High Level Architecture

In this chapter, we want to provide you a detailed introduction to High Level
Architecture (HLA) to lay the technical background for the rest of the chapters.
HLA is both a de facto and de jure standard for distributed simulation. HLA is a
simulation systems architecture framework for distributed simulation. Interoper-
ability, along with reusability, is a major design aim of HLA. And it is commonly
used in many application domains, specifically in the military realm. In this chapter,
various aspects of the standard will be reviewed to furnish user with a compre-
hensive introduction. This chapter extends the third chapter of (Topgu et al. 2016).

2.1 Prelude

As we provided the historical perspective of distributed simulation in Chap. 1, HLA
is the latest de facto and de jure standard for distributed simulations. The efforts
began to realize a common technical framework for M&S through (initially) the
defense domain, to enable the interoperability of various simulation systems by
urging the stakeholders (e.g., the vendors, users, etc.) to a common architecture,
which is called as High Level Architecture (DoD 1995). Today, it is commonly
used in many application domains, in both military and civilian realm.

The evolution of HLA begins with the U.S. DoD HLA 1.3 specification, then to
an IEEE standard in 2000 and then evolving once more in 2010 to its current
version, which is called HLA Evolved, published in 2010 as IEEE 1516.2010 series
(IEEE Std 1516-2010 2010; IEEE Std 1516.1-2010 2010; IEEE Std 1516.2-2010
2010). Unfortunately, the three versions of HLA specifications are not fully com-
patible with each other both in terms of software and framework, which increases
the confusion of users as a result. In this regard, this book is generally based on the
HLA Evolved version. Whenever we want to clarify the difference, we explicitly
spell the version. For consistency throughout the book, we will refer to the HLA
versions as presented in Table 2.1 to eliminate confusion.
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Table 2.1 HLA versions

HLA specification Referrant

The U.S. DoD HLA 1.3 specification HLA 1.3

IEEE 1516-2000 standard HLA 1516-2000

IEEE 1516-2010 standard HLA 1516-2010 or HLA evolved

Today, the studies for the improvement of HLA actively continue spearheaded
by Simulation Interoperability Standards Organization (SISO).

The major enhancements to IEEE 1516.2010 series were summarized as
modular federation object models (FOMs) and simulation object models (SOMs),
Web services communication, improved support for fault tolerance, smart update
rate reduction, and dynamic link compatibility (DLC) (Moller et al. 2008).

2.1.1 What Is HLA?

Its standard defines HLA as a simulation systems architecture framework with the
aim to facilitate the reuse and the interoperability of simulations (IEEE Std
1516-2010 2010). Cost-effectiveness, quality, and timeliness concerns necessitate
reuse of assets not only in simulation domain, but also in all software-intensive
domains. Systematic reuse, however, can only be achieved by assets that are
designed for reuse. Component-based modularity with loose coupling of compo-
nents at the heart of HLA is a key enabler for both interoperability and reusability.
The interoperability can be defined as the capability of simulations to exchange
information in a useful and meaningful way (Yilmaz 2007). The realization of
interoperability requires a means of communication between the components.

As pointed out earlier, the motivation of HLA is to provide a common archi-
tecture for distributed simulation (Kuhl et al. 1999). Thus, the simulations, what-
ever their type might be (live, constructive, or virtual), interoperate on a single
infrastructure to achieve the simulation objectives (e.g., to train a pilot in an
engagement, or to produce data to input to a decision-making process). In a dis-
tributed environment, the infrastructure can be based on a direct communication
(point-to-point) or an indirect communication (using a mediator) among compo-
nents. In this regard, HLA adopts the latter approach, especially, to promote the
reuse of components by decreasing the coupling of each component with others
using a mediator, where coupling specifies the degree of the functional interde-
pendency (in terms of communication) between components. This mediator is
called runtime infrastructure (RTI), and its task is to provide services for the
management of distributed simulation, components, and the data communication.

The HLA standard defines an architecture framework as “major functional
elements, interfaces, and design rules, pertaining as feasible to all simulation
applications and providing a common framework within which specific systems
architecture can be defined” (IEEE Std 1516-2010 2010). While functional
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elements specify the feature set that will be provided, interfaces define the way that
user will consume them. Design rules introduce the practices to be employed to use
these functions over the described interfaces to build up a system. This trio, namely,
functional elements, interfaces, and rules, constitutes a common framework for
developing simulations.

