Chapter 2
Profinite Graphs

Unless otherwise specified, in this chapter C is a pseudovariety of finite groups, i.e.,
a nonempty class of finite groups closed under subgroups, quotients and finite direct
products.

2.1 First Notions and Examples

A profinite graph is a profinite space I" with a distinguished nonempty subset V (I"),
the vertex set of the graph I", and two continuous maps

do,di: " = V(I)

whose restrictions to V(I") are the identity map idy ) (to simplify the notation,
we sometimes write d;m, rather than d; (m) (m € I',i =0, 1)). This implies that the
distinguished subset V (I") is necessarily closed. The elements of V(") are called
the vertices of I', the elements of E(I") = I" — V(I") are the edges of I', and dy(e)
and dj (e) are the initial and terminal vertices of an edge e, respectively (also called
the origin and terminus of e). An edge e with dy(e) = d;(e) = v is called a loop or
a loop based at v. We refer to dy and d as the incidence maps of the graph I".
Observe that a profinite graph is also a graph in the usual sense, or, more pre-
cisely, an oriented graph (see Appendix A), if we dispense with the topology. The
set of edges E(I") of a profinite graph I" need not be a closed subset of I". If E(I")
is closed (and therefore compact), it is enough to check the continuity of dy and d;
on V(I") and E(I") separately, since then V (I") and E(I") are disjoint and clopen.
Associated with each edge e of I" we introduce symbols ¢! and e~!. We identify
e! with e. Define incidence maps for these symbols as follows: do(e™1) =di(e)
and di(e~!) = dy(e). Given vertices v and w of I', a path pyy, from v to w is a
finite sequence ei‘ e wherem >0,¢; € E(I),ei==+1 (@G =1,...,m) such
that do(e}') = v, di(en") = w and di(e;") = do(e;'}]) fori =1,...,m — 1. Such
a path is said to have length m. Observe that a path is always meant to be finite.
The underlying graph of the path p,, consists of the edges ey, ..., e, and their
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30 2 Profinite Graphs

vertices dj(e;) (i =0,1; j =1,...,m). The path p,, is called reduced if whenever
e =¢ej+1,theng; =¢jq, foralli=1,...,m— 1.

Example 2.1.1 (a) A finite abstract graph I" (see Appendix A) with the discrete
topology is a profinite graph.

(b) Let N={0,1,2,...} and N= {n | n € N} be copies of the set of natural
numbers (with the discrete topology). Define

I =NUNU{oo}

to be the one-point compactification of the space NUWN. Recall that then in the
topology of I each set {n} and {n} is open (n € N), and the basic open neighbour-
hoods of oo are the complements of finite subsets of N N. Clearly / is a profinite
space. We make / into a profinite graph by setting V (/) = NWU{oo}, E(I) = N,
do(n)y=n,di(n)y=n+1,forne E(l),and d;(n) =n,forne V() (i =1,2).
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Observe that in this case the subset of edges £ (/) is open, but not closed in /.
(c) Let p be a prime number and let Z, be the additive group of the ring of p-adic
integers. Define a graph

' =r(Z, 1))

with set of vertices V = V(I") = Z, and whose setof edgesis E = E(I") = {(a, 1) |
a € Z,}. Then V(I') and E(I") are profinite spaces. We define the topology of
r=V{IMHWEW)

to be the disjoint topology: a subset A of I" is open if and only if ANV isopenin V
and AN E is open in E. One easily sees that I is a profinite space. Observe that the
subset of edges E = E(I") of I" is both open and closed (clopen) in the topology
of I'. The incidence maps are the continuous maps

di:I'—V (=01

defined as do(a) = «, dp(a, 1) = and dy (@) =, di(a, 1) =a + 1 (a € Z)).
With these definitions I" becomes a profinite graph. [This is an instance of profinite
graphs obtained from profinite groups in a standard manner, the so-called Cayley
graphs: see Example 2.1.12.] The subgroup of integers Z = (1) is dense in Z, and
the topology of Z induced by the topology of Z,, is the discrete topology. Let

rz,{1))={eevl) |acZu{ 1) |«ecZ}.
Then I"(Z, {1}) is an abstract discrete graph
-2 -1 0 1 2
(-2,1) (-1,1) 0, 1) 1,1
which is dense in the profinite graph I = I"(Z,,, {1}).
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More generally, let 8 be a fixed element of Z,, and define
rZz+g{1)={aev) |ecZ+Blu{.)eEM) |aecZ+p}.
Then I'(Z + B, {1}) is an abstract discrete graph
B—2 B—1 B B+1 B+2
B-21H B-L1D B, B+1.1)
which is also dense in the profinite graph I = I"(Z,, {1}). Note that I"(Z, {1})

is a disjoint union of uncountably many abstract discrete graphs of the form
I'(Z+ g, {1}):

rz, (1) =J)re+a.1).
reA

where {8, | A € A} is a complete set of representatives of the cosets of the subgroup
Z in the group Z .

Let I" and A be profinite graphs. A gmorphism or a quasi-morphism of profinite
graphs or a map of graphs

a: "> A

is a continuous map such that d;(a(m)) = a(d;(m)), forallm € I" and j =0, 1. If
in addition «(e) € E(A) for every e € E(I"), we say that « is a morphism.

The composition of gmorphisms of profinite graphs is again a gmorphism, so that
profinite graphs and their gmorphisms form a category. Similarly profinite graphs
and their morphisms form a category. If « is a surjective (respectively, injective, bi-
jective) gmorphism, we say that « is an epimorphism (respectively, monomorphism,
isomorphism). An isomorphism « : I" — I of the graph I" to itself is called an au-
tomorphism. Note that a monomorphism of graphs sends edges to edges, and hence
it is always a morphism. A nonempty closed subset I" of a profinite graph A is
called a profinite subgraph of A if wheneverm € I',thend;(m) € I" (j =0, 1).

The equality d;j(«x(m)) = a(d;j(m)) (j =0, 1; m € I') implies that a gmorphism
of profinite graphs maps vertices to vertices. However, the next example shows that
a gqmorphism can map an edge to a vertex.

Example 2.1.2 (Subgraph collapsing) Let A be a profinite subgraph of a profi-
nite graph I". Consider the natural continuous map « : I" — I'/A to the quo-
tient space I'/A with the quotient topology [the points of I'/A are the equiva-
lence classes of the relation ~ on I" defined as follows: if m, m’ € I", then m ~ m’
if and only if either m = m’ or m,m’ € A; if m € I', then a(m) is the equiva-
lence class of m; a subset U of I'/A is open if &' (U) is open in I"]. Define a
structure of profinite graph on the space I'/A as follows: V(I'/A) = a(V(I)),
do(a(m)) = a(do(m)), di(a¢(m)) = a(d1(m)), for all m € I'". Then clearly « is a
gmorphism of graphs and I"/A becomes a quotient graph of I". We shall say that
I'/ A is obtained from I" by collapsing A to a point. Observe that « maps any edge
of I which is in A to a vertex of I'/A.
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We note that if @ : I" — A is an epimorphism of profinite graphs, then A has the
quotient topology (i.e., for A C A, one has that A is open in A if and only if &~ (A)
isopenin I"), since I" and A are compact Hausdorff spaces. We then say that A is
a quotient graph of I' and « is a quotient gmorphism of graphs.

If I' is a profinite graph and ¢ : I" — Y is a continuous surjection onto a profinite
space Y, there is no assurance that there exists a profinite graph structure on Y so
that ¢ is a qmorphism of graphs. The following construction provides necessary and
sufficient conditions for this to happen.

Construction 2.1.3 Let I" be a profinite graph and let ¢ : I’ — Y be a continuous
surjection onto a profinite space Y. Then we construct a quotient gmorphism of
graphs

o: I =T,
with the following properties.

(a) There is a continuous surjection of topological spaces , : I'y — Y such that
the diagram
-y
/
commutes.

(b) If Y admits a profinite graph structure so that ¢ is a gmorphism, then V¥, is an
isomorphism of profinite graphs.

(c) Consequently, there exists a profinite graph structure on Y such that ¢ is a
gmorphism of graphs if and only if whenever m,m’ € I" with ¢(m) = @(m’),
then pdo(m) = @dy(m’) and @d|(m) = @d(m’). If this is the case, then that
structure is unique (isomorphic to I'y) and the incidence maps of Y are defined
by dip(m) =@d;(m) meI',i=0,1).

(d) If E(I") is a closed subset of I' and (E(I')) N (V")) =@, then ¢ is a
morphism of profinite graphs and Y, (E(I,)) Ny (V (Iy)) = 0.

~

Y

S
<

o

To construct I, define a map
o: ' —>Y XY xY
by
@(m) = (¢(m), gdo(m). pdy (m)) (m € T).

Let Iy = ¢(I"). Then I, admits a unique graph structure such that ¢ : I' — Iy isa
gmorphism of graphs, namely one is forced to define the incidence maps dy and d;
of Iy by

do(p(m), pdo(m), pdi(m)) = (pdo(m), pdo(m), pdo(m)) (m € T')
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and

di(@(m), do(m), pdi (m)) = (pd) (m), ¢dy (m), pd1(m)) (m € I')

(one easily checks that these are well defined, and that ¢ is indeed a qmorphism of
profinite graphs). Next note that there exists a unique map ¥, : I';, — Y such that
V@ = @, namely, ¥, (9 (m), pdo(m), pdi(m)) = p(m).

