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Abstract. In this chapter, we present a framework that integrates an
array of techniques and automated tools designed with the objective
of drastically enhancing the Cyber Situation Awareness process. This
framework incorporates the theory and the tools we developed to answer
– automatically and efficiently – some of the fundamental questions secu-
rity analysts may need to ask in the context of Cyber Situation Aware-
ness. Most of the work presented in this chapter is the result of the
research effort conducted by the authors as part of a the Multidisci-
plinary University Research Initiative project sponsored by the Army
Research Office that was mentioned in the introductory chapter. We
present the key challenges the research community has been called to
address in this space, and describe our major accomplishments in tack-
ling those challenges.

1 Introduction

Without loss of generality, the process of situation awareness can be viewed as
a three-phase process: situation perception, situation comprehension, and situa-
tion projection [1]. Perception provides information about the status, attributes,
and dynamics of relevant elements within the environment. Comprehension of
the situation encompasses how people combine, interpret, store, and retain infor-
mation. Projection of the elements of the environment (situation) into the near
future encompasses the ability to make predictions based on the knowledge
acquired through perception and comprehension.

In order to make informed decisions, security analysts need to be aware of
the current situation, the impact and evolution of an attack, the behavior of
the attackers, the quality of available information and models, and the plausible
futures of the current situation. Some of the questions they may ask are: Is there
any ongoing attack? If so, where is the attacker? Are available attack models
sufficient to understand what is observed? Can they predict an attacker’s goal?
If so, how can they prevent that goal from being reached?
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In this chapter, we describe several techniques, mechanisms, and tools that
can help form and leverage specific types of cyber situation awareness. This
framework aims at enhancing the traditional cyber defense process by automat-
ing many of the capabilities that have traditionally required a significant involve-
ment of human analysts and other individuals. Ideally, we envision the evolution
of the current human-in-the-loop approach to cyber defense into a human-on-the-
loop approach, where human analysts would only be responsible for examining
and validating or sanitizing the results generated by automated tools, rather
than being forced to comb through daunting amounts of log entries and security
alerts.

The remainder of this chapter is organized as follows. Section 2 discusses the
overall process of Cyber Situation Awareness, and Sect. 3 presents a motivat-
ing example we use throughout the chapter. Section 4 introduces the proposed
framework, whereas Sect. 5 discusses our scientific progress and major research
accomplishments in more detail. Finally, Sect. 6 gives some concluding remarks.

2 The Process of Cyber Situation Awareness

The security analyst – or cyber defense analyst – plays a major role in all the
operational aspects of maintaining the security of an enterprise. Security ana-
lysts are also responsible for studying the threat landscape with an eye towards
emerging threats to the organization. Unfortunately, given the current state of
the art in the area of automation, the operational aspects of IT security may
still be too time-consuming to allow this type of outward looking focus in most
realistic scenarios. Therefore, the scenario we envision – where automated tools
would gather and preprocess large amounts of data on behalf of the analyst – is
a highly desirable one. Ideally, such tools should be able to automatically answer
most, if not all, the questions an analyst may ask about the current situation,
the impact and evolution of an attack, the behavior of the attackers, the quality
of available information and models, and the plausible futures of the current
situation. In the following, we define the fundamental questions that an effec-
tive Cyber Situation Awareness framework must be able to help answer. For
each question, we identify the inputs as well the outputs of the Cyber Situation
Awareness process, and we also briefly comment on the life cycle of the situation
awareness gained in response to each question.

1. Current situation. Is there any ongoing attack? If yes, what is the stage of
the intrusion and where is the attacker?
Answering this set of questions implies the capability of effectively detecting
ongoing intrusions, and identifying the assets that might have been already
compromised. With respect to these questions, the input to the CSA process
is represented by IDS logs, firewall logs, and data from other security moni-
toring tools. On the other hand, the product of the CSA process is a detailed
mapping of current intrusive activities. This type of CSA may quickly become
obsolete – if not acted upon timely or updated frequently – as the intruder
progresses within the system.
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2. Impact. How is the attack impacting the organization or mission? Can we
assess the damage?
Answering this set of questions implies the capability of accurately assessing
the impact, so far, of ongoing attacks. In this case, the CSA process requires
knowledge of the organization’s assets along with some measure of each asset’s
value. Based on this information, the output of the CSA process is an estimate
of the damage caused so far by ongoing intrusive activities. As for the previous
case, this type of CSA must be frequently updated to remain useful, because
damage will increase as the attack progresses.

