced by Gromov in [48]] are pairwise
equivalent and characterize the class of Oka manifolds. See also [53, Conjecture 4.6 and
Corollary 4.7] for a more precise description of Gromov’s conjectures.

Theorem [3.3] enables the construction of many new examples of Oka manifolds; see in
particular Theorem [3.6] and the examples in Section [5] The main point is that it is easier
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to construct sprays whose domain is a Stein manifold, or even just a convex domain in a
Euclidean space, rather than a general complex manifold.

We begin with some preparations. Given a compact set K in a complex manifold X and
a complex manifold Y, we denote by &(K,Y) the space of germs on K of holomorphic
maps from open neighbourhoods U C X of K to Y. Thus, O(K,Y) is the colimit (also
called the direct limit) of the system &'(U,Y") over open sets U C X containing K, with
the natural restrictions maps ry @ O(V,Y) — O(U,Y) given for any pair U C V by
ruv(f) = flu. The space O(K,Y) carries the colimit topology defined as follows. Fix a
distance function dist on Y inducing the manifold topology. A basic open neighbourhood
of an element of (K, Y), represented by amap f € €(U,Y ), is a set of the form

3.1 V(f, U, K €)= {g € OU'Y) : sup dist(f(2),9(2)) < e}
zeK'

where K is a compact set containing K in its interior, U’ is an open set with K/ C U’ € U,
and € > 0. Equivalently, let (Uy);>1 be a decreasing basis of open neighbourhoods of K
such that Uy is relatively compact in Uy, for all £ > 1. The colimit topology on O (K,Y)
is the finest topology that makes all maps ji : O(Uy,Y) — O(K,Y) continuous. By
saying that a map K — Y is holomorphic, we mean that it belongs to (K, Y).

A (convex) polyhedron in RY is a compact set which is the intersection of finitely many
closed affine half-spaces. Recall the following definition (cf. [28, Definition 5.15.3]).

Definition 3.4. A pair K C L of compact convex sets in RY is a special polyhedral pair if L
is a polyhedron and K = {z € L : A(z) < 0} for some affine linear function \: R — R.

The following observation is due to Kusakabe [52f] (see [28, Lemma 5.15.4]).

Lemma 3.5. Suppose that Y is a complex manifold such that for each special polyhedral
pair K C LinC"™ n €N, every holomorphic map K — Y can be approximated uniformly
on K by holomorphic maps L — Y. Then Y enjoys CAP and hence is an Oka manifold.

Proof of Theorem|[3.3] Let K C L be special polyhedral pair in C". Denote by A(K,Y") the
setof all f € O(K,Y) which can be approximated uniformly on K by maps g € 0(L,Y).
Then A(K,Y) is a nonempty closed subset of &(K,Y). Since K is convex and Y is
connected, the space 0(K,Y') is clearly connected. Hence, to prove the theorem it suffices
to show that the set A(K,Y") is also open in (K, Y).

Fix f € A(K,Y) and represent it by a map f € & (U,Y’) from an open set U C C"
containing K. Condition C-Ell; gives a convex open set V with K C V C U and a
dominating holomorphic spray F' : V x CN — Y with F'(-,0) = f|y. By factoring out the
kernel of OF (z,w)/dw|w—o : CN — T}(,)Y (which is a trivial holomorphic subbundle of
V x CN with trivial quotient) we may assume that N = dim Y and the above derivative is
an isomorphism for every z € V. Hence, up to shrinking V' around K if necessary there is
an open ball 0 € W C C such that the map F = (Id, F) : V x CV — V x Y given by

(3.2) F(z,w) = (z,F(z,w)), z€V,weCN

maps V' x W biholomorphically onto its image in V' x Y. Since f € A(K,Y), there are
a neighbourhood 2 C C" of L and amap g € 0(Q,Y") whose graph {(z,¢(2)) : z € K}
belongs to F (V' x W). Up to shrinking €2 around L, [28| Lemma 5.10.4] provides a local
dominating holomorphic spray G : 2 x W — Y over G(-,0) = g. Replacing G(z,w)
by G(z,tw) for a small ¢ > 0 we may assume that the map G(z,w) = (z,G(z,w))
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satisfies é(K x W) e f(V x W). Hence, there is an open convex set Uy C C" with
K c Uy € VNQsuchthat G(U; x W) € F(V x W). Since the map F (3.2) is
biholomorphic on V' x W, there is a unique holomorphic map H : U; x W — W such that
(3.3) F(z,H(z,w)) = G(z,w) forall (z,w) € Uy x W.
Pick a slightly larger polyhedron L’ containing L in its interior and a small ¢ > 0 and set

A={zel':\N2)<2}CU;, B={zel :\z)>¢CQ.
The polyhedra A and B form a Cartan pair (see [28, Definition 5.7.1]) with AU B = L’
andC:=ANB={z¢e L' :e<\(z)<2¢}. Let

K ={ze L' :\2)<¢/2}.

Pick a convex open set Uy C C" such that K’ C Uy C Uy and Uy N C = @. Let
¢ : Uy — CV be any holomorphic map. Since Ii’ and C are disjoint compact convex
sets in C* and W C CN is a ball, (K'UC) x Wis a polynomially convex subset of
C™ x CN. The Oka-Weil theorem furnishes a holomorphic map ¢ : A x W — C» which

approximates ¢(z) on (z,w) € K’ x W and approximates H on C' x W. In view of (3.3),
the local holomorphic spray ® : A x W — Y defined by

D(z,w) = F(z,0(2,w)), z€A weW

then approximates the spray G on C' x W, while on K’ x W it is close to the map

3.4 (z,w) = fo(2) == F(z,¢(2)), z€K'.

