
Chapter 2
Interpolation

Experiments usually produce a discrete set of data points (xi , fi) which represent
the value of a function f (x) for a finite set of arguments {x0 . . . xn}. If additional
data points are needed, for instance to draw a continuous curve, interpolation is
necessary. Interpolation also can be helpful to represent a complicated function by a
simpler one or to develop more sophisticated numerical methods for the calculation
of numerical derivatives and integrals. In the following we concentrate on the most
important interpolating functions which are polynomials, splines and rational func-
tions. Trigonometric interpolation is discussed in Chap.7. An interpolating function
reproduces the given function values at the interpolation points exactly (Fig. 2.1).
The more general procedure of curve fitting, where this requirement is relaxed, is
discussed in Chap.11.

The interpolating polynomial can be explicitly constructed with the Lagrange
method. Newton’s method is numerically efficient if the polynomial has to be evalu-
ated at many interpolating points and Neville’s method has advantages if the poly-
nomial is not needed explicitly and has to be evaluated only at one interpolation
point.

Polynomials are not well suited for interpolation over a larger range. Spline
functions can be superior which are piecewise defined polynomials. Especially cubic
splines are often used to draw smooth curves. Curves with poles can be represented
by rational interpolating functions whereas a special class of rational interpolants
without poles provides a rather new alternative to spline interpolation.

2.1 Interpolating Functions

Consider the following problem: Given are n + 1 sample points (xi , fi) , i = 0 · · · n
and a function of x which depends on n + 1 parameters ai :

�(x; a0 · · · an). (2.1)

© Springer International Publishing AG 2017
P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-61088-7_2

17

http://dx.doi.org/10.1007/978-3-319-61088-7_7
http://dx.doi.org/10.1007/978-3-319-61088-7_11

18 2 Interpolation

Fig. 2.1 (Interpolating
function) The interpolating
function �(x) reproduces a
given data set �(xi) = fi
and provides an estimate of
the function f (x) between
the data points

f 0
f 1

f 2
f 3 f 4 f 5

x0 x1 x2 x3 x4 x5 x

(x)Φ

The parameters are to be determined such that the interpolating function has the
proper values at all sample points (Fig. 2.1)

�(xi ; a0 · · · an) = fi i = 0 · · · n. (2.2)

An interpolation problem is called linear if the interpolating function is a linear
combination of functions

�(x; a0 · · · an) = a0�0(x) + a1�1(x) + · · · an�n(x). (2.3)

Important examples are

• polynomials

a0 + a1x + · · · anxn (2.4)

• trigonometric functions

a0 + a1e
i x + a2e

2i x + · · · anenix (2.5)

• spline functions which are piecewise polynomials, for instance the cubic spline

s(x) = αi + βi (x − xi) + γi (x − xi)
2 + δi (x − xi)

3 xi ≤ x ≤ xi+1. (2.6)

Important examples for nonlinear interpolating functions are

• rational functions

p0 + p1x + · · · pMxM

q0 + q1x + · · · qN xN
(2.7)

2.1 Interpolating Functions 19

• exponential functions

a0e
λ0x + a1e

λ1x + · · · . (2.8)

where amplitudes ai and exponents λi have to be optimized.

2.2 Polynomial Interpolation

For n + 1 sample points (xi , fi), i = 0 · · · n, xi �= x j there exists exactly one
interpolating polynomial of degree n with

p(xi) = fi , i = 0 · · · n. (2.9)

2.2.1 Lagrange Polynomials

Lagrange polynomials [3] are defined as

Li (x) = (x − x0) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
. (2.10)

They are of degree n and have the property

Li (xk) = δi,k . (2.11)

The interpolating polynomial is given in terms of Lagrange polynomials by

p(x) =
n∑

i=0

fiLi (x) =
n∑

i=0

fi

n∏

k=0,k �=i

x − xk
xi − xk

. (2.12)

2.2.2 Barycentric Lagrange Interpolation

With the polynomial

ω(x) =
n∏

i=0

(x − xi) (2.13)

20 2 Interpolation

the Lagrange polynomial can be written as

Li (x) = ω(x)

x − xi

1∏n
k=0,k �=i (xi − xk)

(2.14)

which, introducing the Barycentric weights [4]

ui = 1∏n
k=0,k �=i (xi − xk)