3. Evolution. How is the situation evolving? Can we track all the steps of an
attack?
Answering this set of questions implies the capability of monitoring ongoing
attacks, once such attacks have been detected. In this case, the input to the
CSA process is the situation awareness generated in response to the first set
of questions above, whereas the output is a detailed understanding of how
the attack is progressing. Developing this capability can help address the
useful life limitations highlighted above and refresh the situation awareness
generated in response to the first two sets of questions.

4. Behavior. How are the attackers expected to behave? What are their
strategies?
Answering this set of questions implies the capability of modeling the
attacker’s behavior in order to understand its goals and strategies. Ideally, the
output of the CSA process with respect to this set of questions is a set of for-
mal models (e.g., game theoretic models, stochastic models) of the attacker’s
behavior. The attacker’s behavior may change over time, therefore models
need to adapt to a changing adversarial landscape.

5. Forensics. How did the attacker reach the current situation? What was he
trying to achieve?
Answering this set of questions implies the capability of analyzing the logs
after the fact and correlating observations in order to understand how an
attack originated and evolved. Although this is not strictly necessary, the
CSA process may benefit, in addressing these questions, from the situation
awareness gained in response to the fourth set of questions. In this case, the
output of the CSA process includes a detailed understanding of the weak-
nesses and vulnerabilities that made the attack possible. This information
can help security engineers and administrators harden system configurations
in order to prevent similar incidents from occurring again in the future.

6. Prediction. Can we predict plausible futures of the current situation?
Answering this set of questions implies the capability of predicting possible
moves an attacker may take in the future. With respect to this set of questions,
the input to the CSA process is represented by the situation awareness gained
in response to the first (or third) and fourth sets of questions, namely, knowl-
edge about the current situation (and its evolution) and knowledge about the
attacker’s behavior. The output is a set of possible alternative scenarios that
may materialize in the future.
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7. Information. What information sources can we rely upon? Can we assess
their quality?
Answering this set of questions implies the capability of assessing the quality
of the information sources all other tasks depend upon. With respect to this
set of questions, the goal of the CSA process is to generate a detailed under-
standing of how to weight all different sources when processing information in
order to answer all other sets of question the overall CSA process is aiming to
address. Being able to assess the reliability of each information source would
enable automated tools to attach a confidence level to each finding.

It is clear from our discussion that some of these questions are strictly cor-
related, and the ability to answer some of them may depend on the ability to
answer other questions. For instance, as we have discussed above, the capability
of predicting possible moves an attacker may take depends on the capability
of modeling the attacker’s behavior. A cross-cutting issue that affects all other
aspects of the CSA process is scalability. Given the volumes of data involved in
answering all these questions, we need to define approaches that are not only
effective, but also computationally efficient. In most circumstances, determining
a good course of action in a reasonable amount of time may be preferable to
determining the best course of action, if this cannot be done in a timely manner.

In conclusion, the situation awareness process in the context of cyber defense
entails the generation and maintenance of a body of knowledge that informs
and is augmented by all the main functions of the cyber defense process [1].
Situation awareness is generated or used by different mechanisms and tools aimed
at addressing the seven classes of questions that security analysts may routinely
ask while performing their work tasks.

3 Motivating Example

Throughout this chapter, we will often refer to the network depicted in Fig. 1
as a motivating example. This network offers two public-facing services, namely
Online Shopping and Mobile Order Tracking, and consists of three subnetworks
separated by firewalls. The first two subnetworks implement the two services, and
each of them includes a host accessible from the Internet. The third subnetwork
implements the core business logic, and includes a central database server. An
attacker who wants to steal sensitive data from the main database server will
need to breach multiple firewalls and gain privileges on several hosts before
reaching the target.