Provided the approximations are close enough and noting that the spray GG is dominating
over C, we can apply [28, Proposition 5.9.2] on the Cartan pair (A, B) to glue ® and G into
a holomorphic spray © : L' x W' — Y for a smaller parameter ball 0 € W' C . By the
construction, its core map f := ©(-,0) : L' — Y then approximates the map fs (3.4) on
K'. Since the map F' (3.2)) is biholomorphic on V' x W, every holomorphic map K’ — Y

sufficiently uniformly close to f on K’ is of the form f, (3.4), and hence it belongs to the
set A(K,Y") of approximable maps. This shows that A(K,Y") is open as claimed. O

3.3. A localization theorem for Oka manifolds. A domain U in a complex manifold Y is
said to be Zariski open if its complement A =Y \ U is a closed complex subvariety of Y.
An important application of Theorem [3.3]is the following localization criterion.

Theorem 3.6. (Kusakabe, [53, Theorem 1.4].) If Y is a complex manifold which is the
union of Zariski open Oka domains, then'Y is an Oka manifold.

Previously, a localization theorem has only been known for algebraically subelliptic
manifolds (see [28, Proposition 6.4.2]).

The proof of Theorem [3.6|uses the following corollary to [28, Theorem 7.2.1] or its more
general version, [28, Theorem 8.6.1].

Proposition 3.7 (Proposition 3.1 in [S3]). Let Y be complex manifold and Q) C Y be a
Zariski open Oka domain. Given a Stein manifold X and a holomorphic map f : X — Y,
there is a holomorphic spray F : X x CN — Y over f which is dominating on f~ ().

Proof of Theorem[3.6] By Theorem [3.3]it suffices to show that Y enjoys condition C-Ell;.
Let K be a compact convex set in C" and f € O(U,Y) be a holomorphic map on an
open neighbourhood U C C" of K. Let §2; C Y be a collection of Zariski open domains
with | J;©; = Y. Since K is compact, f(K) is contained in the union of finitely many
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Q;’s; call them (24, ...,€,,. Proposition furnishes a spray F} : U X CM — Y with
core f which is dominating on f~!(Q1). Applying Proposition to I furnishes a spray
Fy : U x CN1 x CV2 — Y with core F; which is dominating on Ffl(Qg). Considering Fb
as a spray over f, it is dominating on f~1(£; U Qy). After m steps of this kind we obtain a
spray F': U x CV — Y over f which is dominating on a neighbourhood of K. g

3.4. Sprays generating the tangent space. Theorem implies several other criteria for
a manifold Y to be Oka in terms of sprays over maps from Stein manifolds into Y. The
following result combines Corollaries 4.1 and 4.2 in Kusakabe’s paper [53]].

Corollary 3.8. For a complex manifoldY the following are equivalent.

(a) Y is Oka.

(b) For every Stein manifold X, holomorphic map f : X — Y, and holomorphic section
V oof f*TY (such V may be thought of as a holomorphic vector field on' Y along the
map f) there is a holomorphic spray F : X x C — Y over f such that

8t|t:0F(IL‘, t) = V(.’L‘) S Tf(:v)Y forallr € X.

(¢) For every Stein manifold X, holomorphic map f : X — Y, and point x € X there
are finitely many holomorphic sprays F; : X x CNi - Y (j =1,...,k) such that
S Otli=o F(w,1)(CN3) = Ty, Y-

(d) Condition (c) holds for every convex domain X C C", n € N.

Condition (c), when applied to sprays over the identity map on the manifold Y (which
need not be Stein), coincides with weak subellipticity of Y (see [28], Definition 5.6.13 (f)]),
and this condition implies that Y is Oka (see [28, Corollary 5.6.14]).

Proof. (a)=(b): If Y is Oka then by 28| Corollary 8.8.7] there is a dominating holomorphic
spray G : X x CV — Y over f = G(-,0) for some N € N. This means that

O 1= d|y—0G(-,t) : X xCN = f*TY

is a surjective holomorphic map of holomorphic vector bundles. Hence there is a
holomorphic section W of the trivial bundle X x CY — X such that ©(W) = V. (This
follows from Cartan’s theory and is a special case of [28, Corollary 2.6.5].) The spray
F: X xC — Y defined by F(x,t) = ©(tW (z)) then clearly satisfies condition (b).

The implications (b)=-(c)=-(d) are obvious.

(d)=(a): Let K C C" be a compact convex set, X C C" be an open convex set
containing K, and f € O(X,Y). Fix ¢+ € K. By condition (d) there is a spray
Fy : X x C = Y over f such that the vector Vi := O4|i=0F1(7,t) € Ty(;)Y is nonzero.
Applying condition (d) to F gives a spray F5 : X x C x C — Y over F} such that the
vector Va 1= Oli=0F2(x,0,t) € Ty(,)Y is linearly independent from V4. Continuing this
way we obtain after d = dim Y steps a spray F : X x C¢ — Y over f which dominates at
z, and hence on a Zariski neighbourhood of x. A repetition of this process over other points
of K gives a holomorphic spray over f which is dominating on an open neighbourhood
1 C X of K. Thus, Y enjoys condition C-Ell; and hence is Oka by Theorem [3.3] 0

3.5. An implication of C-connectedness. In his first paper [52]] on Oka theory, Kusakabe
characterized the class of Oka manifolds by the following C-connectedness property of the
space of holomorphic maps from Stein manifolds.
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Theorem 3.9. ([52, Theorem 3.2].) For a complex manifold Y the following are equivalent.

(a) Y is an Oka manifold.

(b) For every Stein manifold X and homotopic holomorphic maps fy, f1 : X — Y there is
a holomorphic map F : X x C — Y such that F (- ,t) = f, fort =0, 1.

(¢) Condition (b) holds for any bounded convex domain X C C", n € C".

This result and its proof are also presented in [28, Theorem 5.15.2]. The proof of the
main implication (c)=-(a) uses the same geometric scheme as the proof of Theorem [3.3]

The following is an outstanding open problem in Oka theory; see [28, Problem 7.6.4].

