Chapter 2
Interpolation

Experiments usually produce a discrete set of data points (X;, f;) which represent
the value of a function f(X) for a finite set of arguments {Xg ...X,}. If additional
data points are needed, for instance to draw a continuous curve, interpolation is
necessary. Interpolation also can be helpful to represent a complicated function by a
simpler one or to develop more sophisticated numerical methods for the calculation
of numerical derivatives and integrals. In the following we concentrate on the most
important interpolating functions which are polynomials, splines and rational func-
tions. Trigonometric interpolation is discussed in Chap. 7. An interpolating function
reproduces the given function values at the interpolation points exactly (Fig. 2.1).
The more general procedure of curve fitting, where this requirement is relaxed, is
discussed in Chap. 11.

The interpolating polynomial can be explicitly constructed with the Lagrange
method. Newton’s method is numerically efficient if the polynomial has to be evalu-
ated at many interpolating points and Neville’s method has advantages if the poly-
nomial is not needed explicitly and has to be evaluated only at one interpolation
point.

Polynomials are not well suited for interpolation over a larger range. Spline
functions can be superior which are piecewise defined polynomials. Especially cubic
splines are often used to draw smooth curves. Curves with poles can be represented
by rational interpolating functions whereas a special class of rational interpolants
without poles provides a rather new alternative to spline interpolation.

2.1 Interpolating Functions

Consider the following problem: Given are n + 1 sample points (x;, f;) ,i =0---n
and a function of x which depends on n + 1 parameters a;:

D(x;ag---ay). 2.1)
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Fig. 2.1 (Interpolating
function) The interpolating @ (x)
function @ (x) reproduces a
given data set ®(x;) = f;

and provides an estimate of
the function f(x) between f 3 f 4
the data points f

XoX; Xo  Xg Xy Xg X
The parameters are to be determined such that the interpolating function has the
proper values at all sample points (Fig.2.1)

O(x;;a0---a,)=f; i=0---n. 2.2)

An interpolation problem is called linear if the interpolating function is a linear
combination of functions

D(x;a0---ay) =agPo(x) + a1 P1(x) +---a,D,(x). (2.3)

Important examples are

e polynomials

ap+ayx + - apx” 24
e trigonometric functions

ao + aje’” + a ¥ + .. q, e (2.5)
e spline functions which are piecewise polynomials, for instance the cubic spline

S() = o+ fi(x —x) + %@ —x)’ 6 —x)* x5 <x <x. (26)

Important examples for nonlinear interpolating functions are

e rational functions

po+ pix+ - pyx
qo+q1x + - --gnx¥

2.7)
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e exponential functions
ape™™ + ajeM 4. (2.8)

where amplitudes a; and exponents )\; have to be optimized.

2.2 Polynomial Interpolation

For n + 1 sample points (x;, f;), i =0---n, x; # x; there exists exactly one
interpolating polynomial of degree n with

pxi) = fi, i=0---n. (2.9)

2.2.1 Lagrange Polynomials

Lagrange polynomials [3] are defined as

(x —x0) -+ (x —x;—)(x — Xj41) -+ (x — Xp)

Li(x) = . (2.10)
(i —x0) -+ O = Xxi—1) (% — Xip1) -+ (6 — xp)
They are of degree n and have the property
L; () = 0ix. (2.11)
The interpolating polynomial is given in terms of Lagrange polynomials by
p(x)=ifiLi(x)=iﬁ H =k (2.12)
: : S Xi — Xk
i=0 =0 k=0,k#i

2.2.2 Barycentric Lagrange Interpolation

With the polynomial

wx) = H(x —X;) (2.13)
i=0
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the Lagrange polynomial can be written as

w(x) 1

x = xi [Ticopmi (i — X0)

Li(x) =

which, introducing the Barycentric weights [4]

1
B HZ:O,k;ﬁi (i = xx)

Ui

becomes the first form of the barycentric interpolation formula

Uu;
Li(x) =wlk) .

X — X

The interpolating polynomial can now be evaluated according to

p) =D fiLix) =w®) D f; -
i=0

X —x
i=0 !