(2.15)

becomes the first form of the barycentric interpolation formula

Li (x) = ω(x)
ui

x − xi
. (2.16)

The interpolating polynomial can now be evaluated according to

p(x) =
n∑

i=0

fiLi (x) = ω(x)
n∑

i=0

fi
ui

x − xi
. (2.17)

Having computed the weights ui , evaluation of the polynomial only requires O(n)

operations whereas calculation of all the Lagrange polynomials requires O(n2) oper-
ations. Calculation of ω(x) can be avoided considering that

p1(x) =
n∑

i=0

Li (x) = ω(x)
n∑

i=0

ui
x − xi

(2.18)

is a polynomial of degree n with

p1(xi) = 1 i = 0 . . . n. (2.19)

But this is only possible if

p1(x) = 1. (2.20)

Therefore

p(x) = p(x)

p1(x)
=

∑n
i=0 fi

ui
x−xi∑n

i=0
ui

x−xi

(2.21)

which is known as the second form of the barycentric interpolation formula.

2.2 Polynomial Interpolation 21

2.2.3 Newton’s Divided Differences

Newton’s method of divided differences [5] is an alternative for efficient numerical
calculations [6]. Rewrite

f (x) = f (x0) + f (x) − f (x0)

x − x0
(x − x0). (2.22)

With the first order divided difference

f [x, x0] = f (x) − f (x0)

x − x0
(2.23)

this becomes

f [x, x0] = f [x1, x0] + f [x, x0] − f [x1, x0]
x − x1

(x − x1) (2.24)

and with the second order divided difference

f [x, x0, x1] = f [x, x0] − f [x1, x0]
x − x1

= f (x) − f (x0)

(x − x0)(x − x1)
− f (x1) − f (x0)

(x1 − x0)(x − x1)

= f (x)

(x − x0)(x − x1)
+ f (x1)

(x1 − x0)(x1 − x)
+ f (x0)

(x0 − x1)(x0 − x)
(2.25)

we have

f (x) = f (x0) + (x − x0) f [x1, x0] + (x − x0)(x − x1) f [x, x0, x1]. (2.26)

Higher order divided differences are defined recursively by

f [x1x2 · · · xr−1xr] = f [x1x2 · · · xr−1] − f [x2 · · · xr−1xr]
x1 − xr

. (2.27)

They are invariant against permutation of the arguments which can be seen from the
explicit formula

f [x1x2 · · · xr] =
r∑

k=1

f (xk)∏
i �=k(xk − xi)

. (2.28)

Finally we have

f (x) = p(x) + q(x) (2.29)

22 2 Interpolation

with a polynomial of degree n

p(x) = f (x0) + f [x1, x0](x − x0) + f [x2x1x0](x − x0)(x − x1) + · · ·

· · · + f [xnxn−1 · · · x0](x − x0)(x − x1) · · · (x − xn−1) (2.30)

and the function

q(x) = f [xxn · · · x0](x − x0) · · · (x − xn). (2.31)

Obviously q(xi) = 0 , i = 0 · · · n, hence p(x) is the interpolating polynomial.

Algorithm

The divided differences are arranged in the following way:

f0
f1 f [x0x1]
...

...
. . .

fn−1 f [xn−2xn−1] f [xn−3xn−2xn−1] . . . f [x0 . . . xn−1]
fn f [xn−1xn] f [xn−2xn−1xn] · · · f [x1 · · · xn−1xn] f [x0x1 · · · xn−1xn]

(2.32)

Since only the diagonal elements are needed, a one-dimensional data array t[0] · · ·
t[n] is sufficient for the calculation of the polynomial coefficients:

for i:=0 to n do begin
t[i]:=f[i];
for k:=i-1 downto 0 do

t[k]:=(t[k+1]-t[k])/(x[i]-x[k]);
a[i]:=t[0];

end;

The value of the polynomial is then evaluated by

p:=a[n];
for i:=n-1 downto 0 do
p:=p*(x-x[i])+a[i];

2.2.4 Neville Method

The Neville method [7] is advantageous if the polynomial is not needed explicitly
and has to be evaluated only at one point. Consider the interpolating polynomial for
the points x0 · · · xk , which will be denoted as P0,1,···k(x). Obviously