To wrap up, in a broad sense, the standard defines an architectural framework
whose aim is to enable component-based, loosely coupled simulation development.
The basic assumptions and motivations underneath this effort are summarized as
follows (Dahmann et al. 1997).

e Diverse user requirements of today’s simulation systems cannot be fulfilled by a
single or monolithic structure. Thus, HLA supports decomposing large simu-
lation problems into smaller parts.

e Today’s simulations sweep a wide range of domains so that no single group of
developers possesses all required knowledge to develop the whole simulation.
Thus, HLA supports composing smaller parts into a big simulation system.

e Simulations can be used for more than one application some of which cannot be
foreseen during development. Thus, HLA supports reusable simulations that can
be composed into various simulation systems that have different requirements.

e Simulations have long life spans so that the technology that uses them is subject
to changes. Thus, HLA provides an interface between the simulations and their
users that insulates their use from the changing technology such as network
protocols, operating systems, and programming languages.

As an historical fact, HLA was originated from the requirements of the defense
modeling and simulation community. Early requirements for distributed simula-
tions for collective training, and later, for aggregate simulations for analyzing
battlefield situations led to a worldwide accepted simulation standard, HLA. Today,
the user community of the standard spreads beyond defense applications. Since the
standard was first published, there have been numerous distributed simulation
applications in homeland security, space, aeronautics, disaster recovery, air traffic
management, transportation systems, and medical domains that take advantage of it.

2.2 Basic Components

HLA is not software, but an architectural framework. It is a set of specifications,
which is comprised of three parts:

e HIA Framework and Rules specifies the principles of systems design and
introduces “a set of rules that must be followed to achieve proper interaction of
simulations (federates) in a federation. These describe the responsibilities of
simulations and of RTI in HLA federations” (IEEE Std 1516-2010 2010).
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e Interface Specification (IF): “The HLA Interface Specification defines the
interface between the simulation and the software that will provide the network
and simulation management services. RTI is the software that provides these
services” (IEEE Std 1516.1-2010 2010). This standard specifies the capabilities
of the software infrastructure of HLA, namely RTI.

e Object Model Template (OMT) presents the mechanism to specify the data
model—the information produced and consumed by the elements of the dis-
tributed simulation. More formally “the OMT describes a common method for
declaring the information that will be produced and communicated by each
simulation participating in the distributed exercise” (IEEE Std 1516.2-2010
2010).

Before presenting each major standard in detail, let us begin with introducing
some basic terminologies such as federate and federations and runtime infrastruc-
ture in this section.

2.2.1 Federate and Federation

A federate application is a (simulation) member application that conforms to the
HLA standard and implements the interfaces specified in the HLA Federate
Interface Specification to participate in a distributed simulation execution (IEEE Std
1516-2010 2010). When we refer to a simulation member as a piece of software, we
call it a federate application, and, as an executable component capable of partici-
pating in a federation, we call it a federate. In order to interact with other federates
(through the RTI) in the distributed simulation execution, a federate must join the
simulation execution; then it is called as a joined federate." A federate application
may join the same execution multiple times or may join into multiple executions,
creating a new joined federate each time.

It is worth noting that the standard is interested only in the interface of the
federate, not how a federate application is structured. The motivation is that a
legacy simulation application can be wrapped as a federate, thus, can participate in
a federation. Simulations of systems or phenomena, simulation loggers, monitoring
applications, gateways, and live entities all can be federate applications. Federate
technically can be defined as a single connection to the RTIL. So, we can identify it
as a unit of reuse (IEEE Std 1516.2-2010 2010) and a member of a federation as
depicted in Fig. 2.1. It can be a single process or can contain several processes
running on more than one computer. It can be a data consumer, producer, or both.
Best practices advocate designing a reusable set of simulation features as a federate.
It can represent one platform such as a ship in an aggregate-level simulation or a
frigate hydrodynamics model that can be a federate in a full mission training
simulator.

"Throughout the book, application is used as a short form for “federate application”, and federate is
used as a short form for “joined federate”, unless otherwise indicated.
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Fig. 2.1 Federation and federates

Federation is a simulation environment with a name, which is composed of the
set of federates that share a common specification of data communication that are
captured in federation object model (FOM) (i.e., simulation data exchange model in
DS jargon) and interact via the RTI. As presented in Fig. 2.1, federates, whose data
communication requirements are documented in their simulation object models
(SOMs), are composed and interoperate over the runtime infrastructure throughout
the federation execution. The information exchange requirements that include class
relationships, data representations, parameters, and other relevant data of a federate
are documented in the FOM. FOM is composed from the participating federate
capabilities (documented as SOM).

Federation execution is a runtime instantiation of a federation; that is an actual
simulation execution.