As attackers can leverage the complex interdependencies of network con-
figurations and vulnerabilities to penetrate seemingly well-guarded networks,
in-depth analysis of network vulnerabilities must consider attacker exploits not
merely in isolation, but in combination. For this reason, in order to study the vul-
nerability landscape of any enterprise network, we extensively use attack graphs,
which reveal potential threats by enumerating paths that attackers can take to
penetrate a network [8].
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Internet

Web Server (A)

Mobile App Server (C)

Catalog Server (E)

Order Processing Server (F)

DB Server (G)

Local DB Server (D)

Local DB Server (B)

Fig. 1. Motivating example: enterprise network offering two public-facing services

The attack graph for the network of Fig. 1 is shown in Fig. 2. This attack
graph shows that, once a vulnerability VC on the Mobile Application Server (host
hC) has been exploited, we can expect the attacker to exploit either vulnerability
VD on host hD or vulnerability VF on host hF . However, the attack graph alone
does not answer the following important questions: Which vulnerability has the
highest probability of being exploited? Which attack pattern will have the largest
impact on the two services that the network provides? How can we mitigate the
risk? Our framework is designed to answer these questions efficiently.

host hF

host hC
host hG

host hD

Internet
1

1
1

2
1

1 exploit: VC

1 exploit: VF

1 exploit: VD

2 exploits: 
V'G and V''G

Fig. 2. The attack graph for the motivating example network

4 The Cyber Situation Awareness Framework

The proposed Cyber Situation Awareness framework is illustrated in Fig. 3. We
start from analyzing the topology of the network, known vulnerabilities, possible
zero-day vulnerabilities – these must be hypothesized – and their interdependen-
cies. Vulnerabilities are often interdependent, making traditional point-wise vul-
nerability analysis ineffective. Our topological approach to vulnerability analysis



34 S. Jajodia and M. Albanese

Situation Knowledge 
Reference Model

[Attack Scenario Graphs]

Index & Data 
Structures

Topological 
Vulnerability Analysis

Monitored Network

Analyst

Alerts/Sensory Data

Cauldron Switchwall

Vulnerability Databases

NVD OSVDCVE

Stochastic 
Attack Models

Generalized
Dependency Graphs

Graph 
Processing 

and Indexing

Dependency Analysis

NSDMiner

Scenario Analysis & Visualization

Network Hardening

Unexplained Behavior Analysis

Zero-day Analysis

Cauldron

Fig. 3. The proposed Cyber Situation Awareness framework

allows to generate accurate attack graphs showing all the possible attack paths
within the network.

A node in an attack graph represents – depending on the level of abstraction
– an exploitable vulnerability (or family of exploitable vulnerabilities) in either
a subnetwork, an individual host, or an individual software application. Edges
represent causal relationships between vulnerabilities. For instance, an edge from
a node V1 to a node V2 represents the fact that V2 can be exploited after V1 has
been exploited.

We also perform dependency analysis to discover dependencies among ser-
vices and/or hosts and derive dependency graphs encoding how these compo-
nents depend on one another. Dependency analysis is critical to assess current
damage caused by ongoing attacks (i.e., the value or utility of services disrupted
by the attacks) and future damage (i.e., the value or utility of additional ser-
vices that will be disrupted if no action is taken). In fact, in a complex enter-
prise, many services may rely on the availability of other services or resources.
Therefore, they may be indirectly affected by the compromise of the services or
resources they rely upon.

The dependency graph for the network of Fig. 1 is shown in Fig. 4. This graph
shows that the two services Online Shopping and Mobile Order Tracking rely
upon hosts hA and hC respectively. In turn, host hA relies upon local database
server hB and host hE , whereas host hC relies upon local database server hD

and host hF . Similarly, hB, hD, hE , and hF rely upon database server hG, which
then appears to be the most critical resource.

By combining the information contained in the dependency and attack graphs
in what we call the attack scenario graph, we can then compute an estimate of
the future damage that ongoing attacks might cause for each possible outcome
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Fig. 4. The dependency graph for the motivating example network

of the current situation. In practice, the proposed attack scenario graph bridges
the semantic gap between known vulnerabilities – the lowest abstraction level –
and the missions or services that could be ultimately affected by the exploitation
of such vulnerabilities – the highest abstraction level. The attack scenario graph
for the network of Fig. 1 is shown in Fig. 5. In this figure, the graph on the
left is an attack graph modeling all the vulnerabilities in the system and their
relationships, whereas the graph on the right is a dependency graph capturing
all the explicit and implicit dependencies between services and hosts. The edges
from nodes in the attack graph to nodes in the dependency graph indicate which
services or hosts are directly impacted by a successful vulnerability exploit, and
are labeled with the corresponding exposure factor, that is the percentage loss
the affected asset would experience upon successful execution of the exploit.