If Y is a profinite graph and ¢ is a gmorphism of profinite graphs, then v, is an
isomorphism of graphs because in this case the map p : Y — I, given by pp(m) =
(p(m), pdo(m), ¢dy(m)) is a well-defined qmorphism of graphs and it is inverse
to ¥,. This proves properties (a) and (b). Property (c) is clear. Property (d) is easily
verified. 0

Before stating the following proposition we recall briefly the concept of an in-
verse limit in the category of graphs (see Sect. 1.1). Let (I, <) be a directed partially
ordered set (a directed poset). An inverse system of profinite graphs {17, ¢;;, I} over
the directed poset I consists of a collection of profinite graphs I; indexed by I and
gmorphisms of profinite graphs ¢;; : I; — I';, whenever i > j, in such a way that
@ii =1d;, for all i € I, and @1 ¢;j = @ik, whenever i > j > k. The inverse limit (or
projective limit) of such a system

I’ =1im I;
am
iel
is the subset of ]—L-E, I'; consisting of those tuples (m;) with ¢;;(m;) = m;, when-
ever i > j. Such an inverse limit is in a natural way a profinite graph whose space
of vertices is

V() = lim V(D).
iel

Observe that the natural projections ¢; : I" — [} are qmorphisms of profinite
graphs. Note that if each ¢;; is a morphism, then so are the canonical projections ¢;.

Let I" be a profinite graph and consider the set R of all open equivalence relations
R on the set I' (i.e., the equivalence classes x R are open for all x € I'). For R € R,
denote by ¢r : I' — I'/R the corresponding quotient map as topological spaces.
One defines a partial ordering < on R as follows: for Ry, Ry € R, we say that
Ry > R, if there exists a map ¢g, g, : I'/R1 — I'/R> such that the diagram

I'/Ry
R
r ¥R|.Ry
¥R
I'/R;

commutes. Then (cf. RZ, Theorem 1.1.2) (R, <) is in fact a directed poset,
{I"/R, pR, r,} is aninverse system over R, and, as topological spaces, the collection
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of quotient maps {¢g | R € R} induces a homeomorphism from I" to limgcr '/ R;
<«

in fact we identify these two spaces by means of this homeomorphism and write

I'=lim I'/R. 2.1
ReR

Consider now the subset R’ of R consisting of those R € R such that I'/ R admits
a graph structure (which is unique according to part (c) of Construction 2.1.3) so
that pr : I’ — I'/R is a qmorphism of profinite graphs. We check next that the
poset (R, <) is directed. Indeed, let Ry, R, € R’. Since R is directed, there exists
an R € R such that R > Ry, R>. Let g : ' — I' /R be the corresponding quotient
map. Let I, and g : I' — I}, be as in Construction 2.1.3. Then I, = I'/R,
where R is the equivalence relation on I" whose equivalence classes are {$g ! (x) |
x € Iy }. Clearly ReR and R > R; hence R > R1, R>, as needed.

Observe that if Rj, Ry € R’ and R; > Ry, then the map ¢g, g, : I'/R1 — I'/R2
is in fact a gmorphism of finite graphs. Therefore the collection {I"/R, g, r,} of
all finite quotient graphs of I” is an inverse system of finite graphs and gmorphisms
over the directed poset R'.

Proposition 2.1.4 Let I be a profinite graph.
(a) I' is the inverse limit of all its finite quotient graphs:

I'=lim I'/R.
<«
ReR/

Consequently

V()= lim V(I'/R).
ReR’
(b) If the subset E(I") of edges of I' is closed, then a directed subposet R' of

R’ can be chosen so that whenever Ry, Ry € R” with Ry = Ra, then ¢g, R, :
I'/Ry — I' /Ry is a morphism of graphs and

I'= lim I'/R.
<~
ReR”

Consequently,

V()= l(in V(I'/R) and E(I')= l(gl E(I'/R).
ReR ReR”

Proof (a) In view of (2.1) one simply has to show that R’ is cofinal in R, i.e., one
has to show that whenever R € R, there exists an R’ € R’ with R’ > R. But this is
clear from property (a) of Construction 2.1.3.

(b) Suppose that E(I") is closed. Then I' = V(I')UE([") and V(") and E(I")
are clopen subsets of I". Let R be the subset of R consisting of those equiva-
lence relations R € R whose equivalence classes x R are contained in either E (1)
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or V(I'); this implies that if gg : I' — I'/R is the canonical projection, then
or(V(I") N@r(E(I)) =@. Then one shows that R is cofinal in R, so that

= lim I'/R.
<
ReR

One can argue now as in part (a); we just indicate the main points: let R” be the
subset of R consisting of those equivalence relations R” such that I'/R" has the
structure of a graph in such a way that g~ : I' — I'/R” is a morphism of profinite
graphs; note that R” is also a subset of R’; using property (d) of Construction 2.1.3
one shows that R” is cofinal in 7@, and hence the result easily follows as above. [J

Lemma 2.1.5 Let {I}, ¢;j, I} be an inverse system of profinite graphs and gmor-
phisms over a directed poset I, and set

I"=lim I;. (2.2)
iel
Let p: I' — A be a gmorphism into a finite graph A. Then there exists a k € 1
such that p factors through Iy, i.e., there exists a gmorphism p’ : Iy — A such that
o = p' o, where @i : I' — T, is the projection.

Proof For i € I denote by R; the set of all equivalence relations R of I such that
the quotient I;/R is a finite discrete graph and the natural projection I;7 — I;/R is
a gqmorphism. Define an ordering on the set of pairs

A={G, R |iel, ReR;}

by setting (i, R;) > (j, R;), if i > j and (¢;; x ¢;;)(R;) € R;. Let us prove that
(A, <) is a directed poset. Fix i, j € I and R; € R;, R; € R;. Since I is a di-
rected poset, there exists some k € I with k > i, j. By Proposition 2.1.4, I}, is the
inverse limit of all its finite quotient graphs; therefore there exists an Ry € Ry with
(ki X ori)(Rr) S R; and (g X @) (R) S Ry, so that (k, Ry) = (i, R;), (j, Rj),
as needed.

Now it is easy to see that

I'= lim TI;/R.
<
(i,R)eA
Thus from now on we may assume that each I in the decomposition (2.2) is finite.
Assume first that each projection ¢; : I' — [ is surjective. Let S be the equiva-
lence relation on I whose equivalence classes are the clopen sets p~m),m e A;
then I'/S = A and p is the natural projection I — I"/S. Similarly, for i € I,
let S; be the equivalence relation on I” whose equivalence classes are the clopen
sets golfl(m),m € I3, so that ¢; is the natural projection I" — I'/S;. Since I' =
l(iLn,'dF,-, we have that (1);; S; is the trivial equivalence relation, i.e., ();; Si = D,
where D is the diagonal subset of I" x I'. Note that S and S; (i € I) are clopen sub-
sets of I x I'. Hence, it follows from the compactness of I" x I" that there exists

a finite subset F of I such that () jeF S; € S. Since the poset [ is directed, there
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exists a k € I with Sy €[ jeF §; € S. This means that there exists a gmorphism of
graphs py : [y =I'/Sy — A =TI"/S such that p = pr .

Consider now a general ¢;. By the above, there exists some k&’ € I and a gmor-
phism of graphs pp : ¢ (I") — A such that p = pp . Since I} is finite, there
exists a k > k’ such that g (1) € g (I'). Then p’ = prr@pp is the required gmor-
phism. 0

An alternative proof of Lemma 2.1.5 above can be obtained along the lines of the
proof of Lemma 1.1.16 in RZ.

A profinite graph I is said to be connected if whenever ¢ : I’ — A is a gmor-
phism of profinite graphs onto a finite graph, then A is connected as an abstract
graph (see Sect. A.1 in Appendix A).

Proposition 2.1.6

(a) Every quotient graph of a connected profinite graph is connected.
() If
I' =1lim [;
—
iel
and each T is a connected profinite graph, then I' is a connected profinite
graph.
(c) Let I' be a connected profinite graph. If |I'| > 1, then I" has at least one edge.
Furthermore, if the set of edges E(I") of I' is closed in I", then for any vertex
v e V(I'), there exists an edge e € E(I") such that either v = dy(e) or v =
d] (e)
(d) Let I' be a profinite graph, and let A be a connected profinite subgraph of T .
Consider the quotient graph I' /A obtained by collapsing A to a point and let
a: I' — I'/A be the natural projection. Then the inverse image A = a~'(A)
in I' of a connected profinite subgraph A of I'/ A is a connected profinite sub-
graph.

Proof Part (a) is obvious. Let A be a finite quotient graph of I". Then (see
Lemma 2.1.5) there exists an i € I such that A is also a quotient graph of I7;. It
follows that A is connected, proving (b).

