Resilient Reference Monitor for Distributed
Access Control via Moving Target Defense

Dieudonne Mulamba and Indrajit Ray®)

Department of Computer Science,
Colorado State University, Fort Collins, CO 80523, USA
{indrajit,mulamba}@cs.colostate.edu

Abstract. Effective access control is dependent not only on the exis-
tence of strong policies but also on ensuring that the access control
enforcement subsystem is adequately protected. Protecting this subsys-
tem has not been adequately addressed in the literature. In general, it
is assumed to be implemented as a reference monitor in a trusted com-
puting base (TCB) that is tamper-proof. However, in distributed access
control, ensuring TCB security kernel to be tamper proof is not always
feasible. It needs to be implemented in software and on platforms that
can potentially have vulnerabilities. We posit that allowing a very limited
opportunity to the attacker to enumerate exploitable vulnerabilities in
the access control subsystem can considerably facilitate its protection.
Towards this end we propose a moving target defense framework for
access control in a distributed environment. In this framework, access
control is provided by cooperation of several distributed modules that
materialize randomly, announce their services, enforce access control and
then disappear to be replaced by another module randomly. As a result,
the attacker does not know which process can be targeted to compromise
the access control system.

1 Introduction

Many emerging distributed applications rely on on-demad network-enabled
access to a shared pool of computing resources. Examples of such applications
are IoT applications, sensor networks or enterprise level distributed workflow
systems. This distributed computing model brings with it some unique chal-
lenges to access control that require re-visiting the traditional TCB approach
[3]. In traditional systems, access control is implemented by the cooperation of
four functional modules that are part of the trusted computing base:

1. Policy Administration Point (PAP): The PAP is a repository for the autho-
rization policies that are expressed in terms of the actions that subjects
(human users, devices, processes, organizations etc.) can take on various
objects in the system. The authorization policies are essentially an instan-
tiation of the access control model tailored towards the organization. It is the
main component for the authorization portion of access control.

© IFIP International Federation for Information Processing 2017

Published by Springer International Publishing AG 2017. All Rights Reserved

G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 20-40, 2017.
DOI: 10.1007/978-3-319-61176-1_2

Resilient Reference Monitor for Distributed Access Control 21

2. Policy Information Point (PIP): The PIP is the component that gathers
together all the attribute information that are needed to evaluate an autho-
rization policy.

3. Policy Decision Point (PDP): The PDP gets relevant information from the
PIP and consults the PAP to arrive at a decision whether to grant or deny
an access request.

4. Policy Enforcement Point (PEP): The PEP receives access requests from sub-
jects in the external world, hands them to the PDP for evaluation, and after
receiving the grant or deny response from the PDP, ensures the appropriate
action is taken.

One of the requirements of a TCB is that it implements the concept of ref-
erence monitor [3]; that is, the TCB mediates all access to objects by subjects,
is tamper-proof and cannot be bypassed, and is small enough to be thoroughly
tested and analyzed. In the newer distributing computing environments however,
making the TCB small and tamper-proof is very difficult. This is because access
control in such environment needs to be achieved via the cooperation of both
local as well as remote access control engines. To remain within the confines of
the TCB paradigm, not only all of these separate components need to be made
tamperproof, but also all communications and coordinations among the compo-
nents. As a result, the trusted computing base needs to be enlarged in scope and
functionality, which violates the principles of reference monitor. Moreover, the
sheer size of these distributed systems, the degree of heterogeneity among the
different devices (potentially virtual machines), and the dynamicity of the whole
system, compound the problem many fold. It appears, therefore, that it is next
to impossible to rely on a single TCB to provide access control in these environ-
ments. The access control subsystem should try to satisfy as many properties of
a TCB as possible but should also incorporate certain self-defending strategies
to make it secure.

In this work, we treat access control in such a distributed environment as a
service that needs to be proactively protected. From a functional perspective,
this service is achieved by the four functional units — PAP, PIP, PDP and PEP.
We assume that like any other service the access control service can be attacked
by an attacker and hence needs to be protected. An attacker intent on damaging
the access control service will launch reconnaissance efforts seeking exploitable
vulnerabilities for this subsystem. We propose being proactive and allow only
limited opportunity to the attacker to enumerate exploitable vulnerabilities, thus
reducing the attack surface of the access control subsystem. Towards this end,
we propose employing a Moving Target Defense (MTD) paradigm for the access
control subsystem. The four functional modules are effectuated by randomly
materializing processes that announce their services, enforce access control and
then disappear to be replaced by another module randomly. As a result, the
attacker does not know which processes can be targeted to compromise the
system. Moreover, the window of opportunity for targeting processes is varied
to further reduce opportunities of attack. We describe an implementation of this
system to handle RBAC policies using COTS components.

22 D. Mulamba and 1. Ray

The rest of the paper is organized as follows: Sect. 2 reviews previous works
on access controls, leader election protocols, moving target as well as on service
discovery protocols. In Sect. 3 we first present the reference architecture for access
control in distributed environments. We then give an overview of our moving
target defense approach for protecting the access control subsystem. Section 4
presents the moving target defense architecture. We present our implementation
in Sect. 5 as well as an analysis of the security of the proposed approach. Finally,
we conclude this paper in Sect.6 and give some directions for future works.

2 Background and Related Works

2.1 Protection of Access Control Subsystems

One of the most important aspect of security is ensuring that users access only
resources to which they are authorized. Research on designing and deploying
access control in computers and networks can be traced back several decades [43].
Early standards of access control included discretionary and mandatory access
control [13,17,34,42]. However, Role based Access Control (RBAC) represented
a major leap forward in term of flexibility. RBAC is built on the principle that
users do not have discretionary access to enterprise objects. In a RBAC model,
roles are created and users belong administratively to these roles, while per-
missions are administratively assigned to the roles. This arrangement provides
more flexibility and simplicity to the management of authorization [13]. RBAC
has been traditionally implemented for centralized systems. In recent years, sev-
eral works have been done to provide the capabilities of this access control model
to distributed systems and the cloud. For instance, in [21] authors present an
access control tailored for distributed control systems. [41] explains how one can
provide access control to anonymous users while verifying their authorization in
a decentralized manner.