2.2 Polynomial Interpolation 23

P0,1,···k(x) = (x − x0)P1···k(x) − (x − xk)P0···k−1(x)

xk − x0
(2.33)

since for x = x1 · · · xk−1 the right hand side is

(x − x0) f (x) − (x − xk) f (x)

xk − x0
= f (x). (2.34)

For x = x0 we have

−(x0 − xk) f (x)

xk − x0
= f (x) (2.35)

and finally for x = xk

(xk − x0) f (x)

xk − x0
= f (x). (2.36)

Algorithm:

We use the following scheme to calculate P0,1···n(x) recursively:

P0
P1 P01
P2 P12 P012
...

...
...

. . .

Pn Pn−1,n Pn−2,n−1,n · · · P01···n

(2.37)

The first column contains the function values Pi (x) = fi . The value P01···n can be
calculated using a 1-dimensional data array p[0] · · · p[n]:

for i:=0 to n do begin
p[i]:=f[i];
for k:=i-1 downto 0 do
p[k]:=(p[k+1]*(x-x[k])-p[k]*(x-x[i]))/(x[k]-x[i]);
end;
f:=p[0];

2.2.5 Error of Polynomial Interpolation

The error of polynomial interpolation [8] can be estimated with the help of the
following theorem:

If f (x) is n + 1 times differentiable then for each x there exists ξ within the
smallest interval containing x as well as all the xi with

24 2 Interpolation

Fig. 2.2 (Interpolating
polynomial) The interpolated
function (solid curve) and
the interpolating polynomial
(broken curve) for the
example (2.40) are compared

0 2 4 6
x

-3

-2

-1

0

1

2

3

q(x) =
n∏

i=0

(x − xi)
f (n+1)(ξ)

(n + 1)! . (2.38)

From a discussion of the function

ω(x) =
n∏

i=0

(x − xi) (2.39)

it can be seen that the error increases rapidly outside the region of the sample points
(extrapolation is dangerous!). As an example consider the sample points (Fig. 2.2)

f (x) = sin(x) xi = 0,
π

2
,π,

3π

2
, 2π. (2.40)

The maximum interpolation error is estimated by(| f (n+1)| ≤ 1)

| f (x) − p(x)| ≤ |ω(x)| 1

120
≤ 35

120
≈ 0.3 (2.41)

whereas the error increases rapidly outside the interval 0 < x < 2π (Fig. 2.3).

2.3 Spline Interpolation

Polynomials are not well suited for interpolation over a larger range. Often spline
functions are superior which are piecewise defined polynomials [9, 10]. The simplest
case is a linear spline which just connects the sampling points by straight lines:

pi (x) = yi + yi+1 − yi
xi+1 − xi

(x − xi) (2.42)

2.3 Spline Interpolation 25

Fig. 2.3 (Interpolation
error) The polynomial ω(x)
is shown for the example
(2.40). Its roots xi are given
by the x values of the sample
points (circles). Inside the
interval x0 · · · x4 the absolute
value of ω is bounded by
|ω(x)| ≤ 35 whereas outside
the interval it increases very
rapidly

0 2 4 6
x

-100

0

100

ω
(x
)

s(x) = pi (x) where xi ≤ x < xi+1. (2.43)

The most important case is the cubic spline which is given in the interval xi ≤ x <

xi+1 by

pi (x) = αi + βi (x − xi) + γi (x − xi)
2 + δi (x − xi)

3. (2.44)

We want to have a smooth interpolation and assume that the interpolating function
and their first two derivatives are continuous. Hencewe have for the inner boundaries:

i = 0, · · · n − 1

pi (xi+1) = pi+1(xi+1) (2.45)

p′
i (xi+1) = p′

i+1(xi+1) (2.46)

p′′
i (xi+1) = p′′

i+1(xi+1). (2.47)