2 Interpolation

(2.14)

2.15)

(2.16)

(2.17)

Having computed the weights u;, evaluation of the polynomial only requires O (n)
operations whereas calculation of all the Lagrange polynomials requires O (n?) oper-

ations. Calculation of w(x) can be avoided considering that

n n ul
pi(x) = ;u-(x) = w<x>§ P

is a polynomial of degree n with

pix)=1i=0...n.
But this is only possible if
pix) =1

Therefore

o) = 29 _ 2ico fiz%y
pi(x) Z?:o xTx,-

(2.18)

(2.19)

(2.20)

2.21)

which is known as the second form of the barycentric interpolation formula.



2.2 Polynomial Interpolation 21

2.2.3 Newton’s Divided Differences

Newton’s method of divided differences [5] is an alternative for efficient numerical
calculations [6]. Rewrite

fx) = fxo) + SO = JO0) ), (2.22)
X — Xo

With the first order divided difference

flx, xol = S = fix) (2.23)
X — Xo

this becomes

s xol = flrn, xo] 4 LEXd = Sl vl (2.24)

X — X1

and with the second order divided difference

fIx.xol = flx, xl — f) = flo)  fO) — fxo)

flx. xo, n] = x — xq T (x—xp)(x —x1)  (x1 — x0)(x — x1)
_ fx) [ f(xo0)
(x —x0)(x —x1)  (x1 —x0)(x1 —x)  (x0 — x1)(x0 — x)
(2.25)
we have

JF(x) = f(xo) + (x — x0) flx1, X0l + (x —x0)(x —x1) flx, %0, x1].  (2.26)
Higher order divided differences are defined recursively by

Fltts %] = flxxy--x2] = flxa - ~xr_1xr]_ (2.27)
X1 — Xr

They are invariant against permutation of the arguments which can be seen from the
explicit formula

fla - xr]—ZH S5) (2.28)

i#k (xx — xl)
Finally we have

f(x) = pkx)+qXx) (2.29)
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with a polynomial of degree n

p(x) = f(xo) + flx1, xol(x — x0) + flx2x1x0](x — x0)(x — x1) + - -

s flxaxp—1 - x0l(x — x0)(x — xp) - (X — Xp—1) (2.30)

and the function

q(x) = flxxn - xol(x —xp) -+ (x —xp). (2.31)

Obviously g(x;) =0 ,i =0---n, hence p(x) is the interpolating polynomial.
Algorithm

The divided differences are arranged in the following way:

fo
S flxoxi]

o1 flxn—2xp-1] flxn—3xp—2Xn—11 ... flxo...xn-1]
fn f[xn—lxn] f[xn—an—lxn] et f[xl t 'xn—lxn] f[X())Cl t 'xn—lxn]
(2.32)

Since only the diagonal elements are needed, a one-dimensional data array #[0] - - -
t[n] is sufficient for the calculation of the polynomial coefficients:

for i:=0 to n do begin
t[i]:=f[il;
for k:=i-1 downto 0 do
tlk]:=(t[k+1]-t[k]/(x[i]-x[K]);
a[i]:=t[0];
end;

The value of the polynomial is then evaluated by

p:=a[n];
for i:=n-1 downto 0 do
p:=p*(x-x[i])+al[il;

2.2.4 Neville Method

The Neville method [7] is advantageous if the polynomial is not needed explicitly
and has to be evaluated only at one point. Consider the interpolating polynomial for
the points x - - - x¢, which will be denoted as Py ;... (x). Obviously
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Potox(x) = (x — xo)Pl---k(x))Ck—_(io— X)) Po.k—1(x) (2.33)

since for x = xj - - - x;_; the right hand side is

(x —x0) f(x) — (x —x) f (%) _

). (2.34)
Xk — Xo
For x = xy we have
—(xo —x) f(x) _ fx) (2.35)
X — X0
and finally for x = x;.
(e = x) f() _ £, (2.36)
Xk — X0
Algorithm:

We use the following scheme to calculate Py ;...,,(x) recursively:

Py
Py Py
P Py Poro (2.37)