In several works, including recently in [14], researchers have worried that a
malicious program may tamper with the operation of an access control system.
The notion of a trusted computing base implementing the reference monitor con-
cept was proposed by Anderson [3], in order to address this problem. Security
kernels such as Scomp [15] and GEMSOS [45], included a reference validation
mechanism to satisfy the reference monitor concept of the TCB. Other oper-
ating systems such as Trusted Solaris [36], the Linux Security Modules (LSM)
framework [52], TrustedBSD [49], Mac OS X, and the Xen hypervisor provide
various degree of support for reference validation so as to enable some shade
of reference monitor. However, the major problem with these systems is that
the tamperproof property that needs to be ensured for provably implementing a
reference monitor, is hard to achieve. Tamperproofing requires the TCB to have
a very small footprint. It can be shown that a general algorithm to prove that
an arbitrary program behaves correctly reduces to solving the Halting problem.
While current algorithms can prove correctness properties of specific programs,
the variety of reference validation code and the complexity of correctness prop-
erties preclude verification for all but the smallest, most specialized systems.

Resilient Reference Monitor for Distributed Access Control 23

Unfortunately, for most of these systems, the TCB is too large to determine
whether tampering is prevented. Moreover, for practicality and functionality,
many systems allow user-level processes to modify the kernel. However, none of
these user-level processes are immune to tampering, thus becoming one of the
weakest links. In this work, we are interested in the protection of the access con-
trol subsystem where ensuring the tamperproof property of a reference monitor
is challenging.

2.2 Moving Target Defense

Several works have been done on Moving Target Defense (MTD). In order to
improve the understanding of MTD, [54] presents key concepts and their basic
properties. Other works on MTD are mainly focused on network-based MTD
[2,4,10]. In addition, in [12], the effectiveness of MTD using low-level tech-
niques to defend a computing system has been studied. Those low-level tech-
niques include Address Space Randomization, Instruction Set Randomization,
and Data Randomization. In [19] two measures are designed that allow a defender
to quantify its gain in security while deploying a MTD system. In order to chose
a particular MTD technique, one needs to know its effectiveness. For that pur-
pose, [53] proposes a comparison of different MTD techniques based on their
effectiveness. However, none of these techniques are applicable for the problem
we are addressing.

2.3 Leader Election

In a distributed system, leader election is a fundamental problem that requires
that a unique leader be elected from among a set of given nodes. The goal of
a leader election algorithm is to elect a good processor as a leader in a setting
where there are n processors among which a certain number m < n are bad,
while ensuring that no bad processor get elected as a leader [27].

A distributed computing system often requires that active nodes continue
performing their task after a failure has occurred. This reorganization or recon-
figuration necessitate that a coordinator be elected in the first place [16]. This
is the reason of the wide interest the leader election problem [31] has received.
Several works have been done on Leader Election [1,6,16,44,47].

2.4 Consensus Algorithms

One approach for building fault-tolerant applications is the Lamport’s approach.
The core of this approach involves two primitives: consensus and atomic broad-
cast [28]. Leader election protocols are generally used to solve the consensus
problem.

Bully algorithm [5] and Ring algorithm [48] are among the most used algo-
rithms for solving the consensus problem. A hugely popular algorithm is the

24 D. Mulamba and 1. Ray

Paxos algorithm proposed by Lamport [30]. Another popular algorithm, consid-
ered even superior to Paxos due to its simplicity, is the Raft consensus algorithm
[20]. Raft provides the capabilities for Leader election and log replication.

ZooKeeper [22], an open-source replicated service for coordinating web appli-
cations, and Chubby [7] are some practical systems exploiting these algorithms.
Recently, GIRAFFE [46] has been proposed to provide a coordination service in
scalable distributed system. Another practical system is the Apache Kafka [51]
which allows the building of a replicated logging system. However, these algo-
rithms and protocols do not take into account Byzantine failures. In addition,
their approach for electing a new leader does not prevent a malicious host from
being elected as a leader.

2.5 Byzantine Fault Tolerance

A computer system can be affected by a type of failure that can cause it to behave
in an arbitrary way. After being affected, the computer system can be led either
to process requests incorrectly, to corrupt their local state, and/or to produce
incorrect or inconsistent outputs. This type of failure is called Byzantine failures.
The problem for coping with this type of failure is known as the Byzantine
Generals Problem [29]. The goal of Byzantine fault tolerance is to allow computer
system to be immune against Byzantine failures.

Several works have been proposed to reach a consensus in the face of
Byzantine failures. Building on Paxos, the authors in [9] have proposed an
improvement that allows Paxos to support Byzantine fault tolerance with a
modest latency. Castro and Liskovs proposed the Practical Byzantine Fault-
tolerance protocol [8] that reduces the number of messages exchanged to only
four messages. [33] looked at improving the number of communications in the
Byzantine Paxos protocols. In [11], authors took the task of improving Raft to
support Byzantine fault-tolerance. They reach their goal by combining the ideas
from the original Raft algorithm and from Practical Byzantine Fault-tolerance
protocol [9].

2.6 Service Location Protocol

A zero configuration approach is a self-management networking approach that
allows network devices to be automatically configured, discover services auto-
matically, and to access service without the involvement of a network specialist
[Intelligent Self-Management Home Multimedia Service System|. Three major
self-management technologies have been proposed. The Internet Engineering
Task Force (IETF) promoted SLP [18,38] as an intranet standard for automatic
network resource discovery. Intel and Microsoft, on their part, proposed the Uni-
versal Plug and Play (UPnP) [39] as a standard for automatic communication
between network devices using XML messages. Apple Inc. proposed a protocol
called Bonjour [23] as its zero configuration networking standard. Recently, z2z
[32] has been proposed for the discovery of network services beyond the local
network.

Resilient Reference Monitor for Distributed Access Control 25

In this work, our contribution includes the development of a system that
leverages these existing concepts into a single framework so as to address the
problem of protecting a reference monitor.

3 Architecture Overview

We assume that the access control model is Role-Based Access Control. We
start with a high level operational architecture of access control (AC) in the
distributed setup. The resources we are concerned about are the shared resources.
The AC architecture is composed of four functional entities. Each entity has
specific functions and participates in the communication as a client, as a server
or both.

3.1 Access Control Architecture Components
The four entities are:

1. A users client: It is an endpoint entity whose main objective is to access
protected resources. It is responsible to initiate or terminate a session with
the Resource Access Server. It resides on the individual devices running the
applications that require access to shared resources.