To exemplify the concepts introduced so far, consider a maritime simulation,
which is composed of multiple ships, data loggers, and simulation control appli-
cations, where all share the same virtual environment and the notion of time. Here,
the whole simulation is a federation with a common object model (i.e., FOM)
shared by each participant. Each one of the participating members, e.g., a ship, a
data logger, or a simulation controller, which is capable to participate in this fed-
eration, is a federate with its own object model (i.e., SOM). Assuming this feder-
ation is intended for analyzing the traffic management of a strait, then each
simulation run is called as a federation execution.

2.2.2 Runtime Infrastructure

Most software architectures rely on infrastructures to enable their promises. HLA
also comes with an infrastructure to enable interfederate communication. RTI is the
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HLA’s underlying software infrastructure, a middleware. Federates interact with
RTI through the standard services and interfaces to participate in the distributed
simulation and exchange data. RTI supports the HLA Rules with the services it
provides over the interfaces specified in the Interface Specification (IEEE Std
1516.1-2010 2010).

The first public available RTI, called RTI 1.3, implements the HLA 1.3 speci-
fication and was released in 1998 (Kuhl et al. 1999). Since then, there have been
more than 20 RTIs produced as open-source, freeware, or commercial software.
Some of the major commercial ones are pRTI™ from Pitch Technologies (Pitch
2013), MAK RTI (2013) from VT MAK. And some popular open-source RTIs are
Portico (2013), OpenRTI (2011), CERTI (2002), EODiSP HLA (PNP-Software
2007), and Open HLA (2016).

2.3 HLA Rules

The principles that a distributed simulation system must adhere to be considered
HLA compliant are specified in the standard (IEEE Std 1516-2010, 2010). They are
categorized under two headings, namely federation rules and federate rules.

2.3.1 Federation Rules

o Federation shall have an HLA FOM, documented in accordance with the
HLA OMT.

The formalization of information exchange is one of the key points of HLA; it thus
enables domain-independent interoperability. FOM is a major part of any federation
agreement. So, any federation shall have a FOM, in which all the data (object and inter-
action) exchange that can happen during a federation execution is specified.

e In a federation, all simulation-associated object instance representation shall be
in the federates, not in the RTI.

HLA aims to separate federate-specific (domain-specific) functionality from the support
for general purpose (simulation) capabilities. So, it is the federates’ responsibility to keep
the copies of the object instance attribute values they are interested in. RTI does not provide
a storage medium for shared data; rather, it provides a medium of transmission.

e During a federation execution, all exchange of FOM data among joined fed-
erates shall occur via the RTIL.

To permit coherency in data exchange among the participants, federates shall utilize the
RTI for data exchange as specified in the FOM. Then, the RTI can manage the execution
and data exchange of the federation. Allowing a backdoor for communication would create
hidden dependencies among federates, thus, hindering their reusability.
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e During federation execution, joined federates shall interact with the RTI in
accordance with the HLA Interface Specification.

Two-way interaction between the federate and the RTI shall conform to the federate
interface specification. This specification is the base documentation for both the RTI
implementers and the federate application developers. A federate uses this standard inter-
face to employ the RTI services.

e During a federation execution, an instance attribute shall be owned by at most
one joined federate at any given time.

To promote data integrity, only one federate can own instance of an object attribute at a
time. Initially, the creator of an object is the owner of all its attributes. The ownership of an
attribute confers the owner the right to update it. Transfer of ownership from one federate to
another during execution is mediated by the RTIL. Notice that ownership is at the attribute
level; the attributes of the same object instance can be shared between different owners,
thus allowing implementation of distributed objects.

2.3.2 Federate Rules

e Federates shall have an HLA SOM, documented in accordance with the
HLA OMT.

Interoperability and reuse are only possible with an explicit specification of the capa-
bilities and needs of the federates. This is the advertisement part. The object classes, class
attributes, and interaction classes with their parameters shall be specified for every federate
in its SOM. SOM is mainly used for documentation.

e Federates shall be able to update and/or reflect any instance attributes and send
and/or receive interactions, as specified in their SOMs.

Federates can interact with others over updating or reflecting object instance attributes
and sending or receiving interactions as specified in their SOMs. Thus, the reuse is enabled.
This and the next two rules simply say “No false advertisement!”

e Federates shall be able to transfer and/or accept ownership of instance attributes
dynamically during a federation execution, as specified in their SOMs.

