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Abstract. Most available 3D human brain atlases provide information only at a
macroscopic level, while 2D atlases are often at a microscopic level but lack 3D
integration. A 3D atlas defined upon fine-grain anatomical detail of cortical
layers and cells is necessary to fully understand neurobiological processes.
“BigBrain,” a high-resolution 3D model of a human brain at nearly cellular
resolution, was released in 2013. This unique dataset enables the extraction of
microscopic data for utilization in brain mapping, modeling and simulation. We
propose an automated 3D cortical parcellation of the BigBrain volume into
functionally-meaningful areas in order to create a modern high-resolution 3D
cytoarchitectural atlas that will complement existing brain atlases. We use a
distance metrics-based framework for BigBrain parcellation, and perform
comparative analyses of our results with existing atlases (Brodmann and JuBrain
atlases). This work has immediate application in teaching, neurosurgery, cog-
nitive neuroscience, and imaging-based brain mapping.
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1 Introduction

Reference brains in human brain mapping are indispensable tools, enabling integration
of multimodal data into a common framework. However, most presently available
human brain atlases do not provide information beyond the macroscopic level.
Fine-grain anatomical resolution of cortical layers, columns, microcircuits, and cells is
necessary to fully understand neurobiological processes.

In 2013 “BigBrain” [1], a high-resolution digital 3D model of a human brain
reconstructed from 7,404 histological sections at a nearly cellular isotropic resolution
of 20 um, was created. The dataset is publicly available and includes 3D tissue clas-
sification as well as cortical surface extraction.

In this paper, we propose a 3D automated cortical parcellation of the BigBrain
volume into functionally-meaningful areas, which should complement existing brain
atlases such as the Brodmann atlas [2] and JuBrain atlas [3]. Although the 3D Brod-
mann atlas is widely used in neuroimaging, it is not a gold standard, neither validated
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nor based on robust cytoarchitectural boundaries. The JuBrain atlas is, like our current
work, a high resolution cytoarchitectural atlas; however it consists of an initial 2D
partial manual segmentation prior to its reconstruction in 3D. The 2D manual seg-
mentation is guided by algorithms which utilize a local gray level index [4]. Due to the
intensive manual nature of this segmentation, there are many areas of the JuBrain atlas
that are not yet complete.

Previous work on 3D automated methods to parcellate brain images has been done
using different imaging modalities of standard resolution such as MRI [5], fMRI [6],
DTI [7] and SPECT ([8]. These methods have been designed to operate at the
macroscopic scale and most of them [5, 7, 8] propose parcellation schemes based on
Mahalanobis and Euclidean distance metrics. While our parcellation framework is
designed to operate on cytoarchitecture at the microscopic scale, it is similarly based on
distance metrics including Mahalanobis and Euclidean distances.

Although parcellation of brain cytoarchitectural histology data has been addressed
previously, in most cases the parcellation is done on 2D sections, and only afterwards
are the segmented structures reconstructed in 3D [9, 10]. This approach restricts the
definition of cytoarchitectural boundaries to two dimensions, on a single section at a
time. Our new method overcomes this restriction and allows the detection of bound-
aries in 3D. Moreover, in contrast to previous work where cytoarchitectural boundaries
are typically manually delineated by experts, our proposed method is automated.

It should be noted that recent work has also been done on the manual segmentation
of the BigBrain volume in specific areas such as substructures of basal ganglia [11], with
immediate clinical applications in neurosurgery [12]. The new cytoarchitectural brain
atlas that we are currently proposing (again, which is automated and extends across the
entire cortex) will be additionally useful for many applications in clinical and funda-
mental brain research, in all areas where the ubiquitous 3D Brodmann atlas is used.

The nature of the BigBrain dataset is unique. On the one hand, previous automated
parcellation methods proposed for macroscopic MR images were not designed to assess
cytoarchitectural boundaries. On the other hand, manual and semi-automated methods
proposed to parcellate 2D cellular-level cytoarchitectural sections are not suited for the
3D volume of the BigBrain at near-cellular resolution. Therefore, the parcellation
method described in this paper is especially designed for the BigBrain and inspired
from previous work in both fields.