2. Resource Access Service (RAS): Tt is an entity that manages the various
distributed resources and controls the access to it. It acts as both client and
server when receiving or replying to access requests from the client. The
decision to grant or deny the access to protected resources is received from
the Authorization Control Server. The Resource Access Server is responsible
for reinforcing that decision.

3. Authorization Control Service (ACS): It is an endpoint entity that governs
the access to each protected resource. It hosts the Access Control engine. The
access control engine is based on RBAC model (other models are also possible)
and is designed to prevent unauthorized access to protected resources. The
policies defining the access to protected resources are also managed by the
Authorization Control Service. This service receives any client request and
replies with the decision to grant or deny the access to the needed resources.

4. Discovery Service: Since the protection of the Authorization Control Service
requires this later to be moved to a different location in a non predictable
manner, the clients need to be able to discover the new location of the Autho-
rization Control Service. The Discovery Service provides such capability.

Using these entities, the distributed access enforcement proceeds as follows.
When a client needs to access a protected resource, it sends a request to the
Authorization Control Service (ACS). The ACS verifies the policy governing
the access to the needed resources, and replies with a decision to grant or deny
access to the requested resource. If the decision was to grant access, the request
is forwarded to the Resource Access Service along with a limited life-time token
given to the client allowing it to access that particular resource. The occurrence

26 D. Mulamba and 1. Ray

of an election triggers the Authorization Control Service to be Switched to a
different location. In this case, the ACS will register its new location with the
Discovery Service. In addition, the client will need to consult the Discovery
Service in order to find the new location of the ACS.

3.2 Threat Model

In our architecture, we consider access control (AC) as a service and we assume
that the Access Control Service can be attacked and compromised. To mitigate
the vulnerability of the open network in which an attacker passively listens to
various communications, we make all access related communications go over
secure channels. This makes the communication secure, but does not protect
the endpoints, particularly the Resource Access Server and the Authorization
Control Server where the AC engine components reside. We assume that an
attacker can masquerade as one of these servers. Alternately, some numbers
of these servers can themselves be compromised by malware and behave in a
Byzantine manner. An attacker masquerading as a valid server or corrupting a
server are treated similarly.

To protect these two entities, we propose the Moving Target Defense strategy.
Our motivation for this approach follows from the observation that an attacker
needs a reconnaissance window to explore the vulnerabilities in a system before
attacking it. The moving target defense strategy reduces this window of oppor-
tunity. It requires both the Resource Access Server and the Authorization Con-
trol Server to be replicated. At each instance there is only one Resource Access
Server and one Authorization Control Server that is responsible to handle access
requests. These are called respectively, RAS leader and ACS leader servers. In
addition, both leader servers are periodically replaced by a pair of leader servers
randomly chosen by following a Byzantine consensus process executed by the
existing candidate RAS and ACS servers. The replacement is achieved through
a migration process that relies on a secure service discovery process.

Using moving target defense in this manner to protect the Access Control
Engine raises several challenges. Those challenges are as follows.

1. How does one avoid migrating a leader server to a malicious server during
the migration process?

2. Which access control component is going to be migrated? And,

3. After the migration process, how does one discover which server is currently
providing the services?

In the following sections we are going to address these challenges (Figs. 1 and 4).

4 Distributed Access Control Architecture

We present an architecture that provides access control services. In order to
protect the access control service against certain attacks, we have proposed to
implement a Moving Target Defense strategy on the access control service archi-
tecture. In this section, we present the different components that constitute our
Moving Target Defense architecture.

Resilient Reference Monitor for Distributed Access Control 27

(_ Authorization Control Server (ACS))

Client | < P
UA Access Control =
Module (ACM) olicy

Base
| | [salFa]

SrvReq ! / T

| SrvReV
¢ " SReg
~ L 4
i F Resource Access Server (RAS) \
DA S
. [~ —_ Application
~— Base

SrvReg o

A sa|

Fig. 1. Moving Target Defense architecture

4.1 The Client

It is an endpoint entity whose main objective is to access protected resources. It
is responsible to initiate or terminate a session with the Resource Access Service.
It resides on the individual devices running the applications that require access
to shared resources.

4.2 The Authorization Control Service

In this section we present the different components that allow the Authorization
Control Service to provide access control service, to be elected as a leader, and
to announce its services once elected as a leader.

Access Control Engine. The access control engine is based on RBAC model
(other models are also possible) and is designed to prevent unauthorized access
to protected resources. It comprises the Policy Enforcement Point (PEP), the
Policy Decision Point (PDP), the Policy Administration Point (PAP), and the
Policy Information Point (PIP).

Fault Detector Module (FD). The Fault Detector Module is designed to
detect the byzantine faults occurring in the server providing the Access Control
service. The failure and the compromise of the current leader server are reasons
to trigger the Moving Target Defense. The Fault Detector is able to detect any
kind of byzantine faults that are local to the leader server. The unavailability of
the leader server is detected by the Fault Detector of any other server that probes
the aliveness of the leader server. The occurrence of either failure, compromise,
or unavailability is used to trigger the election of a new leader server that will
be responsible to provide access control services.

28 D. Mulamba and 1. Ray

Election Module (EM). The Election Module is responsible for processing
the election of a new leader server. Several causes can trigger this election. Since
the leader server is assuming this function for a limited time, called here a term,
the expiration of this term is a cause that triggers the election of a new leader
server. We add randomness to the duration of this term in order to prevent an
attacker from correctly guessing the occurrence of the next leader election. At
the expiration of his term, the current leader server proceeds to the election of
a new leader. In other circumstances, the first server noticing the failure of the
current leader server, is responsible to proceed to a new election.

Leader Election Protocol. In our system, after having opted to replicate the
Authorization Control Service among several servers, a single server is respon-
sible to provide this service at any given time. We call this server the leader.
At any instance, this leader may be the subject of attacks or of failures. Thus
to realize the moving target defense, the leader is required to be periodically
changed. This change can occur at the expiration of the current leader’s lifetime
or when the current leader fails. Moreover, the next server is not pre-determined
but is elected by existing servers, each of which is a candidate. All this is done in
an environment where we assume that some servers may be malicious attackers.
Thus, we need a leader election algorithm that can ensure that a malicious server
cannot be elected as leader. Once a server is elected, it sets a random lifetime
for itself.