In order to enable concurrent monitoring of multiple attack types, we devel-
oped novel graph-based data structures and an index structure to index large
amounts of alerts and event data in real-time. We also developed efficient algo-
rithms to analyze such data structures and help automatically answers questions
about the current cyber landscape and its evolution.

Moreover, the novel capabilities described so far have been leveraged to
develop a suite of additional capabilities and tools, including but not limited
to: topological vulnerability analysis [6], network hardening [3], and zero-day
analysis [5]. Some of these capabilities and tools are discussed in the following
section.

In summary, the proposed framework can provide security analysts with a
high-level view of the cyber situation. From the simple example of Fig. 5 – which
models a system including only a few hosts and services – it is clear that manual
analysis could be extremely time-consuming even for relatively small systems.
Instead, the graph of Fig. 5 provides analysts with a visual and very clear under-
standing of the situation, thus enabling them to focus on higher-level tasks that
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Fig. 5. The attack scenario graph for the motivating example network

require experience and intuition, and thus are more difficult to automate. Addi-
tionally, other classes of automated analytical processes may be developed within
this framework to support the analyst during these higher-level tasks as well.
For instance, based on the model of Fig. 5, we could automatically generate a
ranked list of recommendations on the best course of action analysts should
take to minimize the impact of ongoing and future attacks (e.g., sets of network
hardening actions).

5 Scientific Progress and Major Accomplishments

In this section, we highlight major accomplishments achieved during the exe-
cution of the research project that led to the development of the framework
discussed in the previous section.

5.1 Topological Vulnerability Analysis

Situation awareness, as defined in the previous sections, implies knowledge and
understanding of both the defender (knowledge of us) and the attacker (knowl-
edge of them). In turn, this implies knowledge and understanding of all the weak-
nesses existing in the computing infrastructure we aim to defend. By their very
nature, security concerns on networks are highly interdependent. Each host’s
susceptibility to attack depends on the vulnerabilities of other hosts in the net-
work. Attackers can combine vulnerabilities in unexpected ways, allowing them
to incrementally penetrate a network and compromise critical systems. To pro-
tect our critical infrastructure networks, we must understand not only individual
system vulnerabilities, but also their interdependencies. While we cannot pre-
dict the origin and timing of attacks, we can reduce their impact by knowing the
possible attack paths through our networks. We need to transform raw security
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data into roadmaps that let us proactively prepare for attacks, manage vulner-
ability risks, and have real-time situation awareness. We cannot rely on manual
processes and mental models. Instead, we need automated tools to analyze and
visualize vulnerability dependencies and attack paths, so we can understand our
overall security posture, providing context over the full security life cycle.

A viable approach to such full-context security is called topological vulnera-
bility analysis (TVA) [6]. TVA monitors the state of network assets, maintains
models of network vulnerabilities and residual risk, and combines these to pro-
duce models that convey the impact of individual and combined vulnerabilities
on the overall security posture. The core element of this tool is an attack graph
showing all possible ways an attacker can penetrate the network. Topological vul-
nerability analysis looks at vulnerabilities and their protective measures within
the context of overall network security by modeling their interdependencies via
attack graphs. This approach provides a unique new capability, transforming
raw security data into a roadmap that lets one proactively prepare for attacks,
manage vulnerability risks, and have real-time situation awareness. It supports
both offensive (e.g., penetration testing) and defensive (e.g., network harden-
ing) applications. The mapping of attack paths through a network via TVA
provides a concrete understanding of how individual and combined vulnerabili-
ties impact overall network security. For example, we can (i) determine whether
risk-mitigating efforts have a significant impact on overall security; (ii) determine
how much a new vulnerability will impact overall security; and (iii) analyze how
changes to individual hosts may increase overall risk to the enterprise.

This approach has been implemented as a security tool – CAULDRON [7] –
which transforms raw security data into a model of all possible network attack
paths. In developing this tool, several technical challenges have been addressed,
including the design of appropriate models, efficient model population, effective
visualization and decision support tools, and the development of scalable math-
ematical representations and algorithms. The result is a working software tool
that offers truly unique capabilities.