We have to specify boundary conditions at x0 and xn . The most common choice are
natural boundary conditions s ′′(x0) = s ′′(xn) = 0, but also periodic boundary con-
ditions s ′′(x0) = s ′′(xn), s ′(x0) = s ′(xn), s(x0) = s(xn) or given derivative values
s ′(x0) and s ′(xn) are often used. The second derivative is a linear function [2]

p′′
i (x) = 2γi + 6δi (x − xi) (2.48)

which can be written using hi+1 = xi+1 − xi and Mi = s ′′(xi) as

p′′
i (x) = Mi+1

(x − xi)

hi+1
+ Mi

(xi+1 − x)

hi+1
i = 0 · · · n − 1 (2.49)

since

26 2 Interpolation

p′′
i (xi) = Mi

xi+1 − xi
hi+1

= s ′′(xi) (2.50)

p′′
i (xi+1) = Mi+1

(xi+1 − xi)

hi+1
= s ′′(xi+1). (2.51)

Integration gives with the two constants Ai and Bi

p′
i (x) = Mi+1

(x − xi)2

2hi+1
− Mi

(xi+1 − x)2

2hi+1
+ Ai (2.52)

pi (x) = Mi+1
(x − xi)3

6hi+1
+ Mi

(xi+1 − x)3

6hi+1
+ Ai (x − xi) + Bi . (2.53)

From s(xi) = yi and s(xi+1) = yi+1 we have

Mi
h2i+1

6
+ Bi = yi (2.54)

Mi+1
h2i+1

6
+ Aihi+1 + Bi = yi+1 (2.55)

and hence

Bi = yi − Mi
h2i+1

6
(2.56)

Ai = yi+1 − yi
hi+1

− hi+1

6
(Mi+1 − Mi) . (2.57)

Now the polynomial is

pi (x) = Mi+1

6hi+1
(x − xi)

3 − Mi

6hi+1
(x − xi − hi+1)

3 + Ai (x − xi) + Bi

= (x − xi)
3

(
Mi+1

6hi+1
− Mi

6hi+1

)
+ Mi

6hi+1
3hi+1(x − xi)

2

+(x − xi)

(
Ai − Mi

6hi+1
3h2i+1

)
+ Bi + Mi

6hi+1
h3i+1. (2.58)

Comparison with

pi (x) = αi + βi (x − xi) + γi (x − xi)
2 + δi (x − xi)

3 (2.59)

gives

αi = Bi + Mi

6
h2i+1 = yi (2.60)

2.3 Spline Interpolation 27

βi = Ai − hi+1Mi

2
= yi+1 − yi

hi+1
− hi+1

Mi+1 + 2Mi

6
(2.61)

γi = Mi

2
(2.62)

δi = Mi+1 − Mi

6hi+1
. (2.63)

Finally we calculate Mi from the continuity of s ′(x). Substituting for Ai in p′
i (x) we

have

p′
i (x) = Mi+1

(x − xi)2

2hi+1
− Mi

(xi+1 − x)2

2hi+1
+ yi+1 − yi

hi+1
− hi+1

6
(Mi+1 − Mi)

(2.64)

and from p′
i−1(xi) = p′

i (xi) it follows

Mi
hi
2

+ yi − yi−1

hi
− hi

6
(Mi − Mi−1)

= −Mi
hi+1

2
+ yi+1 − yi

hi+1
− hi+1

6
(Mi+1 − Mi) (2.65)

Mi
hi
3

+ Mi−1
hi
6

+ Mi
hi+1

3
+ Mi+1

hi+1

6
= yi+1 − yi

hi+1
− yi − yi−1

hi
(2.66)

which is a system of linear equations for the Mi . Using the abbreviations

λi = hi+1

hi + hi+1
(2.67)

μi = 1 − λi = hi
hi + hi+1

(2.68)

di = 6

hi + hi+1

(
yi+1 − yi
hi+1

− yi − yi−1

hi

)
(2.69)

we have

μi Mi−1 + 2Mi + λi Mi+1 = di i = 1 · · · n − 1. (2.70)

We define for natural boundary conditions

λ0 = 0 μn = 0 d0 = 0 dn = 0 (2.71)

28 2 Interpolation

and in case of given derivative values

λ0 = 1 μn = 1 d0 = 6

h1

(
y1 − y0
h1

− y′
0

)
dn = 6

hn

(
y′
n − yn − yn−1

hn

)
.

(2.72)

The system of equations has the form

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 λ0

μ1 2 λ1

μ2 2 λ2

. . .
. . .

. . .

μn−1 2 λn−1

μn 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

M0

M1

M2
...