For the sake of maintaining our distributed system in a good functioning
state, it becomes crucial to prevent faulty nodes from becoming leader. We adapt
the algorithm from [26] in order to realize a leader election. The election process
proceeds in the form of a distributed protocol as follows.

The election algorithm proceeds in rounds and in each round there is a node
that is coordinating the consensus, called the coordinator. For each round r
there is a coordinator ¢ known a priori by each participating node by computing
¢ = (r mod n) + 1 with n being the total number of nodes. At each node,
there are several local variables that are maintained, among which there is the
estimate value which is an input value selected by the node, its current election
round, its current coordinator cp, and a timestamp ts,. The consensus algorithm
runs by exchanging messages between nodes participating in the distributed
system. These messages include the types ESTIMATE, SELECT, CONFIRM,
READY/NREADY, and SUSPECT. The algorithm runs in a sequence of five
tasks that are concurrently executed.

The consensus algorithm, (see Algorithm 1), works as follows. The algorithm
starts with each node p picking its estimate of the input value, and sending
an ESTIMATE message to all nodes. The coordinator, after receiving n — k
ESTIMATE messages that it was waiting for, selects a value es based on all the
estimate values received. It then sends a SELECT message carrying the es value
to all nodes. Each node p, upon receiving SELECT message from the coordinator,
sends a CONFIRM message carrying the es value to all other nodes. The es value
should be the same for a given round r. After receiving a CONFIRM message
from [(n + k)/2] + 1 distinct nodes, each node p updates its local variables.

Resilient Reference Monitor for Distributed Access Control 29

It then sends a READY message or a NREADY message depending on whether
it had received the same es value or not from | (n+k)/2|+1 CONFIRM messages.
It should be noted that if the CONFIRM messages received by a node p did not
contain the same es value, p will assume that the coordinator had deviated from
the algorithm. The node p will therefore add the coordinator to its list of Suspect,
and will send a SUSPECT message containing the id of the suspected coordinator
to all. After a node p received the same es value as content of READY message
from |(n + k)/2] + 1 distinct nodes, it will decide on that value. A node ¢ is
confirmed to be malicious by a node p and added to Output(D), if and only if
node ¢ have been reported malicious by at least k + 1 nodes. Output(D), is the
final list of malicious nodes. Any round in which the coordinator has not been
reported with malicious nodes will end with a consensus on the input value and
the coordinator being confirmed as the new leader. Otherwise, a new round will
start with a new coordinator.

Migration Module (MM). The Migration Module is responsible for executing
the migration protocol. The Migration Module receives a notification from the
Election Module that a new leader has been elected. This notification contains
the identity of the new leader server. Upon receiving the notification from the
Election Module, this module executes the migration protocol, which transfers
the Access Control service to the new elected leader server.

Service Migration Protocol. In our architecture, replacing the current leader
server by a new one necessitates the migration of the Authorization Control
Service provided by the current leader server to the new one. For this purpose,
we need to put in place a service migration protocol that can handle this task.

Process migration is the movement of a running process from one host to
another. A process migration protocol can have several components like the
transfer policy, the selection policy, and the location policy. Since we are inter-
ested with the migration of an access control service, we define these policies in
terms of the requirements of the access control service.

1. The Transfer Policy: This policy determines when a host needs to send a
process to another host. In our case, it determines when the current leader
server needs to send the access control services to a newly elected leader
server. In our architecture, this decision is triggered by the successful com-
pletion of the leader election protocol.

2. The Location Policy: This policy determines the destination host to which to
transfer the process to be migrated. In our architecture, this information is
provided by the leader election protocol that communicates the identity of
the new elected leader server to all the hosts. This new Authorization Control
Service is the destination host for the migration protocol.

3. The Selection Policy: Determines which resource to transfer. It is question
here to determine which component of the access control service needs to
be migrated. We have designed the Authorization Control Server to be fully
replicated. We assume the existence of a replicated protocol. Therefore, the

30

D. Mulamba and 1. Ray

Algorithm 1. Leader Election

1 /* Each node p executes the following */ 40: tsp «— 1Tp
2: /* Initialization */ 41: ep — e
3: ep = Vp {Chosen value} 42: Confirmy, «— (CONFIRM,q,rp,€)q
4: r, = 0 {Initial round} 43: ready, = (READY, p, 1y, €)p)
5: ts, = 0 {Initial timestamps} 44: Send ready, to all
6: Estimates, = 0 {list of estimate msg} 45: else
7: Confirms, = 0 {list of comfirm msg} 46: nreadyp, = (NREADY,p,7p, €)p
8: Suspected,, = 0 {list of suspected nodes} 47: Send nready, to all
9: Output, = 0 {blacklisted nodes} 38 end if
10: for r in listnode do 50: e’rfd l‘(”;‘_lle
11 Suspectingp[r] = 0 A ask = }
. 51: while true do
12: end for £9: if ived lect o _
13: COBEGIN {Concurrent tasks} ¢ if [p received select, msg from c¢ =
14: {Task 1:} (rp mpd n) + 1 and p has not sent
15: while true do confirmq msg] then
16: rp —rp+1 53: Selegtsp — ((SELECT,c,r,e,ts)c)
17: {Select a Coordinator c,} 54: confirm, = (CONFIRM, p,7,€)p
18: ¢p — (rp mod n) + 1 55: ser{d confirmy to all
19: {Task 1, Phase 1 : each node creates esti- gg end if
mate msg} 28 er‘f‘d‘}:"g_‘le
20: estimate, = (ESTIMATE, p,rp, ep,tsp) 59: { as 3
21: Send estimate, to all : while true do ; s
99 Task Ph p Qi 60: [Wait until received [(n + k)/2] + 1 dis-
: ric:if/edléstimziz HQI-Sg?OOT inator counts tinct readyq] messages from g nodes with
b common 7,e
23: if [p = c;p] then 61: decide(e)
24 [Wait until received (n — k) distinct §2: end whi(le)
estimate, messages from ¢ nodes] 63: {Task 4:}
25: Estimates, < estimatey 64: while true do
26: ts = largest tsq estimate, € 65: {Send list of suspected nodes}
Estimatesy 66: Suspected, < Dy
27: if [ts = 0 and (at least (k + 1) distinct 67: suspect, = (SUSPECT, p, Suspected,,)
! h : P)Py p)p
estimate,; € Estimates, have common 68: Send suspect, to all
. : P
oy, Ve o) then 69: end while
29: else 0 {Task.5:}
. 71: for r in S do
30: es «— ep : .
. 72: When p receives Suspect, from gq
31: end if 73. ifrin S 4 th
32: {Coordinator creates select msg} - nrm uépecte q then)
33: select, = ((SELECT, p,p, €s)p) gg lSuspectzngp [r] « Suspecting,[r] U (q)
. . : else
gg enzeril;-i selectp to all 76: Suspecting,[r] < Suspectingp[r] — (q)
36: {Task 1, Phase 3 : receiving confirm msg} 77 end if .
37: [Wait until received [(n+k)/2]+1 distinct ?g if |Suspectingy[r]| > k + 1 then
con firmg messages or ¢, € Outputp] 80‘ IOUtPutp = Outputy, U (1)
38: confirm, = ((SELECT, p,p,€s5)p) . else
39: if [[(n + k)/2] + 1 distinct confirmg, € 2% 31“?”“? = Output, — (1)
Con firmsp, have common value e] then 83; en?:lnfo:‘