Problem 3.10 (The union problem for Oka manifolds). Let Y be a complex manifold and
Y’ C Y be a closed complex submanifold. If Y and U := Y \ Y are Oka, is Y Oka?

In an apparent attempt to approach this problem, Kusakabe combined Theorem [3.9)and
[28, Theorem 7.2.1] to show the following.

Theorem 3.11 (Theorem 4.4 in [53l]). For a complex manifold Y with a Zariski open Oka
domain U C 'Y, the following are equivalent.

(a) Y is an Oka manifold.

(b) For every Stein manifold X and map f € 0(X,Y') which is homotopic to a continuous
map X — U there exists F € O(X x C,Y) with F(-,0) = fand F(-,1) € O(X,U).

(c) For any bounded convex domain X C C" (n € C") and f € O(X,Y) there is a
holomorphic map F : X x C — Y such that F(-,0) = fand F(-,1) € 0(X,U).

It is not clear how to find a spray F over f satisfying condition (c) if the image f(X)
intersects both U and the subvariety Y/ = Y\ U. If f(X) C Y’ and X is convex, then such
F exists by [35, proof of Theorem 2] (see also [28, proof of Theorem 7.1.8]).

4. Elliptic characterization of Oka maps

In this section we present Kusakabe’s recent characterization from [54] of the Oka
property of holomorphic submersions by a new condition called convex ellipticity which
he introduced; see Theorem[4.5] Before we get to that, we briefly survey the extant theory.

A holomorphic map h : Y — Z between reduced complex spaces is said to enjoy the
parameteric Oka property with approximation and interpolation (POPAI) if for every Stein
space X and holomorphic map f : X — Z, each continuous lift F : X — Y is homotopic
(through lifts of f) to a holomorphic lift /' = F; : X — Y as in the following diagram,

7

F/ Z \Lh
/

Lz
with natural additions concerning the approximation on compact ¢ (X)-convex subsets
of X and interpolation on closed complex subvarieties of X on which Fj happens to
be holomorphic; the analogous conditions must hold for families of maps f, : X —
Z depending continuously on a parameter p in a compact Hausdorff space. See [28,
Definitions 7.4.1 and 7.4.7] for the details and note that these conditions correspond to
those listed on p.[]in the special case when Z is a singleton.
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Definition 4.1. A holomorphic map h : Y — Z of reduced complex spaces is an Oka map
if it enjoys POPAI and is a Serre fibration (see [28 Definition 7.4.7] and [62])).

For a holomorphic submersion h : Y — Z, POPAI is a local condition in the sense
that it holds if every point 29 € Z has an open neighbourhood U C Z such that the
restricted submersion A : h_l(U) — U enjoys POPAI (see [25, Theorem 4.7] and also
[28, Definition 6.6.5 and Theorem 6.6.6]). Furthermore, for such & the basic Oka property
(BOPAL, referring to lifts of a single map f : X — Z) implies POPAI; see [24]].

One of the simplest examples of Oka maps is a holomorphic fibre bundle with Oka fibre.
Furthermore, every stratified subelliptic holomorphic submersion satisfies the Oka property,
so it is an Oka map provided it is a Serre fibration (see [28|, Corollary 7.8.4]).

As mentioned in [28 p. 335], a holomorphic map is an Oka map if and only if it is
the intermediate fibration in Larusson’s model category [62]]. In particular, we have the
following result (see [27, Corollary 2.51] and [28), Theorem 5.6.5]).

Theorem 4.2. If h : Y — Z is an Oka map of complex manifolds, then Y is an Oka
manifold if and only if Z is an Oka manifold. This holds in particular if h :' Y — Zisa
holomorphic fibre bundle with Oka fibre.

It follows from definitions that if ~ : ¥ — Z is a holomorphic submersion enjoying
POPAI then every fibre h=!(z), z € Z is an Oka manifold. The converse is not true. For
example, if g : Z — C is a continuous function on a domain Z C C then every fibre of the
coordinate projection h : Y = {(z,w) € Z x C: w # g(z)} — Z is the Oka manifold C*,
but h is an Oka map if and only if g is a holomorphic function (see [28], Corollary 7.4.10]).

The following result pointed out by Kusakabe shows that a manifold is Oka if it admits
sufficiently many projections having the Oka property.

Proposition 4.3 (Lemma 5.1 in [S7]). If Y is a complex manifold such that for any point
y €Y there exist holomorphic submersions hj : Y — Z; (j = 1,..., k) enjoying POPAI

such that T,)Y = Z?:l Tyh,;1 (hj(y)), thenY is an Oka manifold.

Proof. Let X be a Stein manifold and f : X — Y be a holomorphic map. Fix a point
zg € X andlety = f(xg) € Y. If hj : Y — Z; are as above, the Oka property of h;
furnishes for every j = 1,. .., k a fibre dominating holomorphic spray F}; : X x cNi »Y
over f with hj o F' = h; o f (see [28, Corollary 8.8.7]). In particular, we have that
Otlt=0Fj(z0,1)(CN3) = Tyhj_l(hj(y)). It follows that the collection of sprays F1, ..., Fj
dominates 7Y, and hence Y is Oka by Corollary 0

We now describe the main result of Kusakabe’s paper [54]. As pointed out in the
introduction to his paper, the two main types of maps which are known to satisfy POPAI
are (stratified) holomorphic fibre bundles with Oka fibres, and (stratified) subelliptic
holomorphic submersions. None of these two families is a subfamily of the other one:
there are noncompact Oka manifolds which fail to be subelliptic (see Section [3]), and there
are subelliptic holomorphic submersions which are not locally trivial at any base point,
e.g. a complete family of complex tori (see [64, Theorem 16]). Furthermore, Kusakabe
gave an example of a holomorphic submersion which enjoys POPAI but does not belong
to any of the above classes (see [54, Proposition 5.10]). It is therefore of interest to find
a characterization of POPAI which unifies the theory, in the same way as CAP and Ell;
characterize Oka manifolds (cf. Theorem 3.3). Kusakabe introduced the following notion.
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Definition 4.4 (Definition 1.2 in [54]). A holomorphic submersion & : Y — Z of complex
spaces is convexly elliptic if there is an open cover {U; };cr of Z such that for any n € N,
compact convex set K C C" and holomorphic map f € ¢(K,Y) with f(K) c h=1(U;)
for some i € I there exists a holomorphic map F € ¢(K x CV,Y) such that

(i) F(-,0) = fand ho F(z,t) = ho f(z) forall z € K and t € CV, and
(i) F(z,-):CN = h=Y(h(f(2))) is a submersion at 0 € C" forall z € K.