Derived from the BigBrain dataset, the goal of the proposed atlas is therefore two-
fold; (1) to provide a much more modern, high level of resolution, and (2) to be defined
upon cytoarchitectural boundaries truly detected in 3D. In order to compare our par-
cellation of the BigBrain to other existing atlases, we used the method described in [13],
which proposes a comprehensive set of measures for quantitative comparison of
anatomical parcellations of brain atlases. This method allows the evaluation of atlases
with differing numbers of regions. It is an interesting feature for the analysis of our results
that the generated parcellations are likely to have different numbers of final regions. To
perform our analysis, we selected a subset of the measures proposed in that method.
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2 Materials and Methods

2.1 Material: BigBrain Volume, Brodmann and JuBrain Atlases

The BigBrain volume is available in various file formats and reference spaces (https://
bigbrain.loris.ca). In this work, in order to avoid any distortion that may be introduced
by additional processes such as registration into stereotaxic space, we used the 2015
version of the BigBrain 3D reconstructed volume in its native histological space. Such
distortion could otherwise have a negative impact on parcellation results. To define the
cortical mantle, which consists of voxels labeled as gray matter, we used the available
3D classified volume image and gray and white matter surfaces, extracted at 200 pum.

Additionally, we used the 3D Brodmann atlas provided with MRIcron software
(available at http://www.mccauslandcenter.sc.edu/mricro/mricron). The atlas was reg-
istered to the BigBrain volume in order to compare our parcellations of the BigBrain to
the projected Brodmann areas. We focused our work on the left hemisphere of the brain
since the Brodmann atlas was initially defined on the left hemisphere. The right
hemisphere of the atlas is a symmetric copy of the left.

For specific regions such as visual cortex, we also chose to compare our parcel-
lation results with the JuBrain atlas (available at http://www.fz-juelich.de/inm/inm-1/
EN/Forschung/JuBrain/Jubrain_Webtools/Jubrain_Webtools_node.html). The ongoing
construction of this atlas is performed using a semi-automated parcellation method [4]
previously introduced to assist experts in delineation of cytoarchitectural boundaries
upon 2D slices. This method uses distance metrics to capture differences between
cytoarchitectural profiles.

We adapted this method for the BigBrain dataset, but because this method was
designed to operate at a cellular resolution of 1 um, we failed to obtain significant
parcellations. Image processing tools provided by this method count individual cell
bodies in a region of interest. At the resolution of the BigBrain (20 um), individual
cells are not visible; therefore this method was not appropriate to achieve our goal.

2.2 Methods: Multilevel Parcellations Algorithm Approach (Overview)

Our analysis consisted of an initialization phase followed by a tri-level parcellation
approach (Fig. 1). At the initialization phase, described in Sect. 2.3 below, initial
profiles (163,842 3D bars) were defined and dropped across the cortical mantle,
maximizing coverage while avoiding overlap. Using a Scale-Invariant Feature Trans-
form (SIFT) algorithm these initial profiles were triaged down to 1,071 starting profiles
that represented the maximally homogenous centers within groups of profiles
exhibiting similar information (while being maximally distant from borders of profiles
exhibiting different information). The tri-level parcellation approach is based on a
distance metric framework, which is described in Sect. 2.4 below.
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Fig. 1. Multilevel parcellation algorithm divided into three levels from fine to coarse.

At the first level of parcellation, described in Sect. 2.5 below, distances between the
starting profiles and their neighbors were computed. Similar neighboring profiles were
collapsed together to form 3D clusters in a data-driven, region-growing process which
yielded 1,071 clusters. The second (intermediate) level of parcellation, described in
Sect. 2.6 below, was introduced in order to bridge the gap between the first and third
levels of parcellation. The entropy of the previously obtained 3D clusters was used to
merge similar ones, reducing these 1,071 clusters to ~400 parcels (entropy thresholds
were user-defined and adjusted to target a number that is one order of magnitude higher
than the final target in the third level). At the third level of parcellation, described in
Sect. 2.7 below, distance metrics were again employed, this time onto the histograms
of the previously obtained ~400 parcels in order to reduce them to ~40 final regions
(distance metric thresholds were also user-defined and adjusted to target a comparable
number of regions as the Brodmann atlas).