To check the first assertion in (c) observe that by Proposition 2.1.4, I" has a
finite quotient graph with at least two elements; since such a finite quotient graph
is connected, it has at least one edge, and hence so does I". To check the second
assertion in (c), write I” as an inverse limit I = l(iLnie 1 I; of finite quotient graphs

I; in such a way that
E(I) = lim E(I})
iel

(see Proposition 2.1.4(b)). For i € I, let ¢; : I' — I denote the canonical pro-
jection, and if i, j € I with i > j, let ¢;; : I} — I'; denote the canonical mor-
phism. Put v; = ¢;(v) (i € I). Since I; is a connected finite graph, the set S; =
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dy ! (v ud; ! (v;) of edges of I; starting or ending at v; is nonempty; moreover,
©ij(Si) € S;. Hence the collection {S;};¢; is an inverse system of nonempty finite
sets. Thus

l(iLn S; 75 ¢
iel
(see Sect. 1.1). Let e € lim;¢;S;. Then e is an edge of I" with either dy(e) = v or
<
di(e) = v.
(d) This is clear if I is finite. Write
I'=lim I3,
iel
where each I is a connected finite quotient graph of I" (see Proposition 2.1.4(a)).
Let A; be the image of A in [ under the canonical projection. Then
A= l(gn A; and I'/JA= l(£n I /A;.
iel iel

]_Let A; be th§ im~age of Ain I;/A;, and denote by A; its inverse image in [7;. Since

A =lim;eg A;, A is connected according to part (b). O
Lemma 2.1.7

(a) Let D be an abstract subgraph of a profinite graph I'. Then the topological
closure D of D in I' is a profinite graph. If D is connected as an abstract graph
(see Sect. A.1 in Appendix A), then D is a connected profinite graph.

(b) Let {Aj | j € J} be a collection of connected profinite subgraphs of a profinite

graph F.Ifﬂjej Aj#Q, then A:U/EJ Aj is connected.

Proof To prove (a), let m € D. By the continuity of d;, d;(m) € V(D) (i =1,2),
so that D is a (profinite) graph with V(D) = V(D). If ¢ : D — A is a qmorphism
of profinite graphs onto a finite graph, then ¢(D) = ¢(D) = A by continuity. Since
D is a connected abstract graph, one easily checks that ¢(D) is a finite connected
graph; hence D is a connected profinite graph. This proves (a).

For part (b) note that if « : A — A is a qmorphism onto a finite graph A, then
a(A;) is a connected finite subgraph of A (j € J). Since A = Ujeja(Aj), and
Mjes a(A)) #0, it follows that A is a connected abstract graph. O

Example 2.1.8 (A connected profinite graph which is not connected as an abstract
graph and with a vertex with no edge beginning or ending at it) Let I be the graph
considered in Example 2.1.1(b): I =NUW N {oo} is the one-point compactification
of a disjoint union of two copies N and N= {n | n € N} of the natural numbers;
V() =NU{oo}, E() =N, dy(i) =n,d (i) =n + 1 for it € E(I), and d; (n) =n
forne V() (i=1,2).

0 1 2 3 o0

[«
p—
[\
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Then I is a connected profinite graph; to see this consider the connected finite
graphs I,
0 1 2 n—1 n

0 1 n—1
with vertices V (I,) = {0, 1,2, ..., n} and edges E(I,) = {0, 1, ...,n — 1} such that
do(i)=i,di(i)=i+1(G=0,....,n—1)andd;(i)=i (i=0,...,n;j=0,1).If
n < m, define ¢, , : I, — I, to be the map of graphs that sends the segment [0, n]
identically to [0, n], and the segment [, m] to the vertex n. Then (I,,, ¢;.,) is an
inverse system of graphs, and

I =1im I,,
am
neN
where oo = (n),eN. Hence [ is a connected profinite graph. We observe that there
is no edge e of I which has 0o as one of its vertices; and so [ is not connected as an
abstract graph.

Lemma 2.1.9 Let I = I'1 U I, be a profinite graph which is the disjoint union of
two open profinite subgraphs I'y and I7; then I' is not connected. In particular,
a profinite graph that contains two different vertices and no edges is not connected.

Proof Collapse I'i to a point v; and I to a different point v; (see Example 2.1.2),
to get a disconnected finite quotient graph I" = {v} U {v,} consisting of two vertices
and no edges. 0

A maximal connected profinite subgraph of a profinite graph I" is called a con-
nected profinite component of I.

Proposition 2.1.10 Ler I be a profinite graph.

(a) Let m € I'. Then there exists a unique connected profinite component of I" con-
taining m, which we shall denote by I'*(m).

(b) Any two connected profinite components of I are either equal or disjoint.

(c) I is the union of its connected profinite components.

Proof Part (c) follows from (a). Part (b) follows from (a) and Lemma 2.1.7(b).

To prove (a) observe first that the result is obvious if I" is finite. By Proposi-

tion 2.1.4, I' can be represented as an inverse limit lim;c; I of finite quotient
«—

graphs. For i € I, let ¢; : ' — I denote the projection. Since the image of a

connected profinite graph is connected, the graphs I';*(¢; (m)) form an inverse sys-

tem. It suffices to show that the profinite subgraph lim;¢; Fl* (i(m)) of I' is the
«—

connected profinite component of I" containing m. This profinite subgraph is con-

nected by Proposition 2.1.6(b). If I' is a connected profinite subgraph of I" contain-

ing m, then I' = lim; ¢ ¢; (I'"). Therefore ¢; (I'") € I';*(¢; (m)) for all i € I. Hence
«—
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I’ Clim;¢; Fl* (¢i (m)); therefore lim; ¢; Fl* (¢i (m)) is maximal connected contain-
<~ [P

ing m, as desired. The uniqueness of connected profinite components containing m
follows from Lemma 2.1.7(b). O

Exercise 2.1.11

(a) Let A be a profinite graph. Define the space of connected profinite components
of A as a quotient space A/~, where ~ is the equivalence relation defined
as follows: m| ~ my if and only if A*(m;) = A*(m3). Prove that A/~ is a
profinite space. [Hint: write A as an inverse limit of finite quotient graphs.]

(b) Let A be a profinite subgraph of a profinite graph I". Define the operation of
collapsing the connected profinite components of A to points as a natural map-
ping to the quotient space I'/~, where ~ is the equivalence relation defined as
follows: mq1 ~ my if my =my, formy,mr € I' — A, or A*(m1) = A*(my) for
m1,my € A. Prove that I"/~ is a profinite quotient graph of I".

Example 2.1.12 (The Cayley graph) Let G be a profinite group (whose operation
is denoted as multiplication and whose identity element is denoted by 1) and let X
be a closed subset of G. Put X = X U {1}. Define the Cayley graph I' (G, X) of G
with respect to the subset X as follows:

G, X)=G x X,

where G x X has the product topology. Define the space of vertices of I'(G, X)
tobe V(I'(G, X)) ={(g, 1) | g € G}. We identify this space of vertices with G by
means of the homeomorphism (g, 1) — g (g € G).

Finally, the incidence maps

do,d:T'(G,X)=G x X — V(I'(G,X)) =G
are defined by
do(g,x)=g and di(g,x)=gnx, (g eG,xeXU {1}).

Clearly dp and d; are continuous and they are the identity map when restricted
to V(I'(G, X)) ={(g,1) | g € G} = G. Therefore the Cayley graph I'(G, X) is a
profinite graph.

Note that the space of edges is E(I' (G, X)) =T (G, X) - VU (G, X)) =G X
(X —{1}:

g (g:x) ox,

where x € X — {1}. It is a closed (and hence clopen) subset of I"(G, X) if and
only if 1 is an isolated point of X. Observe that if 1 ¢ X, then V(I'(G, X)) =G
and E(I'(G, X)) = G x X, and in this case E(I'(G, X)) is clopen. If 1 € X, then
X = X.If 1is in X and it is an isolated point of X (for example, if X is finite),
then X — {1} is also a closed subspace and we have I'(G, X) = I'(G, X — {1}).
Note that the Cayley graph I"(G, X) does not contain loops since the elements of
the form (g, 1) are vertices by definition.
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Let ¢ : G — H be a continuous homomorphism of profinite groups and let X
be a closed subset of G. Put Y = ¢(X). Then ¢ induces a qmorphism of the corre-
sponding Cayley graphs

¢:I'(G,X)— I'(H,Y).

In particular, if U is an open normal subgroup of G and Xy = ¢y (X), where
ou : G — G/U is the canonical epimorphism, then ¢y induces a corresponding
epimorphism of Cayley graphs ¢y : I'(G, X) — I'(G/U, Xy). One easily checks
that

I'G,X)= lim I'(G/U, Xy)
U<,G

is a decomposition of I"'(G, X) as an inverse limit of finite Cayley graphs.
Example 2.1.13 (An infinite connected profinite graph all of whose proper con-

nected profinite subgraphs are finite) Let I" = I'(Z, {1}) be the Cayley graph of
the free profinite group Z of rank one with respect the subset {1}. Then

=1

=

r(z/nZ,1{1y),

w1

with canonical maps
Onn - T(Z/mZ,{1}) —> [(Z/nZ,{1}) (n|m).
Let
¢n: I —> I'(Z/nZ, (1))

denote the projection (n € N). Assume that A is a connected proper profinite sub-
graph of I". Put A, = ¢, (I"). Then A, is a connected subgraph of the finite graph
I'(Z/nZ,{1}).

Since A # I', there exists some no € N such that A, # I'(Z/noZ, {1}). Ob-
serve that for every m € N with ng|m, the connected components of ¢,,} o (An) are
isomorphic to Ay, . Therefore, |A,| =|A,,|. Thus A is finite.