A map F' as in the above definition is a fibre dominating spray over f. Note that convex
ellipticity is a fibred version of condition C-Ell; (cf. Definition [3.1](c)).

Theorem 4.5. (Kusakabe [54, Theorem 1.3]) A holomorphic submersion of complex spaces
enjoys POPAL if and only if it is convexly elliptic. In particular, a holomorphic submersion
is an Oka map if and only if it is a convexly elliptic Serre fibration.

This is a generalization of Theorem [3.3|characterizing Oka manifolds by C-Ell;, and the
proof (see [54, Sections 3-4]) is similar. First, the problem is reduced to the main special
case which pertains to sections of a holomorphic submersion i : Y — Z. In this case and
assuming that the base Z is Stein, an axiomatic characterization of POPAI is provided by
the homotopy approximation property, HAP, first introduced in [24, Proposition 2.1]. (See
also [28, Definition 6.6.5 and Theorem 6.6.6].) This condition, which is local on the base,
is an axiomatization of the homotopy Runge theorem [28, Theorem 6.6.2ﬂ The gist of
Kusakabe’s proof of Theorem [4.3]is to show that HAP is implied by convex ellipticity, in a
similar way as CAP is implied by condition C-Ell;. We refer to [54] for the details.

5.  Oka complements

A long-standing problem in Oka theory asked whether the complement of every compact
convex set K in C™ for n > 1 and Oka manifold (see [28, Problem 7.6.1]). In May 2020,
Kusakabe answered this problem affirmatively and in much bigger generality. For the notion
of density property, see Varolin [[76] or [28, Definition 4.10.1]. (On a Stein manifold, density
property implies the Andersén-Lempert theorem, see [28, Theorem 4.10.5]. Every such
manifold has dimension > 1 and is an Oka manifold.)

Theorem 5.1. (Kusakabe, [57, Theorem 1.2 and Corollary 1.3].) For any compact
holomorphically convex set K in a Stein manifold Y with the density property the
complement Y \ K is an Oka manifold. In particular, if K is a compact polynomially
convex set in C" forn > 1 then C" \ K is an Oka manifold.

This is the first result in the literature which provides a large class of Oka domains in C"
for any n > 1, as well as in all Stein manifolds with the density property. As noted in [57,
Corollary 1.4], it follows from [29, Theorem 1.1] that Y\ K (like any Oka manifold) is the
image of a strongly dominating holomorphic map C" — Y \ K withn = dimY.

Kusakabe’s proof of Theorem [5.1|uses the characterization of Oka manifolds by C-Elly;
see Theorem Take a compact convex set L C C" and a holomorphic map f : L — Y
such that f(z) € Y \ K for all z € L. He constructed a holomorphically varying family

3As pointed out in [54, Remark 3.6], HAP is not stated correctly in [28| Definition 6.6.5]: the same condition
must hold for any local holomorphic spray of sections with parameter in a ball B C C", for this is needed when
gluing sprays. Equivalently, the stated condition must apply to the trivial extensions Z X B — X x B. This
holds for any subelliptic submersions ~ : Z — X in view of [28| Theorem 6.6.2].
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f(2) € Q, C Y\ K (z € L) of nonautonomous basins with uniform bounds (i.e., basins of
random sequences of automorphisms of Y which are uniformly attracting at f(z) € Y \ K);
these are elliptic manifolds as shown by Fornass and Wold [15], hence Oka. It is then
possible to find a dominating holomorphic spray F' : L x C" — Y over f = F(-,0) such
that F'(z,() € Q, forall z € L and ¢ € C". Thus, Y \ K satisfies condition C-Ell;.

Soon thereafter, E. F. Wold and the author pointed out in [40] that one can choose F' as
above such that F'(z,-) : C* — Y \ K is a Fatou-Bieberbach map for every z € L.

Theorem 5.2 (Theorems 1.1 and 3.1 in [40]). Let K be a compact holomorphically convex
set in a Stein manifold Y with the density property, L be a compact convex set in CN for
some N € N, and f : U — C" be a holomorphic map on an open neighbourhood U ¢ CN
of L suchthat f(z) € Y \ K forall z € L. Then there are an open neighbourhood V- C U
of L and a holomorphic map F' : V x C" — Y withn = dim Y such that for every z € V
we have that F(z,0) = f(z) and the map F(z,-) : C" — Y \ K is injective.

If Y = C" withn > 1 then the same conclusion holds if L is polynomially convex.

It was proven by Andrist, Shcherbina and Wold [6] that in a Stein manifold of dimension
at least three every compact holomorphically convex set K with an infinite derived set K’
(the set of limit points of K') has a nonelliptic complement. Together with Theorem 5.1 this
implies the following corollary.

Corollary 5.3. For every compact polynomially convex set K C C™ (n > 3) with infinitely
many limit points, the complement C™ \ K is Oka but not weakly subelliptic. The analogous
result holds in any Stein manifold with the density property of dimension > 3.

The first known examples of Oka manifolds which are fail to be subelliptic were given
by Kusakabe in [56]. One his main results there is the following.