Mn−1

Mn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

d0
d1
d2
...

dn−1

dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (2.73)

For periodic boundary conditions we define

λn = h1
h1 + hn

μn = 1 − λn dn = 6

h1 + hn

(
y1 − yn
h1

− yn − yn−1

hn

)
(2.74)

and the system of equations is (with Mn = M0)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 λ1 μ1

μ2 2 λ2

μ3 2 λ3

. . .
. . .

. . .

μn−1 2 λn−1

λn μn 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3
...

Mn−1

Mn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

d1
d2
d3
...

dn−1

dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (2.75)

All this tridiagonal systems can be easily solved with a special Gaussian elimination
method (Sects. 5.3 and 5.4)

2.4 Rational Interpolation

The use of rational approximants allows to interpolate functions with poles, where
polynomial interpolation can give poor results [2]. Rational approximants without
poles [11] are also well suited for the case of equidistant xi , where higher order
polynomials tend to become unstable. The main disadvantages are additional poles
which are difficult to control and the appearance of unattainable points. Recent
developments using the barycentric formof the interpolating function [11–13] helped
to overcome these difficulties.

http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5

2.4 Rational Interpolation 29

2.4.1 Padé Approximant

The Padé approximant [14] of order [M/N] to a function f (x) is the rational function

RM/N (x) = PM(x)

QN (x)
= p0 + p1x + . . . pMxM

q0 + q1x + . . . qN xN
(2.76)

which reproduces the McLaurin series (the Taylor series at x = 0) of

f (x) = a0 + a1x + a2x
2 + . . . (2.77)

up to order M + N , i.e.

f (0) = R(0)

d

dx
f (0) = d

dx
R(0)

...

d(M+N)

dx (M+N)
f (0) = d(M+N)

dx (M+N)
R(0). (2.78)

Multiplication gives

p0 + p1x + · · · + pMxM = (q0 + q1x + · · · + qN x
N)(a0 + a1x + . . .) (2.79)

and collecting powers of x we find the system of equations

p0 = q0a0
p1 = q0a1 + q1a0
p2 = q0a2 + a1q1 + a0q2
...

pM = q0aM + aM−1q1 + · · · + a0qM
0 = q0aM+1 + q1aM + · · · + qNaM−N+1

...

0 = q0aM+N + q1aM+N−1 + · · · + qNaM (2.80)

where

an = 0 for n < 0 (2.81)

q j = 0 for j > N . (2.82)

30 2 Interpolation

Example: Calculate the [3, 3] approximant to tan(x).
The Laurent series of the tangent is

tan(x) = x + 1

3
x3 + 2

15
x5 + (2.83)

We set q0 = 1. Comparison of the coefficients of the polynomial

p0 + p1x + p2x
2 + p3x

3 = (1 + q1x + q2x
2 + q3x

3)

(
x + 1

3
x3 + 2

15
x5

)

(2.84)

gives the equations

x0 : p0 = 0
x1: p1 = 1

x2 : p2 = q1

x3 : p3 = q2 + 1
3

x4 : 0 = q3 + 1
3q1

x5 : 0 = 2
15 + 1

3q2

x6 : 0 = 2
15q1 + 1

3q3.

(2.85)

We easily find

p2 = q1 = q3 = 0 q2 = −2

5
p3 = − 1

15
(2.86)

and the approximant of order [3, 3] is

R3,3 = x − 1
15 x

3

1 − 2
5 x

2
. (2.87)

This expression reproduces the tangent quite well (Fig. 2.4). Its pole at
√
10/2 ≈

1.581 is close to the pole of the tangent function at π/2 ≈ 1.571.

2.4.2 Barycentric Rational Interpolation

If the weights of the barycentric form of the interpolating polynomial (2.21) are taken
as general parameters ui �= 0 it becomes a rational function

R(x) =
∑n

i=0 fi
ui

x−xi∑n
i=0

ui
x−xi

(2.88)

2.4 Rational Interpolation 31

Fig. 2.4 (Padé
approximation to tan(x))
The Padé approximant (2.87,
dash dotted curve)
reproduces the tangent (full
curve) quite well

0 1 2 3
x

-50

-25

0

25

50

ta
n(
x)

which obviously interpolates the data points since

lim
x→xi

R(x) = fi . (2.89)

With the polynomials1

P(x) =
n∑

i=0

ui fi

n∏

j=0; j �=i

(x − x j) =
n∑

i=0

ui fi
ω(x)

x − xi

Q(x) =
n∑

i=0

ui

n∏

j=0; j �=i

(x − x j) =
n∑

i=0

ui
ω(x)

x − xi

a rational interpolating function is given by2

R(x) = P(x)

Q(x)
.