discussion about the replication protocol is beyond the scope of this paper.
Being fully replicated, each Authorization Control Service has the same PDP,
PAP, and PEP. There is no need to migrate those entities. However, only the
current leader server has the information about the granted access requests
in addition to having the most up to date policy database. Granted access
requests information is stored in the session history of the current Authoriza-
tion Control Service. Therefore, the session history and the policy database

Resilient Reference Monitor for Distributed Access Control 31

need to be migrated to the new Authorization Control Service to allow users
with granted access a continuous use of the allowed resources.

4.3 The Discovery Service

Implementing a Moving Target Defense for an Access Control service requires
switching frequently but randomly the server that is responsible for offering
the Access Control service. Once the Authorization Control service has been
switched to a newly elected leader server, users need a way to rediscover the
new server offering the service. In this section, we adapt the Service Location
Protocol or SLP in order to enable users to discover the new location of the
services they need.

SLP Module. The SLP Module is responsible for running the service discovery
protocol. This service is provided to clients that need to consult the SLP Module
in order to discover the new Authorization Control Service location.

SLP Overview. Service Location Protocol (SLP) is a protocol designed by
the Internet Engineering Task Force to eliminate the need of a manual con-
figuration from users of communication networks in order to discover services,
applications, and devices available in those networks. Since users, mainly mobile
users, increasingly experience changing environments and the fact that the Inter-
net has became more service oriented, service location is becoming more helpful
in today’s complex networks [18,50].

SLP Architecture. The SLP framework includes three main components
called “Agents” to process SLP information. These agents are: User Agents (UA),
Service Agents (SA), and Directory Agents (DA).

— User Agents (UA): They are responsible for requesting services on behalf of
the users or applications.

— Service Agents (SA): They are entities that advertise the location and descrip-
tion of services on behalf of services. To advertise services, the SAs embed the
service information into an URL. These information include the IP address,
the port number, the service type and the path. Each service type is charac-
terized by specific attributes along with their default values. All of these are
specified by the Service Templates.

— Directory Agents (DA): They are central repositories that aggregate SLP
information. Since service information are embedded in a URL, these URL
are stored by the DA which provides them to any UA that have issued a
request which matched some attributes in the URL.

At the beginning of the protocol, any service provider needs to advertise
its services. For that purpose, its SA registers the service with the DA. This
step is known as the Service Registration. The DA acknowledges the regis-
tration by issuing a service ACK message to the SA. A user that needs to use

32

to

D. Mulamba and 1. Ray
Client Server
Wants
Client application To find Service
——

Find Service SLP AP Register Service

SLP SLP
User Agent Service Agent

)

Multicast service request

Unicast service reply

Fig. 2. Service discovery flow

the given service needs to have his UA issuing a query with the appropriate
attributes to the DA. This is known as the Service Request step. The DA
may reply back to the UA with the address and characteristics of the desired
service (Service Replay). This is the general approach of the SLP protocol as
illustrated on Fig. 2.

There is a major issue with the general approach of the SLP protocol as
explained above. No one from both the UA and the SA knows the address of
the DA. Before registering a service with the DA, the SA needs to discover
the existence of the DA. The same thing applies to the UA.

Three different methods are used to discover the location of the DA: static,
active, and passive. When using the static discovery method, both the UA
and the SA learn the address of the DA from a DHCP server. In case of an
active discovery, SLP agents contact the DA by sending service requests to the
SLP multicast address on which the DA is configured to listen to for incoming
communications. Upon receiving a service request, DA responds directly to
the requesting agent via the agent’s unicast address. The passive discovery
method involves DAs periodically advertising their existence through the SLP
multicast address. The other SLP agents discover the DAs location after lis-
tening the multicast advertisements. They can then contact the DAs directly
through their unicast addresses for other operations [37].

Besides the basic SLP architecture involving SAs, DAs, and UA, it is possible
set a SLP architecture without DAs. In this case, UAs and SAs need to

communicate directly to each other. In order to discover available services, UAs
repeatedly send out their service requests to the SLP multicast address. On the
other hand, SAs are listening for incoming requests on the SLP multicast address.
Upon receiving a request corresponding to a service they are advertising, SAs
reply through unicast address to UAs.

4.4 The Resource Access Service

It

is a server that manages the various protected resources. It acts as both

client and server when receiving or replying to access requests from clients. The
decision to grant the access to those resources is received from the Authorization
Control Service.

Resilient Reference Monitor for Distributed Access Control 33

5 Implementation

In this section, we introduce the proof-of-concept implementation of our pro-
posed architecture. We have designed a test case to exemplify the functioning of
the protocol.

5.1 Clients and Resource Access Service

We assume that we have a set of users represented by client applications. Those
users are grouped into a set of roles (Undergraduate, Graduate, and Faculty).
We also have a set of resources, in this case files stored on a file server. This
file server constitutes our Resource Access Service. We have also defined a set
of actions to be performed on those files by users. We have chosen basic Linux
actions: Read, Write, and Execute. The different permissions given to users over
those files are represented on Fig. 3.

Role/Resource syllabus.txt research.txt grades.txt assignment.txt certificate.txt
Undergrad r r rwx r

Graduate rwx rwx r X

Faculty rwx rwx rwx r WX

Fig. 3. Roles-Permissions assignment

5.2 Authorization Control Server

Using socket programming, we have implemented five Authorization Control
Services named AC'S1, ACS2, ACS3, ACS4, and ACS5. Those have been imple-
mented as Java client-servers. Each of those Authorization Control Services has
an Access Control Module that is responsible for verifying user’s authorization to
resources that are stored on the Resource server. At each time, only one Autho-
rization Control Service is responsible for providing the access control service.