2.3 Methods: Initial Profiles and Algorithm Starting Points
(Initialization)

First, initial profiles were created over the entire cortical mantle of the BigBrain.
A profile is a column which begins with a voxel on the gray matter surface, transversing
down through the cortical layers in the direction of the gray matter surface normal
vector, and ends with a voxel on the white matter surface, as schematized in Fig. 2. By
applying the Laplace equation as proposed in [14], we determined that using a 3D
18-connected neighborhood for voxels along the path would provide maximum density
of profiles without overlap. Next, in order to assure robustness of profiles to effects of
curvature on layer compression, we used an equivolumic cortical depth model [15].
Finally, all profiles were normalized to straight vectors of identical length, with values
corresponding to voxel intensities across cortical layers.
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Fig. 2. Initial profiles creation: 3D bars across cortical layers of the BigBrain volume.

The process outlined above yielded a total of 163,842 initial profiles. Next, it was
necessary to reduce this number to a biologically representative set of key points
(1,071) to be used as input to the parcellation algorithm.

To choose this set of key points, first, we used the SIFT (Scale-Invariant Feature
Transform) algorithm [16], which identifies features of interest in a 2D image, and
adapted it to determine 3D key points of interest. We used Eq. (1) to compute in 3D the
gradient amplitude and angles of each voxel.

G, G
Amp = G§+G§+G§;9:atan<a’>;(p:atan —_— (1)
' /G2 2
G +Gj

Then we constructed an orientation histogram as proposed in [17] for the 3D
neighborhood around a given interest point by dividing 6 and ¢ into bins of equal size.
While working in 3D, it was also necessary to normalize the values added to each bin
by the area of the bin as described in [18]. This corresponds to the solid angle Q
computed using Eq. (2). The values added to the histogram were computed using
Eq. (3) where (X, Yn, z,) represented the location of the voxel being added to the
histogram of the interest point.

+A4¢ ,0+40
= / / sinf dO do = Ap[cos 6 — cos(0+ 406)] (2)
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In this manner, we were able to obtain preliminary key points that were more likely
to be close to the parcels’ borders (where information was most heterogeneous).

Second, we performed an additional step to shift those key points away from each
border and instead more centrally, toward profiles exhibiting maximally homogeneous
information. Accordingly, our starting points would be in the presumed center of a
given region. To accomplish this, we tessellated the key points by generating a tetra-
hedral mesh based on a 3D Delaunay triangulation algorithm [19]. Then, we computed
its dual mesh (also known as the Voronoi diagram). The set of voxels located in the
center of the tetrahedrons (corresponding to the Voronoi diagram vertices) were used as
the starting points of our parcellation algorithm.
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2.4 Methods: Distance Metrics Definitions (Used at First
and Third Levels)

Our parcellation algorithm is based upon measurements of distance metrics, assessed
between initial profiles (first level) and then again between 3D parcels (third level).
Distance metrics serve as similarity criteria, comparing the (dis)similarity of intensity
properties. In this analysis, we tested a subset of the distance metrics surveyed in [20]
in order to identify the most suitable metric for our parcellation task. Our goal was to
select those metrics that were most informative about different, complementary fea-
tures, while disregarding those that were redundantly informative about similar fea-
tures. The distance metrics tested are listed in Table 1.

Table 1. List of distance metrics used in the parcellation algorithm

City block z Canberra % by
Y d(x.y) = > = i dxy) = SR
Euclidean n Squared chord ! 2
= )2 d(x,y) = Xi — \/Yi
d(x,y) — lzzl (xl y,) ( ) 1:21 (f \/_)
Minkowski n ) 1/p | Squared Chi
atey) = (S b -

In the first column of Table 1, we selected widely used distances of the same L,
family, with City block and Euclidean distances being particular cases of the Min-
kowski distance when p = I and p = 2, respectively. For Minkowski distance, we
selected p = 3 in order to obtain better results. In the second column of Table 1, we
selected other distances among the most used in their respective families: Canberra
distance belongs to L; family, Squared chord to Fidelity family, and Squared Chi to
Squared L, family. In addition to the six Table 1 distance metrics that we obtained
from [20], we additionally tested the Mahalanobis distance [21], defined by Eq. (4).

d(x,y) = \/(x —y)'S=1(x — y) where : S = covariance matrix 4)

It is worth noting that if the elements of x and y are independents, then the
covariance matrix will be the identity one, and in that case the Mahalanobis distance
would be equal to the Euclidean distance. In two dimensions, equal distances from a
center point are represented by circles for the Euclidean distance, and for the Maha-
lanobis distance they are represented by ellipses.