Theorem 5.4 (Theorem 1.2 in [56]). If S C C™ (n > 1) is tame closed countable set with
discrete derived set S', then the complement C™ \ S is Oka.

Previously it was known that the complement of a closed tame subvariety of C" of
codimension at least 2 (in particular, of a closed tame discrete subset) is elliptic and hence
Oka; see [28, Proposition 5.6.17].

In the same paper, Kusakabe constructed examples of compact countable sets in C™ with
nondiscrete derived sets having nonelliptic Oka complements. An example is the following.

LetN"!={1/j:jeNland N ' = N~1 U {0} C C. Then for every n > 3 the domain
X ="\ (N2 x {0y"?)
is an Oka manifold which is not weakly subelliptic (see [S6, Corollary 1.4]).
The corresponding problem in complex dimension 2 remains open.

Problem 5.5. Is there a compact subset K of C? whose complement C? \ K is Oka but is
not elliptic or (weakly) subelliptic?

Recall that a closed unbounded set is said to be polynomially convex if it is exhausted by
an increasing sequence of compact polynomially convex sets. Theorem[5.1]is a special case
of the following results of Kusakabe [57, Theorem 1.6]. See also [57, Theorem 4.2] for a
more general result in this direction.
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Theorem 5.6. If S is a closed polynomially convex subset of C™ (n > 2) such that
(5.1) Sc{(zw)eC"2xC*: |w| <c(l+2])}
for some ¢ > 0, then C™ \ S is an Oka manifold.

Sketch of proof of Theorem[5.6] Let 7 : C" — C"~2 denote the coordinate projection
m(z,w) = z. To prove that C" \ S is OKa, it suffices to show that the restricted projection
7 : C"\ S — C"2 has the Oka property (POPAI; see Section @) Indeed, if this projection
is an Oka map (i.e., it is also a Serre fibration), it follows from Theorem that C™ \ S'is
Oka (since the base C"~2 is Oka). In the general case, note that condition holds for
all linear projections C* — C"~2 sufficiently close to 7. This gives finitely many linear
projections C™ \ S — C"~2 enjoying POPAI such that their kernel subspaces span C", and
hence the conclusion follows from Proposition 4.3

In order to show that C™ \ S satisfies POPAL, it suffices to verify convex ellipticity; see
Theorem This means that for any compact convex set L C CV and holomorphic map
f=(,f":L—C"\S(with f: L - C"2and f”: L — C?) there is a fibre-
dominating spray F': L x C"™ — C™ \ S over f such that 7 o F' = f’ (see Definition .
By taking the pullback of 7 : C* — C"~2 by the base map f’ : L — C"~2, all relevant
properties are preserved and the problem gets reduced to the one where f is a holomorphic
map from a neighbourhood of L C C¥ to C" such that f(z) € C*\ S, (z € L) where S. is
the fibre of .S over z. (Here, S is the new set obtained from the initial one by the pullback.)
A spray F' with the desired properties can be obtained with m = n as a holomorphic family
of Fatou-Bieberbach maps into C™\ S, depending on z € L by using the version of Theorem
for variable fibres .S, ; see [40, Remark 2.2]. O

In [57]], Kusakabe gave several interesting applications of these results; let us mention a
few without stating them explicitly.

Gromov showed in [48, 0.5.B] that the complement C™ \ A of any closed algebraic
subvariety of codimension > 2 is Oka; see also [28, Proposition 5.6.10 and Sect. 6.4].
Since any such subvariety A satisfies condition (3.1)) in a suitable linear coordinate system
on C™, it has a basis of closed neighbourhoods in C™ with Oka complements [57, Corollary
5.3]. Similar results hold for tame discrete sets in C"; see [57, Corollaries 5.5 and 5.7].

Furthermore, Kusakabe’s results imply that the complement of any closed rectificable
curve in C™ for n. > 3 is Oka. For rectifiable arcs in C” this holds for all n > 1 since they are
polynomially convex (see [S7, Corollary 1.8]). The proof for closed curves (when n > 3)
combines Theorem [5.6] (cutting the curve with a suitably chosen complex hyperplane and
applying a change of coordinates on the complement to get a set satisfying the hypothesis
of Theorem [5.6) with the localization theorem given by Theorem 3.6

These results and examples give rise to the following question, reminiscent of the
classical Levi problem concerning a geometric characterization of domains of holomorphy.

Problem 5.7. Let K be a compact set with reasonably nice boundary in C” for some n > 1.
Is there a characterization of C" \ K being an Oka manifold in terms of the geometric
properties of bK ?

The only obvious thing at the moment is that if C" \ K is Oka then K cannot have a
strongly pseudoconcave boundary point, because this would yield a nonconstant bounded
plurisubharmonic function on C" \ K.
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6.  Oka theory for algebraic manifolds

The algebraic Oka theory concerns (regular) algebraic maps from affine algebraic
manifolds (the algebraic analogues of Stein manifolds) to algebraic manifolds. The
following are algebraic analogues of basic Oka conditions (see [28], Sect. 5.15]).

Definition 6.1. Let Y be an algebraic manifold, and let X denote an arbitrary affine
algebraic manifold.

(a) Y enjoys the (basic) algebraic Oka property (aBOP) if every continuous map X — Y
is homotopic to an algebraic map.

(b) Y enjoys the algebraic approximation property (aAP) if every continuous map X — Y
which is holomorphic on a neighbourhood of a compact holomorphically convex subset
K of X can be approximated uniformly on K by algebraic maps X — Y.

(c) Y enjoys the algebraic interpolation property (alP) if every algebraic map from an
algebraic subvariety of X to Y has an algebraic extension X — Y if it has a continuous
extension.