Figure 6 shows a simplified attack graph for a network of three hosts (referred
to as host 0, 1, and 2 respectively). Rectangles represent vulnerabilities that an
attacker may exploit, whereas ovals represent security conditions that are either
required to exploit a vulnerability (pre-conditions) or created as the result of
an exploit (post-conditions). Purple ovals represent initial conditions – which
depend on the initial configuration of the system – whereas blue ovals represent
intermediate conditions created as the result of an exploit. In this example, the
attacker’s objective is to gain administrative privileges on host 2, a condition that
is denoted as root(2). In practice, to prevent the attacker from reaching a given
security condition, the defender has to prevent exploitation of all vulnerabilities
that have that condition as a post-condition. For instance, in the example of
Fig. 6, one could prevent the attacker from gaining user privileges on host 1,
denoted as user(1), by preventing exploitation of rsh(0,1), rsh(2,1), sshd bof(0,1),
and sshd bof(2,1). Conversely, to prevent exploitation of a vulnerability, at least
one pre-condition must be disabled. For instance, in the example of Fig. 6, one
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Fig. 6. An example of attack graph (Color figure online)

could prevent the attacker from exploiting rsh(1,2) by disabling either trust(2,1)
or user(1).

The analysis of attack graphs provides alternative sets of protective measures
that guarantee safety of critical systems. For instance, in the example of Fig. 6,
one could prevent the attacker from reaching the target security condition root(2)
by disabling one of the following two sets of initial conditions: {ftp(0,2), ftp(1,2)},
or {ftp(0,2), ftp(0,1), sshd(0,1)}.
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Through this unique new capability, administrators are able to determine the
best sets of protective measures that should be applied in their environment. In
fact, each set of protective measures may have a different cost or impact, and
administrators can choose the best option with respect to any of these variables.

Still, we must understand that not all attacks can be prevented, and there
must usually remain some residual vulnerability even after reasonable protec-
tive measures have been applied. We then rely on intrusion detection techniques
to identify actual attack instances. But the detection process needs to be tied
to residual vulnerabilities, especially ones that lie on paths to critical network
resources as discovered by TVA. Tools such as Snort can analyze network traf-
fic and identify attempts to exploit unpatched vulnerabilities in real time, thus
enabling timely response and mitigation efforts. Once attacks are detected, com-
prehensive capabilities are needed to react to them. TVA can reduce the impact
of attacks by providing knowledge of the possible vulnerability paths through
the network. TVA attack graphs can be used to correlate and aggregate network
attack events, across platforms as well as across the network. These attack graphs
also provide the necessary context for optimal response to ongoing attacks.

In conclusion, topological analysis of vulnerabilities plays an important role
in gaining situation awareness, and more specifically what we earlier defined
knowledge of us. Without automated tools such as CAULDRON, human analysts
would be required to manually perform vulnerability analysis, and this would be
an extremely tedious and error-prone task. From the example of Fig. 6, it is clear
that even a relatively small network may result in a large and complex attack
graph. With the introduction of automated tools such as CAULDRON, the role
of the analyst shifts towards higher-level tasks: instead of trying to analyze
and correlate individual vulnerabilities, analysts have in front of them a clear
picture of existing vulnerability paths; instead of trying to manually map alerts
to possible vulnerability exploits, analysts are required to validate the findings
of the tool and drill down as needed [4]. The revised role of human analysts
– while not changing their ultimate mandate and responsibilities – will require
that they are properly trained to use and benefit from the new automated tools.
Most likely, as their productivity is expected to increase as a result of automating
the most repetitive and time-consuming tasks, fewer analysts will be required to
monitor a given infrastructure.

5.2 Zero-Day Analysis

As stated earlier, attackers can leverage complex interdependencies among net-
work configurations and vulnerabilities to penetrate seemingly well-guarded net-
works. Besides well-known weaknesses, attackers may leverage unknown (zero-
day) vulnerabilities, which even developers are not aware of. In-depth analysis of
network vulnerabilities must consider attacker exploits not merely in isolation,
but in combination. Attack graphs reveal such threats by enumerating poten-
tial paths that attackers can take to penetrate networks. This helps determine
whether a given set of network hardening measures provides safety of given
critical assets. However, attack graphs can only provide qualitative results (i.e.,
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secure or insecure), and this may render resulting hardening recommendations
ineffective or far from optimal.