2.5 Methods: Distance Metrics (First Level)

For each of the seven distance metrics selected, the following procedure (schematized
in Fig. 1) was independently performed. As already described, the initialization phase
considered all initial profiles (163,842), using the adapted 3D SIFT algorithm in order
to select the starting profiles (1,071).
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Next, distances between starting profiles and their neighbors were computed.
Neighboring profiles with distances under a predefined threshold were labeled and
collapsed together to form 3D clusters. In a region-growing process, the scope moved
from starting profiles to the labeled neighbor ones. Distances were then computed
between labeled profiles and their nearest neighbors. This process terminated when all
of the initial profiles had ultimately been assigned to an existing cluster. The distance
threshold was initially set at a low value. If initial profiles remained unlabeled, the
process iterated with an increased threshold until all profiles belonged to a cluster.

Of additional interest, this highly detailed parcellation (1,071 clusters) may be
advantageously combined with recently emerging new atlases at high-resolution such
as [22], which defines ~900 neuroanatomically precise subdivisions based on geno-
mic transcriptome distributions of the brain.

2.6 Methods: Entropy Measurements (Second Level)

In the second level of parcellation, using entropy measurements, the 1,071 3D clusters
were input as seeds to grow ~400 parcels. This intermediate level of parcellation was
introduced in order to bridge the gap between the first and third level. In practice, this is
useful to target a specific number of final regions with unit increment. Our entropy
measurement [23] was defined by Eq. (5).

E(p(x)) = erxp(x) log(p(x)) where : p(x) = histogram of x (3)

By definition this measure is not a metric because it does not satisfy some of the
metric conditions such as symmetry and triangle inequality. Entropy is a statistical
measure used to characterize the texture of our clusters obtained after the first level of
parcellation. It gives a quantitative appreciation of homogeneity of a cluster in terms of
intensities of its voxels. In order to compute the entropy measurement, we used 256
bins to construct the histogram counts of the clusters.

If two neighboring clusters exhibited similar entropy, they were regrouped together
as a parcel, and the algorithm continued moving outward. If not, the algorithm stopped
and it was defined as an edge or boundary of the parcel. The level of similarity required
to merge clusters was set in such a way to obtain a number of parcels which is an order of
magnitude higher than the number of final regions targeted. As shown in Fig. 1, since
we were ultimately targeting close to 40 final regions for comparison with Brodmann
areas (41 in the atlas used), the intermediate number was set to ~400 parcels.

2.7 Methods: Distance Metrics (Third Level)

At the third level of parcellation, histograms were constructed to characterize the
distribution of the intensities of voxels across cortical layers in all previously obtained
parcels (~400). Then, the same distance metric (used on single voxels of initial
profiles at first level, described above in Sect. 2.5) was used in a similar way on the
histograms of parcels. Here, the distance threshold between neighbor parcels was set to
obtain the targeted number of final regions (~40).
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3 Results

The proposed parcellation pipeline was processed with each metric. Results were
selected based upon global similarity of parcellations in comparison to the Brodmann
atlas, using a similarity index value yielded by a region-level concordance analysis
proposed in [13]. The obtained results do not necessarily have exactly 41 regions;
rather, the similarity index was used to target the best matches compared to Brodmann
areas. The Mahalanobis distance metric obtained the highest similarity index score, and
was therefore identified as the metric to best map the Brodmann parcellation scheme
onto the BigBrain volume. Accordingly, its similarity index was used to normalize the
similarity index of all other metrics in order to compare their results. Figure 3 shows
the normalized indices and the number of regions for each metric result.

Distance Normalized Number of mm Normalized Similarity -@- Number of Regions
Metrics Similarity Regions 1,0 45
Mahalanobis 1,00 37 Z 2
Squared chord 0,96 42 % 0 43 '%
Canberra 0,81 41 » 08 - 41 @
City block 0,79 41 8 o7 M s z 39 O
Squared Chi 076 38 g 2 3 g s § é
Euclidean 0,70 36 S 06 | g 2 g 3 37 3
Minkowski 0,66 38 Z 05 B & S & i 35

Fig. 3. Evaluation of the distance metrics tested based on their similarity indices.