Access Control. We start our process with the Authorization service being
provided by, let us say, the Authorization Control Server ACS1. We consider that
user Tom submits a request to read a file named certificate.txt. This request is
intercepted by ACS1 which run the Access Control Module. The Access Control
Module has been implemented using the Balana [24] open source implementation
of XACML. Tom’s query will be a tuple user-id, action, resource-name where in
this particular case user-id is Tom, action is read, and resource-name is the file
certificate.txt requested by Tom.

Policy Enforcement Point. Tom’s query is intercepted by the Policy Enforcement
Point (PEP). In fact, the PEP intercepts all queries sent to the Resource Access
Service [40]. We have developed a wrapper that converts the original query into
a XACML request. The request is then sent to the PDP for verification. Figure 5
illustrates the form of the XACML request.

34 D. Mulamba and 1. Ray

Protected
i Resource

Request
Decision &
Obligations
Y N\
—— Request ——>
PDP PIP
Attribute
Attributes
Request - .
Policy
PAP ,

Fig. 4. XACML architecture

-<Request CombinedDecision="false" ReturnPolicyldList="true">
—<Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource">
—<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:resource:resource-id" IncludeInResult="false">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">resource</Attributevalue>
</Attribute>
</Attributes>
—<Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">
—<Attribute Attributeld="http://wso2.or ole" ="false">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">Role</AttributeValue>
</Attribute>
</Attributes>
—<Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action">
—<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id" IncludeInResult="false">

<AttributeValue DataType="http://www.w3.0org/2001/XMLSchema#string">operation</AttributeValue>
</Attribute>
</Attributes>
</Request>

Fig. 5. User request sample

Policy Decision Point. The Policy Decision Point (PDP) receives Tom’s request
coming from the PEP. It needs to analyse if Tom fulfills the required conditions
to read the file certificate.txt. The PDP will consult the Policy file to determine
what actions Tom is allowed to perform on the file certificate.txt. Balana [24]
provides us with an API call that allows us to create a PDP.

Policy Administration Point. To write policies, we have made use of the Simple
Policy Editor. This policy editor is part of WSO2 Identity Server [25]. Simple
Policy Editor allows anyone to create XACML 3.0 policies without an extensive
knowledge of XACML language. However, an understanding of access control
rules is required. Figure 6 is a sample of our policy file.

In addition to the Policy file, the PDP also consults the user-role assignment
table. After determining Tom’s role, which is undergraduate, and consulting the
Policy file, the PDP reaches the conclusion to authorize Tom to read the desired
file. The PDP passes that decision back to the PEP. That response is represented
as a XACML file. A sample of the response XACML file is exhibited on Fig. 7.

The PEP then replies to Tom with a response granting him access to the file.
Tom can now access the file server.

Resilient Reference Monitor for Distributed Access Control 35

- <Rule Effect="Permit" Ruleld="Rule-5">
- <Target>
- <AnyOf>
- <AllOf>
—<Match Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.0rg/2001XMLSchemas#string">certificate.txt</AttributeValue>
<AttributeDesignator Attributeld="urn:oasis:names:tc:xacml:1.0:resource:resource-id" Category="urn:oasis
</Match>
</AllOf>
</AnyOf>
</Target>
~<Condition>
- <Apply Functionld="urn:oasis:names:tc:xacml:1 .0:function:string-at-least-one-member-of">
- <Apply Functionld="urn:oasis:names:tc:xacml:1 .0:function:string-bag">
<AttributeValue DataType="http:/www.w3.0rg/2001/XMLSchema#string">read</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001 XMLSchema#string">write</AttributeValue>
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">execute</AttributeValue>
</Apply>

<Attl‘|61lteDesigl|atol‘ Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id" Category="urn:oasis:names:tc
</Apply>
</Condition>
</Rule>
Fig. 6. Policy file sample
—<Response>
—<Result>
<Decision>Deny</Decision>
—<Status>
<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>
</Status>

—<PolicyldentifierList>
<PolicyldReference>univ_undergrad_policy</PolicyldReference>
</PolicyldentifierList>
</Result>
</Response>

Fig. 7. Response sample

Leader Election. Our objective is to protect the Access Control Module by
regularly switching the Authorization Control Service providing the Access Con-
trol service at any given time. For the sake of demonstrating, we have chosen
to switch the Authorization Control Service after every 10 min plus a random
number of seconds. The random time is added to cancel the predictability of the
time when the election takes place. An attacker knowing when the new leader is
elected can schedule his attack accordingly.

An election is called after the end of term of the current Leader. In this
instance, that term is set to ten minutes and some random seconds. The current
leader being ACS], it is the one responsible to call for an election. Using Java,
the Leader Election is implemented according to the adaptation of the protocol
presented in Sect.4.2. At the end of the protocol a new leader is elected. This
leader is different from ACSI, for instance ACS3 has been selected a the new
leader. This is the server that is going to be responsible of providing the Autho-
rization Control Service until next election. We made all Authorization Control
Services probe the leader after every ninety seconds by sending a IsAlive message
to it. This is done in order to detect the failure of the current leader.

Tom want to request another file stored on the file server, but the Authoriza-
tion Control Service has been moved from ACS1 to ACS3. Any attacker who was
in the middle of preparing an attack against ACS1 will be attacking the wrong
Authorization Control Service, which is the intended goal of our architecture.
However, Tom will also be sending his authorization request to the wrong server.

36 D. Mulamba and 1. Ray

Migration. We have implemented the Migration Module as a mechanism to
simply transfer the session history file and the policy file from the previous leader
ACSI to the elected leader ACS3. As stated in Sect. 4.2, the other access control
modules are the same across all Authorization Control Services. The reason for
transferring ACS1 Policy file to ACS3 is that while ACS1 was providing the
Authorization service, policies, resources and users may have been updated. To
avoid disruption in the access control service, ACS3 needs to have the most
recent policy file.

Other alternatives to this migration can be envisioned. One option is to
store the policies in a Policy Database, and replicate the database across all the
Authorization Control Services accordingly. Another option would be to migrate
the database from the current leader to the new leader at the end of an election.
An additional option would be to use a single Policy database that would be
shared by all the Authorization Control Services. This last option can create a
potential issue by making that single policy database a single point of failure
attractive for would be attacker.