It is easy to check that if A is a proper connected subgraph of I with ¢ 4 1
vertices, then there exists a y € Z such that the vertices of A are v, y+1,...,y+t
and with edges (y, 1), (y +1,1),...,(y +t —1,1):

14 y+1 y+2 y+t—1 y +t
(v, D y+1,1) (y+r—-1,1)
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2.1.14 Circuits. Let ¢ = (¢1,...,&,), Whereg; =+1 (i =1,...,n)andn > lisa
natural number. Define Circ, (&) to be a graph with n vertices (that we take to be the
elements of Z/nZ) and n edges ey, ..., e,

Circ,(e) : 0 3
n—1
such that dg(e;) =i — 1 and d;(¢;) =1i,if g; = 1, and dy(e;) =i and di(¢;) =i — 1,
if & = —1. We refer to a graph of the form Circ,(¢) as a circuit of length n or as a
n-circuit. A circuit of length 1 is a loop. Note thatif n >2 and ¢ = (1,..., 1), then

Circ,(e) =T'(Z/nZ,{1}).

2.2 Groups Acting on Profinite Graphs

Let G be a profinite group and let I" be a profinite graph. We say that the profinite
group G acts on the profinite graph I" on the left, or that I is a G-graph, if

(i) G acts continuously on the topological space I on the left, i.e., there is a con-
tinuous map G x I' — I", denoted (g, m) —> gm, g € G,m € I', such that

(ghym =g(hm) and 1m=m,

forall g, h € G,m € I', where 1 is the identity element of G; and
(ii) dj(gm)=gdj(m),forallge G,me I, j=0,1.

Observe that if G acts on I', then for a fixed g € G, the map pg : [’ — I
given by m +— gm (m € I') is an automorphism of the graph I". Hence (cf. RZ,
Remark 5.6.1), G acts on a profinite graph I if and only if there exists a continuous
homomorphism

p:G—> Aut(l'),

where Aut(/") is the group of automorphisms of I" as a profinite graph, and where
the topology on Aut(I") is induced by the compact-open topology. The kernel of the
action of G on I is the kernel of p, i.e., the closed normal subgroup of G consisting
of all the elements g € G such that gm =m, forallm e I'".

One defines actions on the right in a similar manner. We shall consider only left
actions in this chapter.

Let G be a profinite group that acts continuously on two profinite graphs I
and I'’. A gqmorphism of graphs

o: I — 1T
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is called a G-map of graphs if
p(gm)=gop(m), forallmel, gedG.

Assume that a profinite group G acts on a profinite graph I" and let m € I.
Define

Gn=1{geG|gm=m)}

to be the stabilizer (or G-stabilizer, if one needs to specify the group G) of the
element m. It follows from the continuity of the action and the compactness of G
that G, is a closed subgroup of G. Clearly,

Gy, < Gdj(m), foreveryme I, j=0,1.

If the stabilizer G,, of every element m € I' is trivial, i.e., G, = 1, we say that
G acts freely on I'. If m € I', the G-orbit of m is the closed subset Gm = {gm |
g€ G}.

If a profinite group G acts on a profinite graph I”, then G acts on the profinite
space V (I") of vertices and G acts on E(I"). The space

G\I' ={Gm |m e T}

of G-orbits with the quotient topology is a profinite space which admits a natural
profinite graph structure as follows:

V(G\IN=G\V(I),  d;(Gm)=Gd;(m), j=0,1.

We say that G\ I" is the quotient graph of I' under the action of G. The correspond-
ing quotient map

I — G\I'

is an epimorphism of profinite graphs given by m — Gm (m € I', g € G). We
observe that it sends edges to edges (it is a morphism).
If N <. G, there is an induced action of G/N on N\I" defined by

(gN)(Nm)=N(gm), geG, meTl.

The following result is straightforward.

Lemma 2.2.1 Let a profinite group G act on a profinite graph I.

(a) Let N be a collection of closed normal subgroups of G filtered from below (i.e.,
the intersection of any two groups in N contains a group in N') and assume that

G = lim G/N.
am
NeN
Then the collection of graphs {N\I" | N € N} is an inverse system in a natural
way and
I' = lim N\T.
am

NeN
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(b) Let N <. G. For m € I', denote by m’ the image of m in N\I". Consider the
natural action of G/N on N\I' defined above. Then (G/N),, is the image of
G, under the natural epimorphism G — G/N. In particular, if G,, < N, for
allm e I', then G/N acts freely on N\I.

Let G be a profinite group. If {1}, ¢;;, I} is an inverse system of profinite G-
graphs and G-maps over the directed poset /, then

I' =lim [;
P
iel
is in a natural way a profinite G-graph.
Next we show that every profinite G-graph admits a decomposition as an inverse
limit of finite G-graphs.

Proposition 2.2.2 Let a profinite group G act on a profinite graph I'.
(a) Then there exists a decomposition

I'=1im/;
e
iel
of I' as the inverse limit of a system of finite quotient G-graphs I'; and G-maps
@ij : It — I'j (i = ) over a directed poset (I, X).
(b) If G is finite and acts freely on I', then the decomposition of part (a) can be
chosen so that G acts freely on each I;.

Proof The proof follows the same pattern as the proof of Proposition 2.1.4; we only
indicate the main steps and changes. We prove (a) and (b) at the same time.

Let R be an open equivalence relation on I". Assume that G acts continu-
ously on the finite discrete space I"/R in such a way that the canonical projection
¢r " — I'/R is a G-map of G-spaces: this is equivalent to saying that whenever
m,m’' € I' and mR = m’'R, then (gm)R = (gm’)R, for all g € G (we term such
R a G-invariant equivalence relation). Then (see Sect. 1.3) there exists a set R of
G-invariant open equivalence relations on I” such that (R, <) is a directed poset,
{I'/R, prp'} is an inverse system of finite G-spaces and G-maps over R and

I'=lim I'/R (2.3)
ReR

as topological G-spaces. Moreover, if G is finite and acts freely on I, one can
modify the set R so that the action of G on each I'/R is free and the decomposition
(2.3) still holds.

Let R’ be the subset of R consisting of those R € R such that in addition I"/R
has the structure of a G-graph and ¢ : I’ — I'/R is a G-map of G-graphs.

Let R € R and apply Construction 2.1.3 to get the maps ¢ : I’ — I, and
Yor : Tyg — I'/R.For g € G and m € I', define

g(p(m), pdo(m), pdi(m)) = (gp(m), gpdo(m), gpd) (m)).
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This makes Iy, into a G-graph and one checks that ¢ is a G-map of G-graphs and
Yor is a G-map of G-spaces. Let R be the open equivalence relation on I” whose
equivalence classes are {¢r ' (x) | x € Iyp}, sothat Iy, = F/Ié. Therefore R > R.
From this one sees, as in the proof of Proposition 2.1.4, that R’ is a directed poset
that is cofinal in R. Observe that if G acts freely on I"/R, then it acts freely on Iy,.
Hence both (a) and (b) follow from the decomposition (2.3) (see Sect. 1.1). Il

We remark that part (b) of the above proposition can be sharpened in the fol-
lowing sense. When G is infinite, it obviously cannot act freely on a finite graph;
hence, if G acts freely on I, it is not possible to obtain a G-decomposition of I" as
in part (a) if in addition one requires that G acts freely on each I;. However, one
can obtain a decomposition as in part (a) so that, for each i, a finite quotient G; of
G acts freely on I}, and G is the inverse limit of the G;. We make this precise in
Proposition 3.1.3. The following example shows how to do this in the case of Cayley
graphs.

Example 2.2.3 (The Cayley graph as a G-graph) Let G be a profinite group and let
X be a closed subset of G. Let I'(G, X) be the Cayley graph of G with respect to X
(see Example 2.1.12). Define a left action of G on I" (G, X) by setting

g (g.x)=(g'g.x) Vx eX=XU{l}, ¢, g€G.

Clearly gd;(m) =d;(gm),forall g e G,m € I'(G, X),i =0, 1. Thus, G acts (con-
tinuously and freely) on the Cayley graph I" (G, X).
Now, if V is the collection of all open normal subgroups of G, we have
I'(G,X)= lim I'(G/N, Xy),
NeN
where Xy is the image of X in G/N. Note that G/N acts freely on I'(G/N, Xy).

The next lemma sometimes provides a useful way of checking whether certain
G-graphs are connected.

Lemma 2.2.4

(a) Let G = (X) be an abstract group generated by a subset X. Assume that G
acts on an abstract graph I'. Let A be a connected subgraph of I' such that
ANxA#Q, forall x € X. Then

GA=|gA
geG

is a connected subgraph of I'.
(b) Let X be a closed subset of a profinite group G that generates the group topo-

logically, i.e., G = (X). Assume that G acts on a profinite graph I'. Let A be a
connected profinite subgraph of I' such that AN xA # @, for all x € X. Then

GA=|eA
geG
is a connected profinite subgraph of I".
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(c) Let G be a profinite group and let X be a closed subset of G. The Cayley graph

I'(G, X) is connected if and only if G = (X).

Proof (a) Put
Y:{x8|8=:|:1,xeX},

and let Y, be the set of elements of G that can be written as a product of not more
than n elementsof Y (n =0, 1,2,...). Since GA = UZio Y.A,andYypC Y C---,
it suffices to prove that Y, A is a connected graph. We show this by induction on n.
If n =0, then YpA = A. Assume that ¥, A is connected. From our assumption that
xA N A # @, we deduce that x"'A N A # @, for all x € X. Observe that if w is
a word in Y of length n + 1, then w = w'x?, for some w’ € ¥,, and some x € X;
hence wA N w’A # @; and so, wA U Y, A is connected. It follows that Y, 1 A is
connected.