Obviously there are infinitely different rational interpolating functions which differ
by the weights u = (u0, u1 . . . un) (an example is shown in Fig. 2.5). To fix the
parameters ui , additional conditions have to be imposed.

2.4.2.1 Rational Interpolation of Order [M, N]

One possibility is to assume that P(x) and Q(x) are of order ≤ M and ≤ N ,
respectively with M + N = n. This gives n additional equations for the 2(n + 1)

1ω(x) = ∏n
i=0(x − xi) as in (2.39).

2It can be shown that any rational interpolant can be written in this form.

32 2 Interpolation

-1 0 1 2 3 4
x

-1

0

1

R
(x
)

Fig. 2.5 (Rational interpolation) The data points (1, 1
2), (2, 1

5), (3, 1
10) are interpolated by several

rational functions. The [1, 1] approximant (2.95) corresponding to u = (5,−20, 15) is shown by

the solid curve, the dashed curve shows the function R(x) = 8x2−36x+38
10(3x2−12x+11)

which is obtained for

u = (1, 1, 1) and the dash dotted curve shows the function R(x) = 4x2−20x+26
10(5−4x+x2)

which follows for
u = (1,−1, 1) and has no real poles

polynomial coefficients. The number of unknown equals n + 1 and the rational inter-
polant is uniquely determined up to a common factor in numerator and denominator.

Example Consider the data points f (1) = 1
2 , f (2) = 1

5 , f (3) = 1
10 .

The polynomials are

P(x) = 1

2
u0(x − 2)(x − 3) + 1

5
u1(x − 1)(x − 3) + 1

10
u2(x − 1)(x − 2)

= 3u0 + 3

5
u1 + 1

5
u2 +

[
−5

2
u0 − 4

5
u1 − 3

10
u2

]
x +

[
1

2
u0 + 1

5
u1 + 1

10
u2

]
x2

(2.90)

Q(x) = u0(x − 2)(x − 3) + u1(x − 1)(x − 3) + u2(x − 1)(x − 2)

= 6u0 + 3u1 + 2u2 + [−5u0 − 4u1 − 3u2] x + [u0 + u1 + u2] x
2. (2.91)

To obtain a [1, 1] approximant we have to solve the equations

1

2
u0 + 1

5
u1 + 1

10
u2 = 0 (2.92)

u0 + u1 + u2 = 0 (2.93)

which gives

u2 = 3u0 u1 = −4u0 (2.94)

2.4 Rational Interpolation 33

and thus

R(x) =
6
5u0 − 1

5u0x

2u0x
= 6 − x

10x
. (2.95)

General methods to obtain the coefficients ui for a given data set are described in
[12, 13]. They also allow to determine unattainable points corresponding to ui = 0
and to locate the poles.Without loss of generality it can be assumed [13] thatM ≥ N .3

Let P(x) be the unique polynomial which interpolates the product f (x)Q(x)

P(xi) = f (xi)Q(xi) i = 0 . . . M. (2.96)

Then from (2.31) we have

f (x)Q(x) − P(x) = (f Q)[x0 · · · xM , x](x − x0) · · · (x − xM). (2.97)

Setting

x = xi i = M + 1, . . . n (2.98)

we have

f (xi)Q(xi) − P(xi) = (f Q)[x0 . . . xM , xi](xi − x0) . . . (x − xM) (2.99)

which is zero if P(xi)/Q(xi) = fi for i = 0, . . . n. But then

(f Q)[x0 . . . xM , xi] = 0 i = M + 1, . . . n. (2.100)

The polynomial Q(x) can be written in Newtonian form (2.30)

Q(x) =
N∑

i=0

νi

i−1∏

j=0

(x − x j) = ν0 + ν1(x − x0) + · · · + νN (x − x0) . . . (x − xN−1).

(2.101)

With the abbreviation

g j (x) = x − x j j = 0 . . . N (2.102)

we find

3The opposite case can be treated by considering the reciprocal function values 1/ f (xi).