As specified in the SOM, federates shall support transferring or accepting the ownership
of object instance attributes during execution. This provides flexibility for federation
designers in terms of the allocation of responsibility.

e Federates shall be able to vary the conditions (e.g., thresholds) under which they
provide updates of instance attributes, as specified in their SOMs.

To take part in various federations, or cope with different phases of the same federation
execution, a federate must be able to vary its object attribute update rates or interaction send
rates, within the limits set forth in its SOM.
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e Federates shall be able to manage local time in a way that will allow them to
coordinate data exchange with other members of a federation.

Being a simulation on its own, a federate shall be able to manage its own time.
Moreover, it must cooperate with the federation so that the RTI can maintain a notion of
federation time. HLA supports federates with different time advancement mechanisms, such
as time-driven or event-driven, via time management services. HLA also supports different
time management strategies, such as conservative and optimistic, within a federation.

2.4 HLA Data Model and Data Communication

In the heart of distributed simulation is the simulation data exchange model which
governs the data communication between simulation members. It is essential to
understand how data are represented and shared during a federation execution.

In this respect, we introduce the HLA data communication pattern, the design
time, and runtime data structures, and we present the HLA object exchange. Here,
we answer what an HLA class is and then explain the related concepts, particularly,
HLA OMT and the HLA object models. Chapters 4 and 5 demonstrate how to
develop an HLA object model using SimGe tool.

2.4.1 HLA Data Communication Pattern

In a communication pattern, it is important to specify the policy of how data are
exchanged among components. There are two important aspects of this specifica-
tion. First, it is important to know what to exchange and how. For the latter
question, in general, the participating member applications in a simulation envi-
ronment can communicate directly in point-to-point manner (Fig. 2.2a) or they can
employ a mediator (i.e., broker), part of a middleware, for communicating indi-
rectly (Fig. 2.2b).

For the former question, what to exchange, there are two common approaches
for data communication: message exchange (Fig. 2.3a) and object exchange
(Fig. 2.3b).

In case of HLA, HLA specifies data communication via object exchange using a
middleware (Fig. 2.4).

Now, we can describe how HLA exchanges objects among federates. The RTI
plays the role of a mediator and routes the objects to the related federates. In the
point-to-point communication, adopted by Distributed Interactive Simulation
(DIS) protocol, the sender must know the receiver. In particular, the sender must
know the network Internet Protocol (IP) address of the receiver. But, the middle-
ware architecture model, which HLA adopts, uses a middleware to route the data
among federates. Consequently, there is no need, in principle, for a federate to
know about other federates. The RTI performs data routing using a Publish/Sub-
scribe Pattern. In the following subsections, we will give the details of this pattern.
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Fig. 2.4 HLA data communication pattern

The answer for what to exchange is that HLA communication model is based on
object-exchange technology. In other words, HLA-compliant federates communi-
cate with each other by exchanging objects. Therefore, the technology differs from
classical DIS protocols, where data communication is based on message exchange
technology, whereas data are exchanged through well-defined messages using
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predefined protocol data units (PDUs). The structure of the exchanged data is
embedded in DIS protocol. This causes the DIS protocol to be inflexible. For
instance, to exchange an entity state, DIS protocol specifies an entity state PDU.
Therefore, the simulation engineer can only use those predefined PDUs. You
cannot create or define new data structures as all are specified with the standard. In
contrast, HLA separates the data and its architecture. In this regard, HLA defines
the structure of the data that will be exchanged by the help of a template of what to
exchange at design time. This is done by employing the HLA Object Model
Template. The simulation engineer can model new data structures, in terms of HLA
classes, using the HLA OMT specification. The collection of those specified data
structures is called an HLA object model. In the following subsections, we will
expand both OMT and the object models.

2.4.2 Object Exchange: Publish/Subscribe Pattern

In this pattern, the sender and receiver components (i.e., federates) do not know
each other. They just declare (to the RTI) what they need and what they can provide
to the federation execution. In a federation execution, it is essential to express the
relationship between a federate and particular federation objects. Therefore, a
crucial federation design activity is to define the Publish and Subscribe (P/S)
interests of federates with the objects of conceptual model at hand.

The Publish/Subscribe pattern forms the basis of the model of communication
used by HLA between federates in terms of objects and interactions. Publishing
means declaring willingness (and ability) to provide data, which is composed of
object classes and their attributes, and interaction classes that the federate is able to
update or send. Subscribing means declaring interest and the needs in receiving
certain data. RTI dynamically routes the data from publishers (producers) to sub-
scribers (consumers).