(b) By Proposition 2.2.2 there exists a decomposition I” = l(iI'nI’,-, where all [

are finite quotient G-graphs of I". Hence it suffices to prove the result for I” finite.
In that case the kernel K of the action of G on I” is an open normal subgroup of G.
Therefore, replacing G by its quotient G/K if necessary, we may assume that G is
finite; and then the result follows from part (a).

(c) Let U be the collection of all open normal subgroups of G. Then

I'G,X)= lim I'(G/U, Xyp),
veu
where Xy is the image of X on G/U under the canonical map G — G/U.
Therefore we may assume that G is finite, in which case the result follows from
part (a): consider the connected subgraph A of I'(G, X) consisting of the ver-
tices 1 and {x | x € X} and the collection of edges {(1,x) | x € X — {1}}; then
I'(G,X)=GA. O

2.3 The Chain Complex of a Graph

‘We shall use the following notation and terminology. Given a pseudovariety of finite
groups C, we say that R is a pro-C ring if it is an inverse limit of finite rings which
are in C as abelian groups; if C is the class of all finite rings, we write profinite
rather than pro-C. Let X be a profinite space and let R be a pro-C ring. We denote
by [RXT] the free profinite R-module on the space X. Similarly, [ R(X, *)]] denotes
the free profinite R-module on a pointed space (X, x). The complete group algebra
[RGT is the inverse limit of the finite group algebras

[RGI =lim[(R/1)(G/U)].

where I and U range over the open ideals of R and the open normal subgroups
of G, respectively.

Let G be a profinite group, and let X be a profinite G-space. Then [[ R X ]| natu-
rally becomes a profinite [ RG]]-module. Similarly, if (X, *) is a pointed profinite
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G-space, then the free profinite R-module [[R(X, *)]] is naturally a profinite [RG]-
module.
Let I" be a profinite graph. Define

EX(I)=T/V()

to be the quotient space of the space I" modulo the subspace of vertices V(I7). We
think of E*(I") as a pointed space with the image of V(I") as the distinguished
point.

Let R be a profinite ring and consider the free profinite R-modules
[R(E*(I'),*)] and [RV(I")] on the pointed profinite space (E*(I"),*) and on
the profinite space V (I"), respectively. Denote by C (I, R) the chain complex

0—> [R(E*(I), )] -5 [RVID] - R — 0 2.4)

of free profinite R-modules and continuous R-homomorphisms d and ¢ determined
by e(v) =1, for every v € V(I'), d(e) = di(e) — dp(e), where e is the image of
an edge e € E(I") in the quotient space E*(I"), and d(x) = 0. Obviously, Im(d) C
Ker(e). If we need to emphasize the role of the ring R we sometimes write d® for
the map d.

Note that if E(I") is closed in I, then % is an isolated point of E*(I"), and so
[R(E*(I"), *)]] = [[RE(I)]; this is the case in many important examples.

The homology groups of I' are defined as the homology groups of the chain
complex C(I", R) in the usual way:

Ho(I', R) =Ker(e)/Im(d), Hi(I', R) =Ker(d).
A gmorphism
a: ' — A
of profinite graphs naturally induces continuous maps
ay V() — V(A) and aps: (E*(I),*) — (E*(A), %),

which in turn extend to continuous R-homomorphisms

ay :[[RV(D)]] — [[RV(A)]] and

ags: [[R(E*(I), %) ]| — [[R(E*(A), %)]).
Then the following diagram

0——[R(E*(T"), )] “+—[RV ("] —->R——=0
dp* ay idg
0—=[R(E*(A), )| -“—[RV(A)] —->R——>0
commutes. In other words, the triple & = (&g, &y, idg) is a morphism

a:C(I'y,R)— C(A,R)
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of complexes. Therefore, if

I' =1lim [;
—
iel

is an inverse limit of an inverse system of profinite graphs I;, the corresponding
chain complexes C ([}, R) form an inverse system and

C(I, R) = lim C(I}, R).

iel

Furthermore, the homomorphism & induces continuous homomorphisms of ho-
mology groups

oy : Ho(I', R) — Ho(A,R) and «of : Hi(I', R) — Hi(A,R).
Of course, ] is just the restriction of &g+ to Ker(d). The statements in the following
lemma are easily verified and we leave them to the reader.
Lemma 2.3.1 Let R be a profinite ring.
(a) Let
o: " — A
be a gmorphism of profinite graphs. If o is surjective, then
ot Ho(I', R) — Ho(A, R)
is surjective. If « is injective, so is
of t Hi(I'y R) — Hi(A, R).

(b) If I' =lim ] is the inverse limit of an inverse system of profinite graphs I7;,
-
then

Ho(T", R) =lim Hy(I';, R) and Hy(I', R) = lim H, (I}, R).
<~ <~

In the next proposition we prove that the connectivity of a profinite graph is
equivalent to the triviality of its 0-homology group.

Proposition 2.3.2 A profinite graph I' is connected if and only if Hy(I", R) =0,
independently of the choice of the profinite ring R.

Proof Write I' as an inverse limit I” = lim;¢; [; of finite quotient graphs I;. By

Proposition 2.1.6, I" is a connected profinite graph if and only if each I is con-
nected as an abstract graph. On the other hand, by Lemma 2.3.1, Hy(I", R) = 0 if
and only if Hy([;, R) =0, for each i. Hence it suffices to prove the theorem for
finite I". In this case the sequence (2.4) becomes

0— [RE(M)]-5[RV(M] - R —> 0,
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where if X is a set, [RX] denotes the free R-module on the set X. Observe that
ed =0, so that Im(d) < Ker(e).
Assume first that I" is connected. Let

t t
8(21’1,‘1),‘) =Zn,~=0 (v1,...,v,eV(F);nl,...,n, GR).
i=1 i=1

Fix vg € V(I'). Then Zle njv; = Z;zl n;(v; — vp); hence it suffices to check
that for every pair of distinct vertices v, w of I', there exists some ¢ € [RE(I")]
with d(c) = w — v. To verify this let efl, ...,em bea path from v to w. Define
c= Zle g;e;, where we think of ¢; as an element of R. Then d(¢) = w — v. Hence
the sequence is exact at [RV (I')], i.e., Hy(I', R) =0.

Assume now that the sequence is exact at [RV (I")]. Let v/ € V(I") and let I"/
be the connected component of v in I". Suppose that I"" % I', and let I"” be the
complement of I"" in I'; then I"'” is a subgraph of I". Choose v” € V(I'”). Clearly
v’ —v” € Ker(e). Then there exists

S
> niei e [RE(IM)] (e e E(N).nieRi=1,....5)
i=1

such that d(3";_, nje;) = v/ — v”. We may assume that v’ is a vertex of e; and
er,...,e; €', while e;y1,...,eg € I'" and v” is a vertex of e;. Clearly

d([RE(I")]) = [RV(I)],
d([RE(r")]) = [RV(I"")]
and
[RV(D)]=[RV(I)] @ [RV(I")].

Therefore d(}_!_, nie;) = v'. However, v’ ¢ Ker(e), a contradiction. Thus I" = I/,
and I" is connected. O

2.4 w-Trees and C-Trees

Let C be a pseudovariety of finite groups and consider the set of primes 7 = 7 (C)
involved in C (see Sect. 1.3). Let Zs denote the pro-C completion of the group of
integers Z. This is the free pro-C group of rank 1; it also has, in a natural way, a ring
structure. One has

Ze=[12/0"Z).
perw

where

npznp(C)zsup{n | neN, p"||C|, C GC}.
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If n, = oo, then, by convention, we agree that p°°Z, = 0. Note that every abelian
pro-C group is in a unique way a profinite Z;-module.

A profinite graph I' is said to be a C-tree if I is connected and H(I",Zs) = 0.
Thus I is a C-tree if and only if the sequence C (I, Zé) (see Sect. 2.3)

0— [[Zs(E*(I). )] i>|IZéV(F)]] 52— 0 2.5)

is exact. Note that if the set of edges E(I") of I" is closed, then the sequence (2.5)
becomes

0— [ZsE(N] -5 [[2sv(M] - Zs — .

Lemma 2.4.1 Let C be a pseudovariety of finite groups. A profinite graph I is a
C-tree if and only if the sequence C(I", F )

0 —> [[F,(E*(I), %) -5 [F, V(] - F, — 0

is exact for every p € w(C), where ¥, is the field with p-elements.

Proof First observe that a proabelian group is the direct product of its p-Sylow
subgroups. So, for any profinite space X,

[ZsX1= H [(Z,/p"rZ,)X]).

pen(C)

Therefore,

carzp= [] c(rz,/pz,).
pen(C)

where n, = n,(C). Hence the sequence C(I, Zé) is exact if and only if the se-
quence C(I",Z,/p"rZ,) is exact for each p € w(C). Therefore it suffices to prove
that C(I",Z,/p"?Z)) is exact if and only if C(I", F)) is exact.