To address these limitations, traditional efforts on network security metrics
typically assign numeric scores to vulnerabilities as their relative exploitabil-
ity or likelihood, based on known facts about each vulnerability. However, this
approach is clearly not applicable to zero-day vulnerabilities due to the lack of
prior knowledge or experience. In fact, a major criticism of existing efforts on
security metrics is that zero-day vulnerabilities are unmeasurable due to the less
predictable nature of both the process of introducing software flaws and that of
discovering and exploiting vulnerabilities [10]. Recent work addresses the above
limitations by proposing a security metric for zero-day vulnerabilities, namely,
k-zero day safety [14]. Intuitively, this metric is based on the number of dis-
tinct zero-day vulnerabilities that are needed to compromise a given network
asset. A larger such number indicates relatively more security, because it is less
likely to have a larger number of different unknown vulnerabilities all avail-
able at the same time, applicable to the same network, and exploitable by the
same attacker. However, as shown in [14], the problem of computing the exact
value of k is intractable. Moreover, Wang et al. [14] assume the existence of a
complete attack graph, but, unfortunately, generating zero-day attack graphs
for large networks is usually infeasible in practice [13]. These facts comprise a
major limitation in applying this metric or any other similar metric based on
attack graphs.

In order to address the limitations of existing approaches, we proposed a set
of efficient solutions [5] to enable zero-day analysis of practical applicability to
networks of realistic sizes. This approach – which combines on-demand attack
graph generation with the evaluation of k-zero-day safety – starts from the prob-
lem of deciding whether a given network asset is at least k-zero-day safe for a
given value of k, meaning that it satisfies some baseline security requirements: in
other words, in order to penetrate a system, an attacker must be able to exploit
at least a relatively high number of zero-day vulnerabilities. Second, it identifies
an upper bound on the value of k, intuitively corresponding to the maximum
security level that can be achieved with respect to this metric. Finally, if k is
large enough, we can assume that the system is sufficiently secure with respect to
zero-day attacks. Otherwise, we can compute the exact value of k by efficiently
reusing the partial attack graph computed in previous steps.

In conclusion, similarly to what we discussed at the end of the previous
section, the capability presented in this section is critical to gain situation aware-
ness, and can be achieved either manually or automatically. However, given the
uncertain nature of zero-day vulnerabilities, the results of manual analysis could
be more prone to subjective interpretation than any other capability we discuss
in this chapter. At the same time, since automated analysis relies on assumptions
about the existence of zero-day vulnerabilities, complete reliance on automated
tools may not be the best option for this capability, and a human-in-the-loop
solution may provide the most benefits. In fact, the solution presented in [5] can
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be seen as a decision support system where human analysts can play a role in
the overall workflow.

5.3 Network Hardening

As discussed earlier, attack graphs reveal threats by enumerating potential paths
that attackers can take to penetrate networks. Attack graph analysis can be
extended to automatically generate recommendations for hardening networks,
which consists in changing network configurations in such a way to make net-
works resilient to certain attacks and prevent attackers from reaching certain
goals. One must consider combinations of network conditions to harden, which
has corresponding impact on removing paths in the attack graph. For instance,
in Sect. 5.1, we discussed how one could prevent the attacker from reaching the
target security condition root(2) in the example of Fig. 6, and we identified two
possible hardening solutions. Furthermore, one can generate hardening solutions
that are optimal with respect to some notion of cost. Such hardening solutions
prevent the attack from succeeding, while minimizing the associated costs. How-
ever, the general solution to optimal network hardening scales exponentially as
the number of hardening options itself scales exponentially with the size of the
attack graph.

In applying network hardening to realistic network environments, it is cru-
cial that the algorithms are able to scale. Progress has been made in reducing
the complexity of attack graph manipulation so that it scales quadratically – or
linearly within defined security zones [13]. However, many approaches for gen-
erating hardening recommendations search for exact solutions [15], which is an
intractable problem. Another limitation of most work in this area is the assump-
tion that network conditions are hardened independently. This assumption does
not hold true in real network environments. Realistically, network administrators
can take actions that affect vulnerabilities across the network, such as pushing
patches out to many systems at once. Furthermore, the same hardening results
may be obtained through more than one action.