5.3 Discovery Service

We need to let Tom know that the Authorization Control Server ACS3 has been
elected as the new leader, and therefore he should send his request to ACS3.
The Discovery Service allows us to achieve that goal through the adaptation of
SLP protocol.

We have implemented the Discovery Service using a tool called OpenSLP
[35] which is an open source implementation of the Service Location Protocol.
OpenSLP can be used either in a three components mode or in a two components
mode. In the first mode, we can have a User Agent (UA), a Service Agent (SA)
and Directory Agent (DA). The User Agent is the Agent requesting services. The
Service Agent is the Agent providing the services, while the Directory Agent is
the repository of services. In a two component mode, we can have only the User
Agent and the Service Agent. In this case, the Service Agent plays also the
role of a Directory Agent (DA). For the sake of this demonstration, we have
implemented the later option. We have installed OpenSLP and made sure that
slpd, which is the OpenSLP daemon, is running.

Service Agent. Since our setting do not use a Directory Agent, the new leader will
have to register its services with slpd upon being elected. The old Authoriza-
tion Control Service, previously registered, is unregistered to avoid confusing
users. The new leader registers its access control service by issuing a query
in the form of a ServiceURL. The ServiceURL has the following form: ser-
vice:ServiceName://TPAddress:PortNo, where ServiceName is the Authorization
Service, IPAddress is the IP address of the new leader, and PortNo is the port
where the Authorization Service is running.

User Agent. In our setting, the User Agent is Tom who needs to find the loca-
tion of the new leader which is providing the access control service. In order to
discover the Authorization Service, Tom’s client sends a multicast packet with

Resilient Reference Monitor for Distributed Access Control 37

a ServiceURL. The Service Agent, which is the new leader, will verifies if Tom’s
query matches the registered service. In case of a match, the Service Agent
replies to Tom with the ServiceURL informing him how to access the access
control service.

6 Conclusion and Future Work

We have sketched a Moving Target Defense architecture aiming at defending
an Access Control Reference Monitor. The design allows a master Resource
Access Server and a master Authorization Control Server to be periodically
and randomly switched to other ones. This mechanism allows the disruption of
any ongoing attack on the Access Control Reference Monitor. This work opens
a new direction in research on Moving Target Defense of an Access Control
Reference Monitor. This architecture can benefit from some improvements. For
instance, we do not believe that the election algorithm is an optimal one in
term of computation and the number of messages exchanged during the election
process.

Acknowledgement. This work was partially supported by funding from CableLabs,
the US National Science Foundation under grant number 1650573, and the US Depart-
ment of Energy under contract DE-NE0008571. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of CableLabs, the National Science Foundation, or the
Department of Energy.

References

1. Abu-Amara, H., Lokre, J.: Election in asynchronous complete networks with inter-
mittent link failures. IEEE Trans. Comput. 43(7), 778-788 (1994)

2. Al-Shaer, E.: Toward network configuration randomization for moving target
defense. In: Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.)
Moving Target Defense, vol. 54, pp. 153-159. Springer, New York (2011)

3. Anderson, J.: Computer Security Technology Planning Study. Technical report
ESD-TR-73-51, Electronic Systems Division, Hanscom Air Force Base, Hanscom,
MA (1974)

4. Antonatos, S., Akritidis, P., Markatos, E.P., Anagnostakis, K.G.: Defending against
hitlist worms using network address space randomization. Comput. Netw. 51(12),
3471-3490 (2007)

5. Arghavani, A., Ahmadi, E., Haghighat, A.: Improved bully election algorithm in
distributed systems. In: 2011 International Conference on Information Technology
and Multimedia (ICIM), pp. 1-6. IEEE (2011)

6. Brunekreef, J., Katoen, J.P., Koymans, R., Mauw, S.: Design and analysis of
dynamic leader election protocols in broadcast networks. Distrib. Comput. 9(4),
157 (1996)

7. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
Proceedings of the 7th Symposium on Operating systems design and implementa-
tion, pp. 335-350. USENIX Association (2006)

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

D. Mulamba and 1. Ray

Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. (TOCS) 20(4), 398-461 (2002)

Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI 1999,
pp. 173-186 (1999)

Compton, M.D.: Improving the quality of service and security of military networks
with a network tasking order process (2010)

Copeland, C., Zhong, H.: Tangaroa: a byzantine fault tolerant raft

Evans, D., Nguyen-Tuong, A., Knight, J.: Effectiveness of moving target defenses.
In: Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.) Moving
Target Defense, vol. 54, pp. 29-48. Springer, New York (2011)

Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): features
and motivations. In: Proceedings of 11th Annual Computer Security Application
Conference, pp. 241-48 (1995)

Ferreira, A., Chadwick, D., Farinha, P., Correia, R., Zao, G., Chilro, R., Antunes,
L.: How to securely break into RBAC: the BTG-RBAC model. In: Annual Com-
puter Security Applications Conference, ACSAC 2009, pp. 23-31. IEEE (2009)
Fraim, L.J.: Scomp: a solution to the multilevel security problem. IEEE Comput.
16(7), 26-34 (1983)

Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Com-
put. 31(1), 48-59 (1982)

Gilbert, M.D.M.: An examination of federal and commercial access control pol-
icy needs. In: National Computer Security Conference, 1993 (16th) Proceedings:
Information Systems Security: User Choices, p. 107. DIANE Publishing (1995)
Guttman, E.: Service location protocol: Automatic discovery of IP network ser-
vices. IEEE Internet Comput. 3(4), 71-80 (1999)

Han, Y., Lu, W., Xu, S.: Characterizing the power of moving target defense via
cyber epidemic dynamics. In: Proceedings of the 2014 Symposium and Bootcamp
on the Science of Security, p. 10. ACM (2014)

Howard, H., Schwarzkopf, M., Madhavapeddy, A., Crowcroft, J.: Raft refloated: do
we have consensus? ACM SIGOPS Oper. Syst. Rev. 49(1), 12-21 (2015)

Huh, J.H., Bobba, R.B., Markham, T., Nicol, D.M., Hull, J., Chernoguzov, A.,
Khurana, H., Staggs, K., Huang, J.: Next-generation access control for distributed
control systems. IEEE Internet Comput. 20(5), 28-37 (2016)

Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination
for internet-scale systems. In: USENIX Annual Technical Conference, vol. 8, p. 9
(2010)

Inc, A.: Bonjour. https://support.apple.com/bonjour. Accessed: 26 Feb 2017
Info, X.: Balana. http://xacmlinfo.org/2012/12/18/getting-start-with-balana.
Accessed: 26 Feb 2017

Info, X.: Wso2 identity server. http://xacmlinfo.org/category/wso2is/. Accessed:
26 Feb 2017

King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: Proceedings
of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm, Miami, FL,
USA (2006)

King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp.
990-999. Society for Industrial and Applied Mathematics (2006)

Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (TOCS) 16(2),
133-169 (1998)

Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382-401 (1982)

https://support.apple.com/bonjour
http://xacmlinfo.org/2012/12/18/getting-start-with-balana
http://xacmlinfo.org/category/wso2is/

30.
31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.
51.