We observe that C(I",Z,/p"*Z,) and C(I",F,) are sequences of free abelian
pro-p groups of exponent p"*» and free abelian pro-p groups of exponent p, respec-
tively. Moreover, if X is a profinite space, [F, X]] is the Frattini quotient

[(Z/p"Z,)X]|/ 2 ([(Zp/P""Z,)X]])

of [(Z,/p"rZ,)X]: this is obvious if X is finite, and in general this can be deduced
by a standard inverse limit argument.

Exactness of C(I",Z,/p"*Z,) at [[(Z,/p"?Z,)(V (I"))]l is equivalent to exact-
ness of C(I", Fp) at [[F,(V (I"))]], because any of these statements is equivalent to
I" being connected, according to Proposition 2.3.2. Hence from now on we assume
that I" is connected as a profinite graph, and we must show that injectivity of the
map d of C(I", Z,/p"?Z,) is equivalent to injectivity of the map d of C(I",F ).
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To prove this we will also work with the chain complex C (1", Z ). Consider the
commutative diagram

[[Zp(E*(F),*)]]Ld([[lp(E*(F),*)]])
L(Zy/p"?Zy) (E*(I), )] —=d([(Zp/ p"? L) (E*(I'), %)])

[F,(E*(I"), %)]] %de([[l‘“p(E*(F), )1

where the vertical maps are the natural quotient maps, and the maps d%», d’ and d¥»
denote the maps induced by the homomorphisms d of C(I", Z,,), C(I',Z,,/ p"* Z,)
and C(I", F)), respectively.

Since the sequence C(I',Z)) is exact at [Z,V (I")]] and since Z,, is the free
Z ,-module of rank 1, the map ¢ splits, and we have

[2,v (D] = d([2,(E*).4)]) 2.
Similarly, we have
[/ 2,)V (O] = ([ (2 " 2) (E* ). 5)]) @ 20/ 02,
and
[F, V()] = d([[F,(E* (). 9)]) & F,.

From this it follows that the last line of the diagram is obtained from the first or
second line by taking quotients modulo the subgroups of p-th powers (the Frattini
subgroups); and the second line is obtained from the first by taking quotients mod-
ulo the subgroups of p"»-th powers. It follows that if d%» (respectively, d’) is an
isomorphism, then so is d¥7. Conversely, assume that d¥ is an isomorphism. Since
d([Z,(E*(I"), %)])) is a subgroup of [[Z,V (I")]], it is a torsion-free pro-p group,
and so a free abelian pro-p group (cf. RZ, Theorem 4.3.3 and Example 3.3.8(c)).
Therefore there exists a continuous homomorphism

o d([2, (E* (D). )]) — [Z,(E*).#)]

such that dZr is the identity map on d([Z,(E*(I"), %)]]); therefore « is injective.
On the other hand,

Ker(dZP) < @([IZP(E*(F), *)]]) and
(Ker(a%r)) + Im(e) = [Z,(E*(I), %)]),

where @ ([Z,(E*(I"), %)]]) is the subgroup of p-th powers of [Z,(E*(I"), %],
i.e., its Frattini subgroup. So Im(a) = [[Z,(E*(I"), %)]| (cf. RZ, Corollary 2.8.5).
Therefore « is an isomorphism, and hence dZr is an isomorphism. Thus, d’ is also
an isomorphism. g
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The above lemma shows that in fact the concept of a C-tree depends only on the
primes involved in the pseudovariety C. This suggests the following definition. Let
7 be a nonempty set of prime numbers, and denote by Z; the profinite group (ring)

z; =[]z
pET
We say that a profinite graph I” is a 7 -tree if it is connected as a profinite graph and
one has Hi(I",Z;) = 0. In other words, I" is a w-tree if and only if the sequence
CI,Z;)

0—> [Zz (E*(I1), )] -5 [Z: V()] > Z2 — 0 2.6)

is exact. If m = {p} consists of only one prime, we write p-tree rather than {p}-
tree. When 7 is the set of all prime numbers, we normally use the term profinite
tree rather than m-tree. The following proposition is an immediate consequence of
Lemma 2.4.1.

Proposition 2.4.2 Let C be a pseudovariety of finite groups and let I’ be a profinite
graph. Let 1 = 7 (C). The following conditions are equivalent:

(a) I' is a C-tree;

(b) I is a m-tree;

(c) let R be a quotient ring ofz such that the order #R of R as a profinite group
involves precisely the primes in the set 7. Then the sequence

0—> [R(E*(I), )] -5 [RV(IN] - R — 0
is exact;

(d) for a given prime p, let R, denote one of the following rings: Z,, ¥, or
Z,/p"L,, for some positive integer n. Then, for every p € 7, the sequence

0—> [Ry(E*(M), )] -5 [[R,V(INH] - R, —> 0

is exact.

Proposition 2.4.3 Let © be a nonempty set of prime numbers. Then the following
statements hold.

(a) Every finite tree is a m-tree.

(b) Every connected profinite subgraph of a w-tree is a m-tree.

(¢) If Ay and Ay are w-subtrees of a ww-tree such that A1 N Ay £ @, then A1 U Ay
is a w-subtree.

(d) An inverse limit of m-trees is a w-tree. In particular, an inverse limit of finite
trees is a m-tree.

(e) If 3 # 7' C 7, then every m-tree is a w'-tree.

Proof Part (b) follows from Lemma 2.3.1(a). Part (c) follows from (b) and
Lemma 2.1.7. The first statement in part (d) is a consequence of Lemma 2.3.1(b);



52 2 Profinite Graphs

and the second then follows from (a). Part (e) is a consequence of the definition of
a w-tree. To prove (a), let I" be a finite tree. In this case the sequence (2.6) becomes

0— [2,E("]-5[2,V ()] - Z, — 0.

Since I" is connected, this sequence is exact at [Z,V (I")] by Proposition 2.3.2. It
remains to see that d is an injection. For this define a map

p: V(') — [Z,E(I)]

as follows: fix a vertex vg € V(I"); since I" is an abstract tree, for each vertex v €
V(I') there is a unique path ef' AU ef’ from vg to v of minimal length; define

p(v)=c¢ere1+---+¢&res (el,...,eteE(F);si:il,i:l,...,t).

Since [Z,V(I")] is a free Z,-module, this map extends to a Z,-homomorphism
(also denoted p) p : [Z,V(I')] — [Z,E(I")]. Then pd is the identity map on
[Z, E(I")]; thus d is an injection. O

Exercise 2.4.4 Let T be a 7-tree.

(a) T does not contain circuits.
(b) If v, w € V(T) and there exists a path p,, from v to w, then there is a unique
reduced path from v to w.

Example 2.4.5 (A m-tree which is not an inverse limit of finite trees) It is not al-
ways possible to decompose a r-tree as an inverse limit of finite trees. For example,
let p be a prime number. The Cayley graph I' = I'(Z, {1}) is a p-tree (see Theo-
rem 2.5.3 below). Let I” be a finite quotient graph of I". Then I” is also a quotient
graph of a graph of the form I'(Z/p"Z, {1}) (see Lemma 2.1.5), which is a circuit.
Hence, if |1:'| > 2. then I is not a tree.

Lemma 2.4.6 Let A be a profinite subgraph of a profinite graph I', and let R be a
profinite ring. Then

(@) V(A) is a closed subspace of V(I'), and (E*(A), %) is naturally embedded in
(EX(I), *);

(b) V(I'/A) is naturally homeomorphic with V(I")/V(A), and E*(I'/A, %) is
naturally homeomorphic with (E*(I")/ E*(A), %), where, in this last case, the
distinguished point * is the image of E*(A) in E*(I')/ E*(A);

(©
[R(E*(r/A), %) ]| = [R(E*(), %) ]| /[[R(E*(A), )]

Proof Parts (a) and (b) are straightforward. To prove (c) consider the natural con-
tinuous map

L (EX(T/A), %) — [[R(E*(D), %) ]| /[[R(E*(A), *)]).
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We must show that [R(E*(I"), #)[I/[[R(E*(A), x)]] is the free profinite R-module
on the space (E*(I"/A),*) with respect to the map ¢ (see Sect. 1.7). Let ¢ :
(E*(I'/A),*) — A be a continuous map of pointed spaces into a profinite R-
module A. Then ¢ induces a continuous map

o1 : (EX(IN), %) — A,
and this in turn induces a continuous R-homomorphism
or:[[R(E*(I), %] — A

such that @1 ([R(E*(A), x)])) = 0. Therefore @ induces a continuous R-homomor-
phism

¢ [[R(E*(D),#)]|/[R(E*(A),%)]] — A
such that ¢t = ¢. The uniqueness of ¢ is clear since ((E*(I"/A), x) generates
[RCE*(I), ®)I/IR(E*(A), %)]. O
Lemma 2.4.7 Let A be a -subtree of a connected profinite graph I" and let
a:'—T/A

be the corresponding canonical epimorphism of graphs. Then the induced homo-
morphism

of 1 Hi(I', Z) — H(I'/A,Zz)

is an isomorphism. In particular, if I' is a 7 -tree, then so is '/ A.

Proof We may assume that 7 consists of just one prime p. Let
B:AN—T

be the natural embedding. Then 8 and « induce a monomorphism B:C(A,Z p) —
C(I',Zp) and an epimorphism & : C(I',Z,) — C(I"/A,Z,) of chain complexes,
respectively, and the following diagram

0

00— [Z,(E*(A), )] —L = [Z,V(A) ] —>Z, —=0
B lﬁv J/id

* dr 8F
[Z,(E*(I"), )| — % [Z,V ("] ——~Z, —=0

g+ ay id

[Z,(E*(I'/A), )]~ [Z,V (/A -2, —0




54 2 Profinite Graphs

commutes. Note that the first row is exact because A is a p-tree, the second row is
exact because I is connected.