A few examples of algebraic manifolds which are Oka in the holomorphic sense but
aBOP fails are mentioned in [28, Examples 6.15.7, 6.15.8]. In addition, one of the
cornerstones of the classical Oka-Grauert theory, that the holomorphic classification of
vector bundles over Stein manifolds agrees with their topological classification, fails in the
algebraic category already for affine algebraic curves of genus g > 0. Hence, it is not very
surprising that there are almost no algebraic manifolds satisfying these conditions, except
perhaps in the class of affine algebraic manifolds. The following result is due to Larusson
and Truong [66, Theorem 2].

Theorem 6.2. If Y is an algebraic manifold which contains a rational curve CP* or is
compact, then'Y does not satisfy any of the properties aBOP, aAP, alP.

Larusson and Truong also pointed out the following (cf. [66, Theorem 1]).
Theorem 6.3. The following conditions are equivalent for an algebraic manifold Y .

(a) Algebraic subellipticity, aSEIL (See [28, Definition 5.6.13 (e)].)

(b) Algebraic Elly. (Replace holomorphic maps in Definition (b) by algebraic maps.)

(¢) Algebraic homotopy approximation property, aHAP: If f : X — Y is an algebraic
map from an affine algebraic variety X, K is a compact holomorphically convex set
in X and fy : U = Y (t € [0,1) is a homotopy of holomorphic maps on an open
neighbourhood of K with fo = f|u, then { fi},c[0,1) can be approximated uniformly on
K x [0,1] be algebraic maps F': X x C - Y with F(-,0) = f: X =Y.

The implication (a)=-(c) was proved by the author in [21, Theorem 3.1] (the proof is also
given in [28, Theorem 6.15.1]). The implication (c)=-(b) is immediate, and (b)=-(a) follows
from Gromov’s localization theorem for algebraically subelliptic manifolds (see [48, 3.5.B,
3.5.C] and [28| Proposition 6.4.2]).

We mention the following special case in order to introduce condition aCAP.
“4Note that properties aAP and alP are similar to the algebraic versions of the corresponding properties

BOPA and BOPI, respectively, in the holomorphic category; however, in aAP and aIP one does not ask for the
existence of homotopies connecting the initial map to the final map.
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Corollary 6.4 (Corollary 6.15.2 in [28]). Every algebraically subelliptic manifold Y
satisfies the following algebraic convex approximation property:

aCAP: Every holomorphic map K — Y from a compact convex set K C C" can be
uniformly approximated by regular algebraic maps C" — Y.

Remark 1. Larusson and Truong proposed in [66] to call a manifold satisfying the
equivalent conditions in Theorem [6.3| an algebraically Oka manifold, aOka. A slight
reservation to this choice of term could be that algebraically subelliptic manifolds do not
abide by the philosophy that Oka properties refer to the existence of solutions of analytic
(or, in this case, algebraic) problems in the absence of topological obstructions. Indeed,
condition (c) in Theorem [6.3] only provides a relative Oka principle for algebraic maps
under holomorphic deformations, while Theorem [6.2] shows that most such manifolds do
not have the absolute Oka properties such as aBOP. O

Note that every algebraically subelliptic manifold is an Oka manifold, and this class of
manifolds appears in several interesting applications, some of which are already indicated
in [28]. A further list of properties of this class, and relations with other properties such as
(local) algebraic flexibility in the sense of Arzhantsev et al. [9]], can be found in [66, Remark
2]. Lérusson and Truong also gave the following new examples in this class; previously it
was known that such manifolds are Oka (see [28, Theorem 5.6.12]).

Theorem 6.5 (Theorem 3 in [60]). Every smooth nondegenerate toric variety is locally
flexible, and hence algebraically subelliptic.

Finally, we mention that Kusakabe proved in [S8, Theorem 1.2] the jet transversality
theorem for regular algebraic maps from affine algebraic manifolds to a certain subclass
of algebraically subelliptic manifolds. A local version of the transversality theorem for
algebraic maps to all algebraically subelliptic manifolds was proved by the author in 2006
(see [21, Theorem 4.3] and [28], Theorem 8.8.6]); here, local means that one can achieve the
transversality condition on any compact subset of the source manifold. This local version
suffices for many natural applications, such as those described in [28], Sect. 9.14].

On the theme of Oka properties of blow-ups of algebraic manifolds, we mention the
following recent result of Kusakabe.

Theorem 6.6 (Corollary 4.3 in [53]). Let Y be an algebraic manifold and A C 'Y be
a closed algebraic submanifold. If Y enjoys aCAP (in particular, if Y is algebraically
subelliptic), then the blow-up Bl,Y also enjoys aCAP and hence is an Oka manifold.

Kusakabe proved this result by reducing it to [[65, Theorem 1] by Larusson and Truong.
Note that in Theorem [6.6]it is not claimed that Bl4Y" is algebraically subelliptic. Previous
results on Oka property of blow-ups are due to Larusson and Truong [65] (for algebraic
manifolds covered by Zariski open sets equivalent to complements of codimension > 2
algebraic subvarieties in affine spaces; see also [28, Theorem 6.4.8] where this is called
Class .A) and Kaliman, Kutzschebauch, and Truong [S0].

Another recent result concerning blow-ups of certain complex linear algebraic groups
along tame discrete subsets is due to Winkelmann [77, Theorem 2.9].