Pn Pnfl,n Pan,nfl,n T P01-~~n

The first column contains the function values P;(x) = f;. The value Py;...,, can be
calculated using a 1-dimensional data array p[0] - - - p[n]:

for i:=0 to n do begin

plil:=fTil;

for k:=i-1 downto 0 do
plk]:=(plk+11*(x-x[kD-p[k]*(x-x[i]) )/(x[k]-x[i]);
end;

f:=p[0];

2.2.5 Error of Polynomial Interpolation

The error of polynomial interpolation [8] can be estimated with the help of the
following theorem:

If f(x) is n+ 1 times differentiable then for each X there exists ¢ within the
smallest interval containing X as well as all the x; with
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Fig. 2.2 (Interpolating 3
polynomial) The interpolated
function (solid curve) and
the interpolating polynomial
(broken curve) for the
example (2.40) are compared

0 2 4 6
X
VARI(3)
q(x) = H(x — )T (2.38)
From a discussion of the function
wx) =[] —x) (2.39)

it can be seen that the error increases rapidly outside the region of the sample points
(extrapolation is dangerous!). As an example consider the sample points (Fig.2.2)

3
f(x) = sin(x) x =0, g T, 7” 2. (2.40)

The maximum interpolation error is estimated by(| f "] < 1)

1 35
[f(x) —p(x)| < Iw(x)lm <10~ 0.3 (2.41)

whereas the error increases rapidly outside the interval 0 < x < 27 (Fig.2.3).

2.3 Spline Interpolation

Polynomials are not well suited for interpolation over a larger range. Often spline
functions are superior which are piecewise defined polynomials [9, 10]. The simplest
case is a linear spline which just connects the sampling points by straight lines:

Yi+1 — Vi
Xitl — Xi

pi(x) =y + (x —x) (2.42)
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Fig. 2.3 (Interpolation

error) The polynomial w(x)

is shown for the example 100
(2.40). Its roots x; are given
by the x values of the sample
points (circles). Inside the
interval xq - - - x4 the absolute
value of w is bounded by
|w(x)| < 35 whereas outside -100
the interval it increases very

rapidly

o (x)
(=

s(x) = pi(x) where x; < x < xj41. (2.43)

The most important case is the cubic spline which is given in the interval x; < x <
Xit1 by

pi(x) = a; + Bi(x — xi) + yi(x — x)* 4+ 5i(x — x;)°. (2.44)

We want to have a smooth interpolation and assume that the interpolating function
and their first two derivatives are continuous. Hence we have for the inner boundaries:

i=0,---n—1

Pi(Xiy1) = pit1(Xit1) (2.45)
Pi(Xix1) = pip (Xigp1) (2.46)
pi (Xi1) = Py (Xig1). (2.47)

We have to specify boundary conditions at xy and x,,. The most common choice are
natural boundary conditions s”(xo) = s”(x,) = 0, but also periodic boundary con-
ditions s” (xg) = 5" (x,), s'(x0) = s'(x,), s(x0) = s(x,) or given derivative values
s'(xo) and s’(x,,) are often used. The second derivative is a linear function [2]

pi(x) =27 + 66;(x — x;) (2.48)
which can be written using 4; 1y = x;41 — x; and M; = s”(x;) as

pl(x) = Mg (= %) + M; (i1 = 1)

i=0n—1 (2.49)
hivi

hiti

since
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Yot — i
plx) = M= = 5" (xy)
hit
(Xig1 — xi)
pl(xXit1) = My ————= = 5" (xi41).

hiti

Integration gives with the two constants A; and B;

(x — x;)? (Xip1 — x)?
(x)=M,; - M; A;
i) =M= 2y T
(x —x;)? (41 — x)?
() = M; M; Ai(x — X)) + B;.
Pi (x) i+1 6hi+1 + M; 6hi+1 + (x —x;) + B;

From s(x;) = y; and s(x;11) = y;+1 we have

h?,,
Mi%"‘Bi =i

h?,
Mi+l% + Aihiy1 + Bi = yi
and hence
h?
B =y — M~
Y 6
Yir1 =y hip
A,‘ = — (M;, — M;).
i 5 (M4 )