By Lemma 2.4.6, Ker(@g+) = ﬁE*([[Zp(E*(A), *)]]), in other words, the first
column of the diagram is an exact sequence. From this it easily follows that
a} is an injection. Indeed, let a € Hi(I",Z,) be such that af(a) = 0; ie.,
a € [Z,(E*(I'), )]l with d"(a) =0 and @g+(a) = 0. Then there exists a b €
[Z,(E*(A),*)]l such that BE* (b) = a. Now, since d® and By are injections, we
deduce from the commutativity of the diagram that » = 0. Thus a = 0.

Next we observe that Ker(ay) = ﬁv (Ker(e2)); indeed, first we notice that this
is straightforward if V (I") is finite; in general we use an inverse limit argument.

Now we can easily deduce that o} is a surjection: if ¢ € [Z,(E*(I"/A), %]
and d"/2(c) = 0, choose ¢ € [[Z,(E*(I"), )]l such that Gg+(¢) = c; then d' (¢) €
Ker(&y ), and so there exists a y € Ker(¢®) with BV (y) = d’ (¢); hence there exists
ay € l[Z,(E*(A), )] with d2(y') = y; then ¢/ =& — Bg+(y) € Ker(d") and
ag=(c’) = c, as needed. O

Lemma 2.4.8 Let R be a profinite ring. Then the following statements hold.

(a) Let {X; |i € I} be a collection of closed subspaces of a profinite space Y. Set
X =(ie; Xi- Then

[RXT = IRX;].

(b) Let {(X;,*) |i € I} be a collection of closed pointed subspaces of a profinite
pointed space (Y, x). Set (X, ) = (;c;(Xi, %). Then

R, 0] = m[[R(Xi, 0]

(c) Let Y and Z be closed subspaces of the profinite pointed space (X, %) such that
x €Y and x ¢ Z. Then there are natural isomorphisms
[RX,»]/IRZI=[[R(X/Z,%)] and
[RX. ]/[RY.»]|=[RX/Y, ]
Proof The proofs of (a) and (b) are similar. We only prove (a). Assume first that
I={1,2},ie., X =X N X,. Write Y as the inverse limit
jelJ

of its finite quotient spaces. Denote by ¢; : ¥ — Y; the projection (j € J), and
define le = (pj(Xl) and ij = (pj(Xz).
Since X;; and X; are finite, we have

[R(X1;NX2p)]| =IRX1;TINIRX2;].
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It is easy to verify that
Xy 0 Xz = (lim X1;) 0 (1im Xz ) = lim (X1; 0 Xa).
jeJ jeJ jelJ

Hence

[[R(Xl ﬂXz)]] = [I:R(l(iLn(le ﬂij))]] = Liﬂl[[R(le ﬁij)]]
jeJ jeJ

= lim (IRX 1,11 N [RX;1) = (im [RX1,;1) 0 (lim [RX2,1)
JjeJ jeJ jel
=[RX1IN[RX:]

(for the second and fourth equalities see RZ, Proposition 5.2.2).

Assume now that [ is any indexing set. By the case considered above we may as-
sume that the collection {X; | i € I} is filtered from below, i.e., that the intersection
of any two sets in the collection contains a set in the collection. So we may think of
this collection as an inverse system of sets and

X:ﬂx,- = lim X;.
iel i€l

Also, using again the case above, the collection of profinite R-submodules {[RX;] |
i € I} of [RY] is filtered from below. Therefore,

1R 1 =[[ R (1im X;) ]| = tim [ R X1 = (IR,
iel iel iel
(c) We prove the second statement, the first being similar. The quotient map
(X, %) = (X/Y, %) induces a continuous epimorphism of free profinite modules
f i IR(X,x)]] = [R(X/Y,*)]. Since f([R(Y,=*)]) =0, f induces an epimor-
phism
p:[RX.D]/[RY.»]] — [[RX/Y. )]

On the other hand, the natural map (X/Y, %) — [R(X,*)]I/[R(Y, *)] induces a
continuous homomorphism

v [[RX/Y, 0] — [REX, ] /[RY.»]

Finally, observe that the composition o is the identity map on [R(X, *)]l/
[R(Y, x)]l. Thus p is an isomorphism. Il

Proposition 2.4.9 Let & be a nonempty set of prime numbers. Suppose that {A; |
i € I} is afamily of w-subtrees of a w-tree T, and let A = (;; Ai. Then A is either
empty or a 1 -tree.

iel

Proof Assume that A # (. By Lemma 2.4.8 one has

[Z: V()] =122V (an]]

iel
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and

[Z: (E*(A), %) ]| = ([Zz (E*(A0). %)])-

iel

Consider the exact sequence
0 —> [[Z4(E*(T), %] -5 [[2: V(1) <> Z: — 0

associated with 7. Denote by B, gBi d2 d%i the restrictions of ¢ and d to A
and A;, respectively. Then

Ker(e2) = [[Z; V(A)] NKer(e) = (ﬂ Mz, V(A,~)]]> NKer(e) = | Ker(e®):;
iel iel

moreover,

m(dA) = mlm(dA")
iel
because d is injective. Since each A; is connected, we have Ker(¢2/) = Im(d®/),
for every i, by Proposition 2.3.2. It follows that Im(d®) = Ker(¢®). So, by
Proposition 2.3.2, A is connected, and therefore a m-tree according to Proposi-
tion 2.4.3(b). O

It follows from Proposition 2.4.9 that given a nonempty subset W of a w-tree T,
there exists a smallest w-subtree [W] containing W, namely the intersection of all
m-subtrees containing W. If W consists of two vertices v and w, we use the notation
[v, w] rather than [{v, w}] and call it the chain connecting v and w. Observe that if
[v, w] is finite, then it is just the underlying graph of the unique reduced path from
v to w.

Lemma 2.4.10 A profinite subgraph A of a w-tree T is a mw-tree if and only if
[v,w] C A, forall v,w € V(A).

Proof If A is a m-tree, then by definition [v, w] C A, for all v, w € V(A). Con-
versely, suppose A is a profinite subgraph of 7 and that [v, w] C A, for all
v, w € V(A). To prove that A is a m-tree, it suffices to show that A is connected
(see Proposition 2.4.3(b)). Write T as an inverse limit of finite quotient graphs,

T =lim7;,

iel
and let ¢; : T — T; denote the projection (i € I). It suffices to prove that ¢; (A) is a
connected graph for each i € I. Given vertices v and w of ¢; (A), let v, w € V(A)
with ¢; (v) = v and ¢; (w) = w. Since [v, w] € A and [v, w] is a w-tree, we have
that ¢; ([v, w]) is a connected subgraph of the finite graph ¢; (A) containing v and w.
Therefore, ¢; (A) is connected. O
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Example 2.4.11 (A m-tree that coincides with its infinite chains) Let I" = I” (2, 1)
be the Cayley graph of the free profinite group Z of rank 1 with respect to its subset
{1}. This is a m-tree for any nonempty set of prime numbers 7 (see Theorem 2.5.3
below and Proposition 2.4.3(e)). The proper  -subtrees of I" are precisely the proper
connected profinite subgraphs of I", and these are precisely the finite 7-subtrees
(see Example 2.1.13). Therefore, if v, w are vertices of I", then [v, w] = I', unless
[v, w] is finite, in which case [v, w] has vertices y,y +1,...,y + ¢, where y = v
or y = w and ¢ is a natural number.

Let G be a profinite group that acts on a w-tree T. A w-subtree T’ of T is G-
invariant if whenever g € G and m € T', one has gm € T'; and such T’ is minimal
if it does not contain any proper G-invariant m-subtrees. Minimal G-invariant 7 -
subtrees are especially useful when they are unique. In the next proposition we begin
the study of minimal G-invariant 7-subtrees 7’ of T. A more systematic study is
carried out in Chap. 8.

Proposition 2.4.12 Let G be a profinite group acting on a w-tree T. Then the
following assertions hold.

(a) There exists a minimal G-invariant w-subtree D of T .

(b) If |D| > 1, then D is unique. In particular, if |G| > 1 and G acts freely on T or
if G is infinite and the stabilizer of some m € D is finite, then D is the unique
minimal G-invariant 7 -subtree of T .

(c) Assume that D is unique. Let N <« G be such that there exists a unique minimal
N-invariant rw-subtree L of T. Then L = D.

Proof (a) Consider the collection 7 of all G-invariant 7 -subtrees of T ordered by
reverse inclusion. Since T € T, T # (. Let {T;};c; be a linearly ordered chain in 7.
By the compactness of T, the set (] 7; is nonempty. Then, by Proposition 2.4.9, (N T;
is a G-invariant 7 -subtree. So {7} };c; possesses an upper bound in 7. Therefore we
can apply Zorn’s lemma to conclude that there exists a minimal G-invariant -
subtree.

(b) This will be proved after Corollary 4.1.9.