34 2 Interpolation

(f g j)[x0 . . . xM , xi] =
∑

k=0...M,i

f (xk)g(xk)∏
r �=k(xk − xr)

=
∑

k=0...M,i,k �= j

f (xk)∏
r �=k,r �= j (xk − xr)

= f [x0 . . . x j−1, x j+1 . . . xM , xi] (2.103)

which we apply repeatedly to (2.100) to get the system of n − M = N equations for
N + 1 unknowns

N∑

j=0

ν j f [x j , x j+1 . . . xM , xi] = 0 i = M + 1 . . . n (2.104)

from which the coefficients ν j can be found by Gaussian elimination up to a scaling
factor. The Newtonian form of Q(x) can then be converted to the barycentric form
as described in [6].

2.4.2.2 Rational Interpolation without Poles

Polynomial interpolation of larger data sets can be ill behaved, especially for the case
of equidistant x−values. Rational interpolation without poles can be a much better
choice here (Fig. 2.6).

Berrut [15] suggested to choose the following weights

uk = (−1)k .

With this choice Q(x) has no real roots. Floater and Horman [11] used the different
choice

Fig. 2.6 (Interpolation of a
step function) A step
function with uniform
x-values (circles) is
interpolated by a polynomial
(full curve), a cubic spline
(dashed curve) and with the
rational Floater–Horman
d = 1 function (2.105,
dash-dotted curve). The
rational function behaves
similar to the spline function
but provides in addition an
analytical function with
continuous derivatives

-4 -2 0 2 4
x

0

1

2

3

4

2.4 Rational Interpolation 35

Table 2.1 Floater-Horman
weights for uniform data

|uk | d

1, 1, 1 . . . , 1, 1, 1 0

1, 2, 2, 2, . . . , 2, 2, 2, 1 1

1, 3, 4, 4, 4, . . . , 4, 4, 4, 3, 1 2

1, 4, 7, 8, 8, 8, . . . , 8, 8, 8, 7, 4, 1 3

1, 5, 11, 15, 16, 16, 16, . . . , 16, 16,
16, 15, 11, 5, 1

4

uk = (−1)k−1

(
1

xk+1 − xk
+ 1

xk − xk−1

)
k = 1 . . . n − 1

u0 = − 1

x1 − x0
un = (−1)n−1 1

xn − xn−1
(2.105)

which becomes very similar for equidistant x-values.
Floater and Horman generalized this expression and found a class of rational

interpolants without poles given by the weights

uk = (−1)k−d
min(k,n−d)∑

i=max(k−d,0)

i+d∏

j=i, j �=k

1

|xk − x j | (2.106)

where 0 ≤ d ≤ n and the approximation order increases with d. In the uniform case
this simplifies to (Table2.1)

uk = (−1)k−d
max(k,n−d)∑

i=min(k−d,0)

(
d

k − i

)
. (2.107)

2.5 Multivariate Interpolation

The simplest 2-dimensional interpolation method is bilinear interpolation.4 It uses
linear interpolation for both coordinates within the rectangle xi ≤ x ≤ xi+1 yi ≤
yi ≤ yi+1:

p(xi + hx , yi + hy) = p(xi + hx , yi) + hy
p(xi + hx , yi+1) − p(xi + hx , yi)

yi+1 − yi

= f (xi , yi) + hx
f (xi+1, yi) − f (xi , yi)

xi+1 − xi
(2.108)

4Bilinear means linear interpolation in two dimensions. Accordingly linear interpolation in three
dimensions is called trilinear.

36 2 Interpolation

Fig. 2.7 Bispline
interpolation

x

y

+hy

f (xi , yi+1) + hx
f (xi+1,yi+1)− f (xi ,yi+1)

xi+1−xi
− f (xi , yi) − hx

f (xi+1,yi)− f (xi ,yi)
xi+1−xi

yi+1 − yi

which can be written as a two dimensional polynomial

p(xi + hx , yi + hy) = a00 + a10hx + a01hy + a11hxhy (2.109)

with

a00 = f (xi , yi)

a10 = f (xi+1, yi) − f (xi , yi)

xi+1 − xi

a01 = f (xi , yi+1) − f (xi , yi)

yi+1 − yi

a11
f (xi+1, yi+1) − f (xi , yi+1) − f (xi+1, yi) + f (xi , yi)

(xi+1 − xi)(yi+1 − yi)
. (2.110)

Application of higher order polynomials is straightforward. For image processing
purposes bicubic interpolation is often used.