Now the polynomial is

M; M;
pi(x) = = (x —x;)° — (x—xi —hip1)> + Ai(x —x;) + B

6hi+] 6hi+l
M; M,; M;
3 i+1 i i 2
=(x—-x — + 3hip1(x —x;
(=) <6h,-+1 6hi+1) Gy e )
M; M;
+(x —x;) | Ar — =——3h? Bi + ——h? .
('x X ) ( 6hl+1 l+1) + + 6h1+] i+1

Comparison with
Pi(x) = i + Bi(x —x) + 7% (x = x)* + 6 (x — x)°
gives

M; ,
o; = B; + ?hH—l =Y

(2.50)

2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)
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2.61)

(2.62)

(2.63)

hiv i M; i1 — Vi M, 2M,;
5= A — +1Mi Vi )’_hiHL
2 hit 6
Yi = >
M — M;
5i — L
6hi11
Finally we calculate M; from the continuity of s'(x). Substituting for A; in p;(x) we
have
(x —x;)* (Xis1 —X)? | Vi1 — Y hip
pix) = My - M= e — = (M — M))
2hi 1 2hit it 6

and from p]_, (x;) = p}(x;) it follows

hi  yi—yia1
M= 22 T — M

3 + W 6( 1)

hiv1  Yigr —Yi  hip
=M-—+——— M — M,
> + hit 3 (M; 1 )

hi hi hit hivi Y=Y Yi—Yia
M=t + M =+ M2 4 = -

i 3 + M;_4 6 + M, 3 + +1 6 hi+1 hi

which is a system of linear equations for the M;. Using the abbreviations

o
" hit+hig
hi
Wi = 1— )\,’ e
hi + hiq
d = 6 ()’i+1 — Vi Vi~ yil)
" b+ i hit h;

we have
wiMiy +2M; + \iMiyy =d; i=1---n—1.
We define for natural boundary conditions

M=0 p, =0 dp=0 d,=0

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

2.71)
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and in case of given derivative values

M =1 —1d—6
o=1 p,= o—h1

(

Y1 — Yo

hy

The system of equations has the form

2 X
1 2 A
H2 2 A
Mn—1 2 )\nfl
pn 2

For periodic boundary conditions we define

B hl +hn

n

and the system of equations is (with M,, = M)

2 X\ 1
M2 2 Ao
Hy 2 A3
Hn—1 2 )\n—l
_/\n Mo 2

d, =

2 Interpolation

/ 6 / Yn Yn—1
) amp )
2.72)
_ " do
d
d»
= (2.73)
dnfl
6 VL=V Yn = dnel) o
h+h, \ Iy hy '
_ -
d>
d3
= . (2.75)
dn—l
- dn

All this tridiagonal systems can be easily solved with a special Gaussian elimination
method (Sects.5.3 and 5.4)

2.4 Rational Interpolation

The use of rational approximants allows to interpolate functions with poles, where
polynomial interpolation can give poor results [2]. Rational approximants without
poles [11] are also well suited for the case of equidistant x;, where higher order
polynomials tend to become unstable. The main disadvantages are additional poles
which are difficult to control and the appearance of unattainable points. Recent
developments using the barycentric form of the interpolating function [11-13] helped
to overcome these difficulties.


http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5

2.4 Rational Interpolation

2.4.1 Padé Approximant

29

The Padé approximant [14] of order [M / N]to afunction f (x) is the rational function

Pyu(x) _ po+pix+...pux"

ONGx)  qo+qix+...qyxVN

Ryn(x) =
which reproduces the McLaurin series (the Taylor series at x = 0) of
f(x) =ao+a1x—|—a2x2+...
up to order M + N, i.e.
f£(0) = R(0)
d d
af 0) = ER(O)

dM+N) (M+N)

oo O = 35 RO).

Multiplication gives

po+pix+-+pux™ = (o + qix + - +gnx™)ao +arx + ...

and collecting powers of x we find the system of equations

Po = qodo
P1 = qoa1 + q1a9
P2 = qoaz +aiq + aoqz

Pm = qoam +am-191 + - -+ aogm
0 =goap+1 +qiay + -+ gnapy—n+1

0 =qoamsn + qrapyin—1 + - +gnay
where
a, =0 forn <0

g =0 forj>N.