Theorem 6.7. If D is a closed tame discrete subset in a character-free complex linear
algebraic group G then the complement G \ D and the blow-up BlpG are Oka manifolds.
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Remark 2. The special case of Theoremwith G = C" (n > 1) is stated as [77, Lemma
9.1]. This was known before: see [28, Proposition 6.4.12] for the blow-up, while the Oka
property of the complement is a special case of [28, Proposition 5.6.17]. Both these results
already appeared in [26]. Furthermore, [[/7, Theorem 8.2] is the main result of [18]] and
it appears as [28, Corollary 5.6.14], while [[77, Proposition 8.3] is also seen by noting that
such manifold X is obviously weakly elliptic and hence Oka by [28, Corollary 5.6.14]. [

7.  Oka pairs of sheaves and a homotopy theorem for Oka theory

Luca Studer made several contributions to Oka theory in his PhD dissertation. One of
them, presented in the paper [74]], provides a splitting lemma which enables one to glue
local sections of coherent analytic sheaves. Splitting lemmas are of key importance in the
proof of all Oka principles. Those in the work by Gromov [48]] and in my joint works
with Prezelj 39, 38]], and their generalizations presented in [28]], pertain to sections of the
sheaf of holomorphic sections of a holomorphic submersion and to its subsheaf of sections
vanishing (perhaps to a higher order) on a subvariety. Studer proved a splitting lemma for
sections of an arbitrary coherent analytic sheaf. As applications he obtained shortcuts in
the proofs of Forster and Ramspott’s Oka principle for admissible pairs of sheaves (see
[L7]) and of the interpolation property of sections of elliptic submersions, an extension of
Gromov’s results obtained by Forstneri¢ and Prezelj [38]. The main technical part of his
proof is a lifting theorem (see [74, Theorem 1]) which reduces the splitting problem to that
for sections of a free sheaf which is already well understood.

The second main result of Studer is a homotopy theorem based on Oka theory, presented
in [[73]]. He pointed out that all proofs of Oka principles can be divided into an analytic
first part and a purely topological second part which can be formulated very generally, thus
providing a reduction of the proofs to the analytic key difficulties. This general topological
statement is [[73, Theorem 1]: its assumptions state which key properties one has to show in
the first part of the proof of an Oka principle, and its conclusion is an Oka principle. This
extends Gromov’s homomorphism theorem from [47] so that it applies in complex analytic
settings and carries out ideas sketched in [48]] and developed in [39] and [28} Chapter 6].

Studer gave an even more general result, [73, Theorem 2], with no particular reference
to complex analysis. Let X be a paracompact Hausdorff space that has an exhaustion by
finite dimensional compact subsets, and let & — W be a local weak homotopy equivalence
of sheaves of topological spaces on X. He shows that under suitable conditions on ® and
U the inclusion ®(X) < W(X) of spaces of sections is a weak homotopy equivalence.
The relevant conditions on the sheaves reflect what is happening when approximating and
gluing sprays of sections in [48] 39]. His proof is essentially an abstraction of the proof
of the Oka principle for (sub-) elliptic submersions given in [39, 28]. He then shows how
the known examples (rather, applications of) the Oka principle are special case of this more
general theorem. We refer to the original paper for precise statements.

Remark 3. In the second paragraph in [73, A.2] Studer comments on the problem of
showing that, for a holomorphic submersion i : Z — X onto a reduced complex space, the
inclusion ® — W of the sheaf ® of holomorphic sections into the sheaf ¥ of continuous
sections is a local weak homotopy equivalence. Explicitly, the following holds.

Lemma 7.1. Let h : Z — X be a holomorphic submersion onto a reduced complex space.
For every point x¢ € X, open neighbourhood U C X of xo, closed ball B in some R", and
continuous map f : B — W(U) (the space of continuous sections of Z — X over U) there
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are a neighbourhood V' of xo with V. C U and a homotopy f; : B — ¥(V) (t € [0,1])
such that fo = flv, fi|pp is independent of t (hence it equals f|yp for all t € [0,1]), and
f1 has values in ® (V') (the space of holomorphic sections of Z — X over V).

Studer says the following in [73, A.2]: Gromov seems to have taken this result for
granted in [48]. In the more detailed work [39), local weak homotopy equivalences are
not introduced. Instead, the analogue of our Proposition 2.9 is stated in the special case of
holomorphic submersions, namely Proposition 4.7. The validity of Proposition 4.7 in [39]
was carefully checked in the Ph. D. dissertation of J. Prezelj.

This might leave the impression that [39, Proposition 4.7] is not proved and one must read
Prezelj’s dissertation (in Slovenian). This calls for a clarification. The cited proposition
gives a homotopy connecting a global continuous section to a complex of holomorphic
sections of a holomorphic submersion; it is proved both in [39]] and [28}, Proposition 6.10.1].
On the other hand, the parametric case of the same result, which is the first step in the proof
of the weak homotopy equivalence principle for the inclusion of spaces of sections, is not
explicitly stated and proved in [39]], but it is present in Prezelj’s dissertation. There is a
comment in [39] that the details of the parametric case were provided only in the nontrivial
analytic parts of the proof, and those were given in the previous paper [37]] and subsequently
in the monograph [28]]. I have taken Lemma|/.1| as an obvious application of partitions of
unity in the parameter. In view of Studer’s remark I include a proof here; it implies the
parametric case of [39, Proposition 4.7] (cf. [73| proof of Proposition 2.9]).

Proof of Lemma(7.1} Precomposing f by smooth map B — B which retracts a spherical
collar A C B around the sphere bB onto bB, we may assume that f(A) C ®(U).

When Z7 = X x C™ — X is a trivial submersion, we take a continuous function
X : B — [0, 1] which equals 1 near bB and equals zero on B \ A and define

(7.1) f(p) = xp)f(p)+(1—xP)fP)(x0) (p € B), fr=tf+(1-t)f (t€[0,1]).

Here, f(p)(x) is the value of the map f(p) at the point z € U. It is trivial to verify that
f(B) C ®(U), f = f near bB, f(p)(zo) = f(p)(zo) for all p € B, the homotopy f; is
fixed near bB and is fixed at the point g € X forall p € B, and f; = f.