52.

Resilient Reference Monitor for Distributed Access Control 39

Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18-25 (2001)
Le Lann, G.: Distributed systems-towards a formal approach. In: IFIP Congress,
Toronto, vol. 7, pp. 155-160 (1977)

Lee, J.W., Schulzrinne, H., Kellerer, W., Despotovic, Z.: z2z: discovering zeroconf
services beyond local link. In: 2007 IEEE Globecom Workshops, pp. 1-7. IEEE
(2007)

Martin, J.P., Alvisi, L.: Fast byzantine consensus. IEEE Trans. Dependable Secure
Comput. 3(3), 202-215 (2006)

Mohammed, I., Dilts, D.M.: Design for dynamic user-role-based security. Comput.
Secur. 13(8), 661-671 (1994)

OpenSLP: Service location protocol. http://www.openslp.org/. Accessed: 26 Feb
2017

ORACLE: Trusted Solaris Operating System. http://www.oracle.com/
technetwork /server-storage/solaris/overview/index-136311.html

Perkins, C., Kaplan, S.: Service location protocol. In: ACTS Mobile Networking
Summit/MMITS Software Radio Workshop (1999)

Perkins, C.E., et al.: Dhcp options for service location protocol (1999)

Presser, A., Farrell, L., Kemp, D., Lupton, W.: UPnP device architecture 1.1. In:
UPnP Forum, vol. 22 (2008)

Rissanen, E., et al.: Extensible access control markup language (xacml) version 3.0
(2013)

Ruj, S., Stojmenovic, M., Nayak, A.: Decentralized access control with anonymous
authentication of data stored in clouds. IEEE Trans. Parallel Distrib. Syst. 25(2),
384-394 (2014)

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38-47 (1996)

Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun.
Mag. 32(9), 40-48 (1994)

Sayeed, H.M., Abu-Amara, M., Abu-Amara, H.: Optimal asynchronous agreement
and leader election algorithm for complete networks with byzantine faulty links.
Distrib. Comput. 9(3), 147-156 (1995)

Schell, R., Tao, T., Heckman, M.: Designing the GEMSOS security kernel for
security and performance. In: Proceedings of the 8th National Computer Security
Conference, Gaithersburg, MD (1985)

Shi, X., Lin, H., Jin, H., Zhou, B.B., Yin, Z., Di, S., Wu, S.: Giraffe: a scalable dis-
tributed coordination service for large-scale systems. In: 2014 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 38-47. IEEE (2014)

Singh, G.: Leader election in the presence of link failures. IEEE Trans. Parallel
Distrib. Syst. 7(3), 231-236 (1996)

Soundarabai, P.B., Thriveni, J., Manjunatha, H., Venugopal, K., Patnaik, L.:
Message efficient ring leader election in distributed systems. In: Chaki, N.,
Meghanathan, N., Nagamalai, D. (eds.) Computer Networks & Communications
(NetCom), pp. 835-843. Springer, New York (2013)

The TrustedBSD Project: Trustedbsd. http://www.trustedbsd.org

Veizades, J., Perkins, C.E.: Service location protocol (1997)

Wang, G., Koshy, J., Subramanian, S., Paramasivam, K., Zadeh, M., Narkhede,
N., Rao, J., Kreps, J., Stein, J.: Building a replicated logging system with apache
kafka. Proc. VLDB Endowment 8(12), 16541655 (2015)

Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux security
modules: general security support for the linux kernel. In: Proceedings of the 11th
USENIX Security Symposium, San Francisco, CA (2002)

http://www.openslp.org/
http://www.oracle.com/technetwork/server-storage/solaris/overview/index-136311.html
http://www.oracle.com/technetwork/server-storage/solaris/overview/index-136311.html
http://www.trustedbsd.org

40 D. Mulamba and 1. Ray

53. Xu, J., Guo, P., Zhao, M., Erbacher, R.F., Zhu, M., Liu, P.: Comparing different
moving target defense techniques. In: Proceedings of the First ACM Workshop on
Moving Target Defense, pp. 97-107. ACM (2014)

54. Zhuang, R., DeLoach, S.A., Ou, X.: Towards a theory of moving target defense.
In: Proceedings of the First ACM Workshop on Moving Target Defense, pp. 31-40.
ACM (2014)

2 Springer
http://www.springer.com/978-3-319-61175-4

Data and Applications Security and Privacy XXl
31st Annual IFIP WG 11,3 Conference, DBSec 2017,
Philadelphia, PA, USA, July 19-21, 2017, Proceedings
Livraga, G.; Zhu, 5. (Eds.)

2017, X, 556 p. 137 illus., Softcover

ISEMN: 978-3-319-61175-4

	Resilient Reference Monitor for Distributed Access Control via Moving Target Defense
	1 Introduction
	2 Background and Related Works
	2.1 Protection of Access Control Subsystems
	2.2 Moving Target Defense
	2.3 Leader Election
	2.4 Consensus Algorithms
	2.5 Byzantine Fault Tolerance
	2.6 Service Location Protocol

	3 Architecture Overview
	3.1 Access Control Architecture Components
	3.2 Threat Model

	4 Distributed Access Control Architecture
	4.1 The Client
	4.2 The Authorization Control Service
	4.3 The Discovery Service
	4.4 The Resource Access Service

	5 Implementation
	5.1 Clients and Resource Access Service
	5.2 Authorization Control Server
	5.3 Discovery Service

	6 Conclusion and Future Work
	References