)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

2.81)

(2.82)
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Example: Calculate the [3, 3] approximant to tan(x).
The Laurent series of the tangent is

1, 2
t = x4+ — 2.83
an(x) x+3x +15x + (2.83)

We set gy = 1. Comparison of the coefficients of the polynomial

1 2
o+ pix + pax’ + p3x’ = (1 + qix + gax” + g3x°) (x + §x3 + Exs)

(2.84)
gives the equations

I[)():O

pr=1

c P2 =4

R 1

‘P3=qrt3 (2.85)
Y10 =g3+ 5

5.0 2 41

0 =F 439

6:0 Z%CI1+%C[3-

We easily find

2 1

= = :O = —— [ j—
P2=4q1 =43 q2 P3 15

5 (2.86)

and the approximant of order [3, 3] is

R x—£x?
33= "5 5~
1— 2x2

(2.87)

This expression reproduces the tangent quite well (Fig.2.4). Its pole at +/10/2 =~
1.581 is close to the pole of the tangent function at 7/2 ~ 1.571.

2.4.2 Barycentric Rational Interpolation

If the weights of the barycentric form of the interpolating polynomial (2.21) are taken
as general parameters u; 7~ 0 it becomes a rational function

n u;
Zi:O ﬁ X—X;
zn Uj
i=0 x—x;

R(x) = (2.88)
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Fig. 2.4 (Padé
approximation to tan(x))
The Padé approximant (2.87,
dash dotted curve)
reproduces the tangent (full
curve) quite well

tan(x)

which obviously interpolates the data points since

lim R(x) = fi. (2.89)
With the polynomials'
n n n w(x
(x) Zutfl H '(x x]) Zulﬁx—xi
i=0 Jj=0;j#i i=0

n

n n ( )
Q(x):i;u,- I (x—x,»)zzuixw_xXi

J=0:j#i i=0

a rational interpolating function is given by>

P(x)

R = .
=56

Obviously there are infinitely different rational interpolating functions which differ
by the weights u = (ug, u; ...u,) (an example is shown in Fig.2.5). To fix the
parameters u;, additional conditions have to be imposed.

2.4.2.1 Rational Interpolation of Order [M, N]

One possibility is to assume that P(x) and Q(x) are of order < M and < N,
respectively with M + N = n. This gives n additional equations for the 2(n + 1)

lw@) = [l_o(x — x;) as in (2.39).
2t can be shown that any rational interpolant can be written in this form.
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R(x)

-1 . . | .
. 0 1 2 3 4

Fig. 2.5 (Rational interpolation) The data points (1, %), (2, %), 3, 1]—0) are interpolated by several
rational functions. The [1, 1] approximant (2.95) corresponding to u = (5, —20, 15) is shown by

. 2_ - .
the solid curve, the dashed curve shows the function R(x) = % which is obtained for

u = (1, 1, 1) and the dash dotted curve shows the function R(x) = % which follows for

u = (1, —1, 1) and has no real poles

polynomial coefficients. The number of unknown equals n 4 1 and the rational inter-
polant is uniquely determined up to a common factor in numerator and denominator.

Example Consider the data points f(1) = 1, f(2) = 1, f(3) = 5.

The polynomials are

1 1 1
P(x) = Juolx =2)(x = 3) + sur(x = Dlx = 3) + pualx = Dix = 2)

3 1 5 4 3 1 1 1 2
=3ug+ -uy+ -up+ | —zup— -uyp — —uz | x+ *M0+§M1+Eu2 x

5 5 2 5 10 2
(2.90)

0(x) =uplx —2)(x =3) +ur(x — D(x —=3) +ua(x — D(x = 2)

= 6ug + 3uj + 2us + [—5ug — 4uy — 3unlx + [uo + uy + uz]x2. 2.91)

To obtain a [1, 1] approximant we have to solve the equations

! + ! + ! 0 (2.92)
—M —_— — = .
PRI
ug+u; +u, =0 (2.93)

which gives

Uy = 314() up = —4M0 (294)
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and thus

6

1
2U) — cUX 6 —
R(x)=3"1_35700 22

= . 2.95
2upx 10x ( )

General methods to obtain the coefficients u; for a given data set are described in
[12, 13]. They also allow to determine unattainable points corresponding to u; = 0
and to locate the poles. Without loss of generality it can be assumed [13] that M > N .