Overall, to provide realistic recommendations, the hardening strategy we
proposed in [3] takes such factors into account, and removes the assumption of
independent hardening actions. We define a network hardening strategy as a set
of allowable atomic actions that administrators can take (e.g., shutting down an
ftp server, blacklisting certain IP addresses) and that involve hardening multiple
network conditions. A formal cost model is introduced to account for the impact
of these hardening actions. Each hardening action has a cost both in terms
of implementation and in terms of loss of productivity (e.g., when hardening
requires shutting down a vulnerable service). This model allows the definition of
hardening costs that accurately reflect realistic network environments. Because
computing the minimum-cost hardening solution is intractable, we introduce
an approximation algorithm to compute suboptimal hardening solutions. This
algorithm finds near-optimal solutions while scaling almost linearly – for cer-
tain values of the parameters – with the size of the attack graph, as confirmed
by experimental evaluations. Finally, theoretical analysis shows that there is a
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theoretical upper bound for the worst-case approximation ratio, whereas experi-
mental results show that, in practice, the approximation ratio is much lower than
such bound, that is, the solutions found using this approach are not far, in terms
of cost, from the optimal solution. In conclusion, automated analysis of network
hardening options can greatly improve the performance of a security analyst,
by providing a timely list of recommended strategies to prevent attackers from
compromising the target system while, at the same time, minimizing the cost for
the defender. The analyst will then be responsible solely for validating the rec-
ommended strategies and selecting the ones that appear to be the most effective
in meeting not only quantitative but also qualitative requirements. For instance,
automated analysis may conclude that the most cost-effective hardening solu-
tion is one that requires – amongst other things – to temporarily shut down
the server hosting the company’s web site. Although the website may not be
running any revenue-generating services, the potential impact on the company’s
reputation may make this solution less attractive, and a human analyst looking
at the results of the automated tools may opt for the second-best solution after
taking into account factors that the tools were not able to capture.

5.4 Probabilistic Temporal Attack Graph

The first step in achieving any level of automation in the situation awareness
process is to develop the capability of modeling cyber-attacks and their conse-
quences. This capability is critical to support many of the additional capabilities
needed to address the key questions presented earlier in this chapter (e.g., mod-
eling the attacker, predicting future scenarios).

Attack graphs have been widely used to model attack patterns, and to cor-
relate alerts. However, existing approaches typically do not provide mechanisms
for evaluating the likelihood of each attack pattern or its impact on the organi-
zation or mission. To address this limitation, we extend the attack graph model
discussed earlier in this chapter with the notion of timespan distribution, which
encodes probabilistic knowledge of the attacker’s behavior as well as temporal
constraints on the unfolding of attacks. We assume that each step of an attack
sequence is completed within certain temporal windows after the previous exploit
has been executed, each associated with a probability. For instance, suppose an
attacker has gained some privileges on host hE in Fig. 1. Using these privileges,
he can then create the conditions to exploit a vulnerability on the main data-
base server. However, this will take a variable amount of time depending on his
skill level. The attacker will then have time to exploit the vulnerability until the
vulnerability itself is patched, or the attack is discovered.

Leversage and Byres [9] describe how to estimate the mean time to compro-
mise a system and relate that to the skill level of the attacker. This approach
can be generalized to estimate timespan distributions for individual vulnerabil-
ity exploits. In fact, we can assume that the time taken to exploit a vulnerability
varies with the skill level of the attacker. Additionally, some vulnerabilities are
easier to exploit than others, thus exhibiting higher probabilities. Intuitively,
a timespan distribution specifies a set of disjoint time intervals when a given
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exploit might be executed, and an incomplete probability distribution over such
time intervals.

In our model, edges in the attack graph are labeled with timespan distri-
butions. For instance, in the attack graph of Fig. 5, the edges from VA to VE

and VB are labeled with {(2, 7), 0.2} and {(1, 3), 0.8} respectively, meaning that,
after exploiting VA, with 20% probability an attacker will exploit VE between 2
and 7 time units later, and with 80% probability he will exploit VB between 1
and 3 time units later.

5.5 Dependency Graph

Government or enterprise networks today host a wide variety of network ser-
vices, which often depend on one another to provide and support network-based
services and applications. Understanding such dependencies is essential for main-
taining the well-being of a network and its applications, particularly in the pres-
ence of network attacks and failures. In a typical government or enterprise net-
work, which is complex and dynamic in configuration, it is non-trivial to identify
all these services and their dependencies. Several techniques have been developed
to learn such dependencies automatically. However, they are either too complex
to fine-tune or cluttered with false positives and/or false negatives.

We developed several novel techniques as well as a tool named NSDMiner
(which stands for Network Service Dependencies Miner) to automatically dis-
cover the dependencies between network services from passively collected net-
work traffic [11]. NSDMiner is non-intrusive: it does not require any modification
of existing software, or injection of network packets. More importantly, NSD-
Miner achieves higher accuracy than previous network-based approaches. Our
experimental evaluation, which uses network traffic collected from our campus
network, shows that NSDMiner outperforms the two best existing solutions by
a significant margin.