Consider now the general case. Up to shrinking U around z, there are finitely many pairs
of compact sets P; C Pj’ C B(j=1,...,k)sucheach P; is contained in the interior of PJ’- ,

U?:l P; = B, and there is a submersion chart Z; C Z which is fibrewise biholomorphic
to U x B, where B C C™ is the ball and h is given in the coordinates (z,z) € U x B by
(2, 2) = , such that the union of ranges of sections f(p) for p € P} is contained in Z;. For
p € P; we may treat sections f(p) as maps U — B. Choose a function x : B — [0, 1] as
above and define f as in for all p € P{. Choose a continuous function ¢ : B — [0, 1]
supported in P| such that ¢ = 1 on a neighbourhood of P; and set

filp) =t (p)f(p) + (L = t¥(p)) f(p), p€ P, te01].
The homotopy is fixed near bB U bP; (where f; = f), and forallp € P, and ¢ € [0,1]
we have that f;(p)(z0) = f(p)(xo) and fi(p) = f(p) € ®(U). Hence, f; satisfies the
conditions of the lemma on the parameter set B; = B \ P;. Performing the same procedure
on the second set P5 (and shrinking U > z if necessary) gives a homotopy connecting f;
to fo which is fixed for parameter values p on a neighbourhood of P; U bB; and such that
f2(p) € ®(U) forall p € P; U P». After k steps of this kind we are done. O
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Note that the argument in the above proof is a special case of the method of successive
patching (see [28, p. 78]) which is used in the proofs of Lemma 6.5.3 and Theorem 6.6.2
in 28} pp. 282, 286], and possibly elsewhere in the book. What makes the proof of Lemma
particularly simple is that one may shrink the neighborhood U C X of the given point
xo € X as much as desired.

8. Carleman and Arakelian theorems for manifold-valued maps

The basic Oka property with approximation (BOPA) is one of the classical Oka properties
of a complex manifold Y which characterizes the class of Oka manifolds (see Sect. [2). It
refers to the possibility of approximating any holomorphic map f € O(K,Y), where K
is a compact &'( X )-convex set in a Stein manifold (or Stein space) X, uniformly on K by
entire maps F' € 0(X,Y') provided that f extends continuously from K to X.

Recently, B. Chenoweth [12] proved several Carleman-type approximation theorems in
the same context. In general, Carleman approximation (after the work of T. Carleman [11]]
from 1927) refers to approximation of holomorphic functions and maps in fine Whitney
topologies on certain unbounded sets in Stein manifolds.

Let X be a complex manifold. For any compact set C' in X we set
h(C) = Cgx) \ C.

A closed not necessarily compact set £ C X is said to be &(X)-convex if it is exhausted
by an increasing sequence of compact &'( X )-convex sets.

Definition 8.1. A closed set £ C X in a complex manifold X has the bounded exhaustion
hulls property if for any compact &(X )-convex set K C X there exists a compact set
K’ C X such that for any compact set L. C E we have that

WEUL)C K.

The following is a special case of Chenoweth’s main result in [[12] (2019). We refer to
the original paper for additional results and corollaries.

Theorem 8.2 (Chenoweth [12]]). Let X be a Stein manifold and Y be an Oka manifold. If
K C X is a compact O(X)-convex set and E is a closed totally real submanifold of X of
class €" (r € N) with the bounded exhaustion hulls property (see Definition such that
K UFE is O(X)-convex, then for any k € {0,1,...,r} the set K U E admits €"-Carleman
approximation of maps f € %k(X ,Y') which are holomorphic on small neighborhoods of
K. Ifin addition K is the closure of a strongly pseudoconvex domain then the same holds

if f is O-flat to order k on K U E.

This is proved by inductively applying the Mergelyan theorem for admissible sets in
Stein manifolds (see [28, Theorem 3.8.1] or [14, Theorem 34]) together with the basic Oka
property (BOPA) for maps from Stein manifolds to Oka manifolds; see [28, Theorem 5.4.4].
These two methods are intertwined at every step of the induction procedure.

The special case of Theorem for functions (i.e., for Y = C) is due to Manne, Wold,
and Qvrelid [68]], and the necessity of the bounded exhaustion hulls condition was shown
by Magnusson and Wold [67]].

Given a closed unbounded set E in a Stein manifold X, one can ask when is it possible to
uniformly approximate any continuous function on £ which is holomorphic on the interior
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of E by functions holomorphic on X. This type of approximation is named after N. U.
Arakelian [8]] who proved that for a closed subset £ of a planar domain X C C, uniform
approximation on E is possible if and only if £ is holomorphically convex in X (which
in this case means that £ has no holes in X) and its complement X \ E in the one-
point compactification X=XU {oo} is locally connected at co. For a closed set E in
a Riemann surface X, the latter property is equivalent to E' having the bounded exhaustion
hulls property. A set E with these two properties is called an Arakelian set. (See also
[14, Theorem 10] and the related discussion.) The following seems to be the first known
extension of Arakelian’s theorem to manifold-valued maps.

Theorem 8.3 (Forstneri¢ [30]). If E is an Arakelian set in a domain X C C and Y is
a compact complex homogeneous manifold, then every continuous map X — Y which is
holomorphic in E can be approximated uniformly on E by holomorphic maps X — Y.

The analogous result holds if X is an open Riemann surface which admits bounded
holomorphic solution operators for the J-equation; see [30, Theorem 5.3]. On plane
domains one can use the classical Cauchy-Green operator. Similar problems appear already
in the Arakelian theorem for functions which does not hold for every open Riemann surface
as shown by examples in [42] and [10} p. 120]. Note also that Carleman approximation in
the fine topology is impossible in general if the interior of F is not relatively compact, or
at least its connected components are not relatively compact. Nothing seems to be known
concerning Arakelian approximation on closed sets whose interior is not relatively compact
in higher dimensional Stein manifolds.

The scheme of proof of Theorem [8.3]in [30] follows the proof of the classical Arakelian’s
theorem by Rosay and Rudin [71]. The main new analytic ingredient is a technique for
gluing sprays with uniform bounds on certain noncompact Cartan pairs. The proof does not
apply to general Oka target manifolds, not even to noncompact homogeneous manifolds.
This is natural since approximation problems of Arakelian type for maps to noncompact
manifolds may crucially depend on the choice of metrics on both spaces.
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