Let P(x) be the unique polynomial which interpolates the product f(x)Q (x)

P(xi)) =f(x)Q(x) i=0...M. (2.96)

Then from (2.31) we have

Fx)Q(x) = P(x) = (fQ)lxo- - xm, x1(x — x0) -+ (x — xpm). (2.97)
Setting

x=x i=M+1,...n (2.98)
we have

FODO@) — P(xi) = (fOQ)[Xo .. . xa, Xi1(xi — Xo) - .. (x — Xp) (2.99)

which is zero if P(x;)/Q(x;) = f; fori =0, ...n.Butthen
(fOlxo...xpm,xi1=0 i=M+1,...n. (2.100)

The polynomial Q(x) can be written in Newtonian form (2.30)

N -l
QW)= > v [[x—xp) =w+vix —x0) +-+vn&x —x0)...(x —xy_1).
i=0 j=0
(2.101)
With the abbreviation
gix)=x—x; j=0...N (2.102)

we find

3The opposite case can be treated by considering the reciprocal function values 1/f (x;).
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FOrglx) z S (xx)

(fgplxo...xp, x] = _ SR
k=0..M,i Tl Cokc = 1) k=0...M.i k] [yt 2 Ok = xr)

= fIX0 - X1, X1 - XM Xi] (2.103)

which we apply repeatedly to (2.100) to get the system of n — M = N equations for
N + 1 unknowns

N
D viflxp XX xi]=0 i=M+1...n (2.104)
j=0

from which the coefficients v/; can be found by Gaussian elimination up to a scaling
factor. The Newtonian form of Q(x) can then be converted to the barycentric form
as described in [6].

2.4.2.2 Rational Interpolation without Poles

Polynomial interpolation of larger data sets can be ill behaved, especially for the case
of equidistant x —values. Rational interpolation without poles can be a much better
choice here (Fig.2.6).

Berrut [15] suggested to choose the following weights

up = (—Dk.

With this choice Q(x) has no real roots. Floater and Horman [11] used the different
choice

Fig. 2.6 (Interpolation of a
step function) A step
function with uniform
x-values (circles) is
interpolated by a polynomial
(full curve), a cubic spline
(dashed curve) and with the
rational Floater—Horman

d = 1 function (2.105,
dash-dotted curve). The
rational function behaves
similar to the spline function
but provides in addition an
analytical function with
continuous derivatives




2.4 Rational Interpolation 35

Table 2.1 Floater-Horman

. . otk | d
weights for uniform data
L,1,1...,1,1,1 0
1,2,2,2,...,2,2,2,1 1
1,3,4,4,4,...,4,4,4,3,1 2
1,4,7,8,8,8,...,8,8,8,7,4,1 3
1,5,11, 15,16, 16, 16, ..., 16,16, |4
16,15,11,5,1
1 1
uk=<—1)’<-1( + ) k=1...n—1
Xk+1 — Xk Xk — Xp—1
1 el 1
g = ————— uy = (=" — (2.105)

X1 — Xo Xn — Xp—1

which becomes very similar for equidistant x-values.
Floater and Horman generalized this expression and found a class of rational
interpolants without poles given by the weights

min(k,n—d) i+d

we= (= I (2.106)

— X
i=max(k—d,0) j= l,;ak' k=Xl

where 0 < d < n and the approximation order increases with d. In the uniform case
this simplifies to (Table2.1)

| e max(k,n—d) d .
r=(=1) > el ) (2.107)

i=min(k—d,0)

2.5 Multivariate Interpolation

The simplest 2-dimensional interpolation method is bilinear interpolation.* It uses
linear interpolation for both coordinates within the rectangle x; <x < x;4; ¥ <

Yi = Yiy1:

X + hy, Yig) — p(xi + hye, ¥i)
Yi+1 — Vi

pxi+hy,yi +hy) =pOi +he,yi) +hy

= f(xi,y) +hxf(xi+1)’€yi? _){(xi’y") (2.108)
i+1 — Ai

4Bilinear means linear interpolation in two dimensions. Accordingly linear interpolation in three
dimensions is called trilinear.
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Fig. 2.7 Bispline
interpolation

F iy yier) + hy S G yieD) =i yie) F(xiy vi) — hy S,y = F (i yi)

Xi+1—Xi Xi1—Xi
y

Yi+1 — Vi

which can be written as a two dimensional polynomial

p(x; + hy, yi +hy) = apo + aphy + agrhy +ayh,hy (2.109)
with
aoo = f(xi, yi)
g, yi) — f(x, 0
ap =
Xit1 — X
0l = f(-xia yi+1) - f(-xia yl)
Yi+1 — Vi

a, S i, yi) — s Yivr) — fign, yi) + f (X, yi).

(2.110)
Xig1 — x)Yig1 — i)

Application of higher order polynomials is straightforward. For image processing
purposes bicubic interpolation is often used.

If high quality is needed more sophisticated interpolation methods can be applied.
Consider for instance two-dimensional spline interpolation on a rectangular mesh of
data to create a new data set with finer resolution’

fij = fihe, jhy) with0 <i <N, 0<j<N,. @2.111)

First perform spline interpolation in x-direction for each data row j to calculate new
data sets

foj =50, fij;0<i<N) 0<j<N, 0<i'<N; (2.112)
and then interpolate in y direction to obtain the final high resolution data (Fig.2.7)

fiy =8y frj;0<j<Ny) 0<i'’<N, 0<j < N;. (2.113)

5 A typical task of image processing.



Problems 37

Problems

Problem 2.1 Polynomial Interpolation
This computer experiment interpolates a given set of n data points by

e a polynomial

n

p(x)=Zn:f,~ [T —=2 (2.114)

Xi — Xp
i—0 k=0 1k

e a linear spline which connects successive points by straight lines
si(x) =a; +b;(x —x;) for x; < x < x4 (2.115)

e a cubic spline with natural boundary conditions

s(0) = pi(x) = a; + Bi(x —x) +3i(x —x)P 4+ 5i(x —x) X < x < X

(2.116)
s"(xp) =5"(x0) =0 (2.117)
e arational function without poles
i fites
R(x) = Zo—” (2.118)
20
with weights according to Berrut
up = (=¥ (2.119)
or Floater-Hormann
k-1 1 1
u, = (—1) + k=1...n—-1 (2.120)
Xkl — Xk X — Xg—1
1 el 1
uy = — U, = ()" —. (2.121)
X1 — Xo Xn — Xp—1

Table 2.2 Zener diode voltage/current data
Voltage -1.5 —-1.0 —0.5 0.0
Current —3.375 -1.0 —0.125 0.0




38 2 Interpolation

Table 2.3 Additional voltage/current data
Voltage 1.0 2.0 3.0 4.0 4.1 42 4.5
Current | 0.0 0.0 0.0 0.0 1.0 3.0 10.0

Table 2.4 Pulse and step function data

X -3 -2 -1 0 1 2 3
Ypulse 0 0 0 1 0
Ystep 0 0 0 1 1 1 1

Table 2.5 Data set for two-dimensional interpolation

x 0 1 2 0 1 2
y 0 0 0 1 1 1 2 2 2
f 1 0 -1 0 0 0 -1 0 1

e Interpolate the data (Table 2.2) in the range
—-15<x<0O.

e Now add some more sample points (Table2.3) for —1.5 < x < 4.5

e Interpolate the function f(x) = sin(x) at the points x =0, 7, T, 37”, 2m. Take
more sample points and check if the quality of the fit is improved.

o Investigate the oscillatory behavior for a discontinuous pulse or step function as

given by the data (Table?2.4)

Problem 2.3 Two-dimensional Interpolation

This computer experiment uses bilinear interpolation or bicubic spline interpolation
to interpolate the data (Table?2.5)
on a finer grid Ax = Ay = 0.1.
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