(c) Let g € G; then N acts on gL and so gL is minimal N-invariant; hence
gL = L. This means that G acts on L. Therefore D C L; but obviously L C D,
since N acts on D; thus L = D. O

2.5 Cayley Graphs and C-Trees

A pseudovariety of finite groups Cp is said to be closed under extensions with
abelian kernel if whenever

l—A—G—H—1



58 2 Profinite Graphs

is an exact sequence of finite groups with A, H € Cp and A is abelian, then G € Cyp.
By the Kaloujnine—Krassner theorem (cf. Kargapolov and Merzljakov 1979, The-
orem 6.2.8) such an extension group G can be embedded in the wreath product A
by H; it follows that to check that a pseudovariety of finite groups C is closed under
extensions with abelian kernel, it suffices to verify that any semidirect product of an
abelian group in C by a group in C is in C.

Next we give an example showing that a pseudovariety which is closed under
extensions with abelian kernel is not necessarily extension-closed.

Example 2.5.1 (A pseudovariety closed under extensions with abelian kernel that
is not extension-closed) Let A = As be the alternating group of degree 5. This is
the finite simple nonabelian group with smallest order. Let C(A) be the collection
of all the finite direct products of copies of A. Observe that C(A) is closed under
homomorphic images (cf. RZ, Lemma 8.2.4). For a finite group G, denote by S(G)
its maximal solvable normal subgroup. Define V to be the set of all finite groups G
such that G/S(G) € C(A).

We shall show that V is a pseudovariety of finite groups that is closed under
extensions with abelian kernel, but not extension-closed.

We claim first that V is a pseudovariety. Clearly V is closed under finite direct
products; moreover, since C(A) is closed under homomorphic images, so is V. It
remains to prove that V is closed under taking subgroups. Let G € V and let H be
a proper subgroup of G. We use induction on the order of G to show that H € V.
If G is solvable or G = A, then H is solvable and the result is clear. Observe that
H/S(H) is a quotient of H/H N S(G). If S(G) # 1, the result follows from the
induction hypothesis since

H/HNS(G)ZHS(G)/S(G) <G/S(G) and |G/S(G)|<IGI.

Thus from now on we may assume that G € C(A),ie., G=A; X --- X A, (n > 2),
where each A; is isomorphic to A. Since H is a proper subgroup of G, there is
some i such that H; = HNA; # A;, 1 <i <n.Then H; is solvable. So H; < S(H)
and S(H/H;) = S(H)/H;. Now, since H/H; < G/A; € V, we conclude from the
induction hypothesis that

H/S(H) = (H/H;)/S(H/H;) € C(A).

This proves the claim.

It follows easily from the definition that ) is closed under extensions with abelian
kernel. Let us show now that it is not extension-closed. For this consider the wreath
product R = A C of A with a group C of order 2; this is a semidirect product of
B = A x A by C; both of these groups are in V; and the action of C on B permutes
the two factors A. Let K < R and assume that K is solvable. We claim that K = 1.
Note that K N B = 1, for otherwise K must contain one of the copies of A, contra-
dicting the solvability of K. If K # 1, we have R = B x K = B x C, contradicting
the definition of R. This proves the claim. Therefore S(R) = 1. Finally, observe that
R¢C(A). Thus R ¢ V.
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If (X, ) is a pointed profinite space, we denote by F' = F¢ (X, ) the free pro-C
group on the pointed space (X, *). The next two results establish conditions under
which the Cayley graph of a free pro-C group with respect to one of its bases is a
C-tree. We begin with a study of the augmentation ideal (see Sect. 1.10) of a free
pro-C group.

Lemma 2.5.2 Let C be a pseudovariety of finite groups. Then C is closed under
extensions with abelian kernel if and only if for every pointed profinite space (Y, %),
the augmentation ideal (I1F)) of the complete group algebra [[Z;F1| of the free
pro-C group F = Fe(Y, %) is a free [Z@F]]-module on the pointed space (Y, *)
with respect to the map 1 : (Y, ) — (I F)) defined by t((y) =y —1(yeY).

Proof The augmentation ideal ((/F)) is topologically generated by the space
Y—1={y—1|yeY}asan IIZéFH-module (see Sect. 1.10).

Assume first that C is closed under extensions with abelian kernel. We shall prove
that (({ F)) satisfies the required universal property of a free [[Zé F]]-module with
respect to the map ¢. We must prove that given a map of pointed spaces ¢ : ¥ — M
to a profinite [Z; F]l-module M, there exists a unique continuous [[Z; F']l-module
homomorphism 1/} :({F)) > M such that &L = .

y—1 (Fy-Y

T

Observe that if such a IZ exists, then it is unique since ¢(Y) generates (I F)) as a
[[Zé F]]-module.

We may assume that M is finite since M is an inverse limit of finite ﬂZéF -
modules (see Sect. 1.7). Note that M € C since M is automatically a Zé—module
and so an abelian pro-C group.

Since M is in particular an F-module, we may construct the corresponding
semidirect product M x F. We remark that M x F is a pro-C group since C is closed
under extensions with abelian kernel. Since F is a free pro-C group on (Y, %), there
exists a unique continuous homomorphism

p:F—MxF

such that p(y) = (¥ (), y) (y € ¥).
Define now a map

6:F— M

by the equation (§(f), f) = p(f), for all f € F. Then § is continuous and it is a
derivation, that is,

5(fifa) =0(f)+ fi6(f2), VYfi,reF

(see Sect. 1.10). Now, (see 1.10.7 in Sect. 1.10), there exists an isomorphism
Der(F, M) = Homyz, ry((1 F)). M),
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and under this isomorphism § corresponds to a [[Z; F']l-homomorphism
V:UF)— M
such that Y (f — 1) = 8(f), forall f € F. Then
PN =d(-D=8M=v0). VYyel,

and thus Yt = .

Conversely, assume that (({ F)) is a free IZ;F JI-module on the pointed space
(Y, x) with respect to the map ¢, for every profinite pointed space (Y, *), where
F = F (Y, %) denotes the free pro-C group on the pointed profinite space (Y, *). Let
A, H € C, with A abelian. Assume that A is an H-module, and let G = A x H be
the corresponding semidirect product. To prove that C is closed under extensions
with abelian kernel it suffices to show that G € C, as pointed out above.

Let {(ay, hy) | y € Y} be a generating set of G = A x H, withay, € A, hy, € H,
forall y € Y, where (Y, ) is a certain finite pointed indexing setand a, = 1, h, = 1.
Then H = (h, |y € Y). Let F = F¢(Y, *) be the free pro-C group on the pointed
space (Y, *) and let

o:F—H

be the continuous epimorphism determined by ¢(y) = hy (y € Y). Then the action
of H on A induces an action of F on A via ¢:

fra=e(fla, (a€A, feF).
Let G = A x F be the corresponding semidirect product, and let
$:G=AxF—>G=AxH

be the epimorphism induced by ¢.
Since, by assumption, (I F)) is a free [[Z@F]]—module on (Y,*) and A is an
[[Z(f F]-module, there exists a continuous [[Z(f FJ-homomorphism

V:(IF)— A
such that &(y —1)=ay (y €Y). Define
d:F— A

by d(f) = 1/~/(f — 1) (f € F). Then d is a continuous derivation (see 1.10.7 in
Sect. 1.10). Hence the map

p:F—>G=AXF

given by po(f) = (d(f), f) (f € F), is a continuous homomorphism (cf. RZ,
Lemma 9.3.6). Define « : F — G to be the composite @ = ¢ p. Observe that

a(y) = (ayv hy) (yevy);

therefore « is an epimorphism, and thus G € C, as needed. O
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Theorem 2.5.3 Let C be a pseudovariety of finite groups. Then C is closed under
extensions with abelian kernel if and only if for every profinite pointed space (Y, *),
the Cayley graph I' = I'(F, Y) of the free pro-C group F = F (Y, x) with respect to
Y is a C-tree.

Proof We think of (Y, x) as being embedded in F'; in particular * is identified with 1.
SinceleY, '=I'(F,Y)=F xY and V(I") = F x {1}. Consider the sequence
associated with the graph I" and Z as in Eq. (2.4) of Sect. 2.3:

0 — [[Zs((F x )/ (F x {1}), )] <52 F - Zs —> 0,

where d(f,y)= fy— f (yeY)and e(f) =1 (f € F). We have to prove that this
sequence is exact for every (Y, *) if and only if C is closed under extensions with
abelian kernel.

By Lemma 2.2.4, I" is a connected profinite graph since F is topologically gener-
ated by Y. Therefore, by Proposition 2.3.2, the above sequence is exact at [Z; F1]l.
It remains to prove that d is a monomorphism. Now, Ker(e) is the augmentation
ideal ({ F)) of [[Z@F ]I, which is generated as a topological [[Z@F JI-module by the
subspace {y — 1 | y € Y} (see Sect. 1.10).

On the other hand, IIZé((F x Y)/(F x {1}),%)] is a free IIZ@F]]-module
on the quotient space F\((F x Y)/(F x {1}), %) (cf. RZ, Proposition 5.7.1). The
space F\((F x Y)/(F x {1}), %) can be identified with the pointed space ({(1, y) |
yeY}, %) Since d(1,y) =1 —1y (y € Y), to show that d is a monomorphism is
equivalent to showing that the augmentation ideal (({ F)) is free on the subspace
({1l —y |y € Y}, %), as a profinite [[Z; F']l-module. But, according to Lemma 2.5.2,
this is the case if and only if C is closed under extensions with abelian kernel. [
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