In Fig. 3, the metrics are ranked in decreasing order of similarity index. The second
one in line is the Squared chord metric, which is very close to the Mahalanobis metric,
and thus does not provide substantially different information. Both have different
numbers of regions which do not exactly correspond to the number of Brodmann areas.
The average number of regions for all metrics is 39, which is two regions less than the
Brodmann atlas. The Canberra and City block metrics have 41 regions (same as the
Brodmann atlas) and both have very similar indices, ranked third and fourth.

Figure 4 shows the parcellation result of the Mahalanobis metric, which was found
to be the most similar to the Brodmann atlas based on the previous analysis. Figure 4(a)
shows the Brodmann areas registered to the BigBrain left hemisphere, while Fig. 4(b)
shows the Mahalanobis parcellation result. Both color codes are similar but they do not
exactly match since the number of regions/areas are not the same. Figure 4(c) shows a
quantitative analysis of volume concordance between Brodmann areas and our par-
cellation results. Mutual overlapping volume distribution is quantified between our
result and the Brodmann atlas.

In Fig. 4(c), the blue columns show the fraction of the volume of a Brodmann area
which is overlapped by the BigBrain parcellation region covering most of that area’s
volume. Likewise, the orange columns show the fraction of the volume of the BigBrain
parcellation region (previously identified) which is overlapped by that same Brodmann
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Fig. 4. Comparison of BigBrain parcellation with Brodmann atlas using Mahalanobis distance.
(a) BigBrain left hemisphere with Brodmann areas. (b) BigBrain parcellation results using color
coding similar to Brodmann areas in (a) to highlight concordance. (c) Chart of concordance
between Brodmann areas and BigBrain parcellation regions. (Color figure online)

area. If a perfect match were to be attained for a specific Brodmann area, the value of
both blue and orange columns for that area would be 1. The stars below selected
Brodmann areas denote areas with high concordance, represented by higher values in
both (blue and orange) columns.

Figure 5 shows (a) Mahalanobis and (b) Canberra results compared to JuBrain atlas
in the visual cortex (Squared Chord was omitted because it demonstrated high simi-
larity to Mahalanobis). These parcellations have been adapted by targeting a higher
number of final regions in order to match the level of detail of the JuBrain segmentation
in the visual cortex. In Fig. 5, the numbered arrows designate boundaries successfully
detected by the parcellation algorithm compared to JuBrain areas, while lettered circles
designate where the distance metrics have failed to detect some JuBrain areas.

This qualitative analysis highlights the complementarity of the distance metric
results. For example, both failures with Mahalanobis (circles A and B, Fig. 5(a)) were
successfully detected with Canberra (arrows 1 and 2, Fig. 5(b)) and inversely the
failure with Canberra (circle A, Fig. 5(b)) was successfully detected with Mahalanobis
(arrow 2, Fig. 5(a)). This observation demonstrates that, according to the JuBrain atlas,
combining these two metrics may lead to a better parcellation. Ongoing work focuses
on automated linear combination of metrics in order to optimize the results.
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a) Mahalanobis distance metric: JuBrain atlas:

Successful:

1) V3A/ V3d (dorsal extrastriate)
2) V1 / V2 (primary, secondary)
3) V3v/ V4 (ventral extrastriate)

Failed:
A) V2 /V3d (secondary, dorsal)
B) V1 / V2 (primary, secondary)

Successful:

1) V2 / V3d (secondary, dorsal)
2) V11 V2 (primary, secondary)
3) V2 / V3V (secondary, ventral)

Failed:
A) V1 / V2 (primary, secondary)

Fig. 5. Comparison of BigBrain parcellation with JuBrain atlas with focus on the visual cortex.
(a) Mahalanobis distance compared to JuBrain. (b) Canberra distance compared to JuBrain.

4 Conclusion

We have proposed an automated parcellation of the BigBrain volume in order to
provide a unique high-resolution modern cytoarchitectural 3D atlas. This work has
immediate value across a broad range of applications, including teaching, neuro-
surgery, cognitive neuroscience, and imaging-based brain mapping. Our parcellation
framework is based upon distance metrics, and we performed comparative analyses of
our results with existing brain atlases. Future work will include refinement of the
parcellation using consensus between complementary distance metrics, and validation
of results from a functional neuroanatomy perspective.
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