If high quality is needed more sophisticated interpolation methods can be applied.
Consider for instance two-dimensional spline interpolation on a rectangular mesh of
data to create a new data set with finer resolution5

fi, j = f (ihx , jhy) with 0 ≤ i < Nx 0 ≤ j < Ny . (2.111)

First perform spline interpolation in x-direction for each data row j to calculate new
data sets

fi ′, j = s(xi ′ , fi j , 0 ≤ i < Nx) 0 ≤ j ≤ Ny 0 ≤ i ′ < N ′
x (2.112)

and then interpolate in y direction to obtain the final high resolution data (Fig. 2.7)

fi ′, j ′ = s(y j ′ , fi ′ j , 0 ≤ j < Ny) 0 ≤ i ′ < N ′
x 0 ≤ j ′ < N ′

y . (2.113)

5A typical task of image processing.

Problems 37

Problems

Problem 2.1 Polynomial Interpolation

This computer experiment interpolates a given set of n data points by

• a polynomial

p(x) =
n∑

i=0

fi

n∏

k=0,k �=i

x − xk
xi − xk

, (2.114)

• a linear spline which connects successive points by straight lines

si (x) = ai + bi (x − xi) for xi ≤ x ≤ xi+1 (2.115)

• a cubic spline with natural boundary conditions

s(x) = pi (x) = αi + βi (x − xi) + γi (x − xi)
2 + δi (x − xi)

3 xi ≤ x ≤ xi+1

(2.116)

s ′′(xn) = s ′′(x0) = 0 (2.117)

• a rational function without poles

R(x) =
∑n

i=0 fi
ui

x−xi∑n
i=0

ui
x−xi

(2.118)

with weights according to Berrut

uk = (−1)k (2.119)

or Floater–Hormann

uk = (−1)k−1

(
1

xk+1 − xk
+ 1

xk − xk−1

)
k = 1 . . . n − 1 (2.120)

u0 = − 1

x1 − x0
un = (−1)n−1 1

xn − xn−1
. (2.121)

Table 2.2 Zener diode voltage/current data

Voltage −1.5 −1.0 −0.5 0.0

Current −3.375 −1.0 −0.125 0.0

38 2 Interpolation

Table 2.3 Additional voltage/current data

Voltage 1.0 2.0 3.0 4.0 4.1 4.2 4.5

Current 0.0 0.0 0.0 0.0 1.0 3.0 10.0

Table 2.4 Pulse and step function data

x −3 −2 −1 0 1 2 3

ypulse 0 0 0 1 0 0 0

ystep 0 0 0 1 1 1 1

Table 2.5 Data set for two-dimensional interpolation

x 0 1 2 0 1 2 0 1 2

y 0 0 0 1 1 1 2 2 2

f 1 0 −1 0 0 0 −1 0 1

• Interpolate the data (Table2.2) in the range

−1.5 < x < 0.

• Now add some more sample points (Table2.3) for −1.5 < x < 4.5
• Interpolate the function f (x) = sin(x) at the points x = 0, π

2 ,π, 3π
2 , 2π. Take

more sample points and check if the quality of the fit is improved.
• Investigate the oscillatory behavior for a discontinuous pulse or step function as
given by the data (Table2.4)

Problem 2.3 Two-dimensional Interpolation

This computer experiment uses bilinear interpolation or bicubic spline interpolation
to interpolate the data (Table2.5)
on a finer grid �x = �y = 0.1.

http://www.springer.com/978-3-319-61087-0

	2 Interpolation
	2.1 Interpolating Functions
	2.2 Polynomial Interpolation
	2.2.1 Lagrange Polynomials
	2.2.2 Barycentric Lagrange Interpolation
	2.2.3 Newton's Divided Differences
	2.2.4 Neville Method
	2.2.5 Error of Polynomial Interpolation

	2.3 Spline Interpolation
	2.4 Rational Interpolation
	2.4.1 Padé Approximant
	2.4.2 Barycentric Rational Interpolation

	2.5 Multivariate Interpolation