Specifically, we developed three additional techniques to assist in the auto-
matic identification of network service dependencies through passively monitor-
ing and analyzing network traffic, including a logarithm-based ranking scheme
aimed at more accurate detection of network service dependencies with lower
false positives, an inference technique for identifying the dependencies involving
infrequently used network services, and an approach for automated discovery of
clusters of network services configured for load balancing or backup purposes.
We performed extensive experimental evaluation of these techniques using real-
world traffic collected from a college campus network. The experimental results
demonstrate that these techniques advance the state of the art in automated
detection and inference of network service dependencies.

5.6 Additional Research Accomplishments

The wide array of accomplishments described in the previous sections is not
exhaustive of the work performed as part of the project mentioned earlier in
this chapter. In the following, we briefly describe additional lines of research
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we pursued and the accomplishments we achieved in those areas. We refer the
reader to our previous publications for more information.

We studied network diversity as a security property of networks [16]. The
interest in diversity as a security mechanism has recently been revived in vari-
ous applications, such as Moving Target Defense (MTD), resisting worms in sen-
sor networks, and improving the robustness of network routing. However, most
existing efforts on formally modeling diversity have focused on a single system
running diverse software replicas or variants. At a higher abstraction level, as a
global property of the entire network, diversity and its impact on security have
received limited attention. In our work, we took the first step towards formally
modeling network diversity as a security metric for evaluating the robustness
of networks against potential zero-day attacks. Specifically, we first devised a
biodiversity-inspired metric based on the effective number of existing distinct
resources. We then proposed two complementary diversity metrics, based on the
least and average attacker’s effort, respectively.

We also proposed a probabilistic framework for assessing the completeness
and quality of available attack models [2], both at the intrusion detection level
(e.g., IDS signatures) and at the alert correlation level (e.g., attack graphs).
Intrusion detection and alert correlation are valuable and complementary tech-
niques for identifying security threats in complex networks. However, both meth-
ods rely on models encoding a priori knowledge of either normal or malicious
behavior. As a result, these methods are incapable of quantifying how well the
underlying models explain what is observed on the network. Our approach over-
comes this limitation, and enables us to estimate the probability that an arbi-
trary sequence of events is not explained by a given set of models. We leverage
important mathematical properties of this framework to estimate such proba-
bilities efficiently, and design fast algorithms for identifying sequences of events
that are unexplained with a probability above a given threshold. This approach
holds promise of identifying zero-day attacks, because such attacks (by definition
of zero-day) are likely to be incompatible with all known traffic patterns.

Finally, we developed Switchwall [12], an Ethernet-based network fingerprint-
ing technique that detects unauthorized changes to the L2/L3 network topology,
the active devices, and the availability of an enterprise network. The network
map is generated at an initial known state and is then periodically verified to
detect deviations in a fully automated manner. Switchwall leverages a single
vantage point and uses only very common protocols (PING and ARP) without
any requirement for new software or hardware. Moreover, no previous knowl-
edge of the topology is required, and our approach works on mixed speed, mixed
vendors networks. Switchwall is able to identify a wide-range of changes, and
this capability has been validated by our experimental results on both real and
simulated networks.

6 Conclusions

As we discussed, the process of situation awareness in the context of cyber
defense consists of three phases: situation perception, situation comprehension,
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and situation projection. Situation awareness is generated and used across these
three phases, and cyber analysts must answer several key questions during this
process. In this chapter, we outlined an integrated approach to cyber situation
awareness, and presented a framework – comprising several mechanisms and
automated tools – that can help bridge the semantic gap between the avail-
able low-level data and the mental models and cognitive processes of security
analysts.

In our project, we focused on techniques and tools for automatically answer-
ing the questions the analyst may ask about the current situation, the impact
and evolution of an attack, the behavior of the attackers, the quality of available
information and models, and the plausible futures of the current situation.

Although this framework represents a first important step in the right direc-
tion, a lot of work remains to be done for systems to achieve self-awareness
capabilities. Key areas that need to be further investigated include adversar-
ial modeling and reasoning under uncertainty, and promising approaches may
include game-theoretic and control-theoretic solutions.
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