As shown Fig. 2.5, at runtime, federates can declare to the RTI, which plays the
role of an object router, a set of data templates they can provide (i.e., publish), and a
set of data templates they are ready to receive (i.e., subscribe) according to the
Federation Execution Details (FED) for HLA 1.3 federations or FOM Document
Data (FDD) for HLA 1516 federations, which both are derived from the FOM
documented using the OMT specification. Following data declaration, federate can
create an object (i.e., register) or can send an interaction, which it published.
Afterward, the RTI finds the federates who subscribed to the class of the objects or
interactions and then routes the object/interaction to the subscribers. So that, a
subscriber federate can receive the interaction or discover the object. Updating the
values of the object attributes works the same way. The publisher federate updates
the value of an object attribute (i.e., update), and then the update is reflected to the
subscriber federates (i.e., reflect).

Now, let us look at closely what an object, class, and an object model mean in
HLA.
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Fig. 2.5 Object exchange based on P/S pattern

2.4.3 Data: Objects, Interactions, and HLA Classes

2.4.3.1 Object Instances and Interactions
The objects, also known as object instance or HLA object, are the primary means of
communication in a federation. They can be regarded as the abstractions of simu-
lated entities. A simulated entity may have a lifetime that is as long as the simulation
execution time span. And for sure, more than one federate can share an interest over
that simulated entity. While one controls the entity, some others may only observe it.
Good examples of HLA objects can be platforms or sensors in combat simulations or
airplanes in air traffic simulations. Only joined federates can create or delete an
object in a federation execution. The lifetime of an object is the duration between its
creation and deletion. Only the federate that publishes the object class can create an
object that is an instance of that class. Deletion of an object can be done only by the
federate, which owns the privilege to delete. This is explained later in the ownership
management section.

Object modelers identify the objects to facilitate an organizational scheme. There
are attributes associated with an object. The values of the attributes determine the
object state. The owner federate provides the attribute values by updating them, and



40 2 High Level Architecture

others (that are subscribed to those attributes) receive the values by reflecting those
attributes. The position and velocity of a platform object can be examples of
attributes.

Interactions, on the other hand, represent an occurrence or an event (analogous
to events in the sense of discrete event simulation). So conceptually, they are not
durable entities of interest but instantaneous events or occurrences of interest, such
as sending of a message or landing of an aircraft. An interaction possesses a
collection of data that is related to the occurrence or the event. The members of this
data collection are called parameters. The parameters of an interaction are analo-
gous to the attributes of an object. The difference is that the parameters of an
interaction form a single indivisible group, while the attributes of an object can be
grouped in different ways.

2.4.3.2 HLA Classes

Both objects and interactions are unique instantiations of HLA classes (see Fig. 2.6)
because each object has a unique handle given by the RTI. Handles are the unique
identifiers managed by the RTL In classical sense, a class is “a description of a
group of items with similar properties, common behavior, common relationships,
and common semantics” (IEEE Std 1516.2-2010 2010). There are two types of
HLA classes: object class and interaction class. An object class is “a template for a
set of characteristics that is common to a group of object instances” (IEEE Std
1516.2-2010 2010), where an interaction class is “a template for a set of charac-
teristics that is common to a group of interactions” (IEEE Std 1516.2-2010 2010).

Object Class

instantiation Object Instance
Attributes
! PrivilegeToDelete | (default)
| - (zero or
Attribute
[ more)
Interaction Class Interaction
instantiation
Parameters Parameter (zero or more)
Design time structure Runtime instances

Fig. 2.6 HLA data structure. Each object has a default attribute called as Privi-
legeToDelete. See Sect. 2.5.4 for the purpose of this attribute
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An object class and an interaction class can be thought of as design time
structures. They must be documented conforming to the OMT specification before
federation execution as a part of the federation object model.

2.4.3.3 Comparison with Object-Oriented Paradigm

Many (computer/software) engineers take a course on object-oriented programming
(OOP) in their undergraduate education, so they are tempted to compare and
sometimes confuse it with the HLA object/class terminology. In the OOP literature,
an object is defined as a software encapsulation of data (state) and behavior
(methods) with an identity. In HLA, objects are defined by characteristics (i.e.,
attribute or parameter) that are exchanged between federates (the visible portion of
state) during execution. Behavior is generated by the federates rather than directly
by objects. HLA objects do not have methods.

The HLA standard also mentions this topic. It points out that while class objects
are encapsulations for data and the operations, HLA objects are defined by the data
that are exchanged between federates during federation execution (IEEE Std
1516-2010 2010). Of course, nothing prevents a federate application from imple-
menting, say, a ship object internally in an object-oriented fashion, perhaps as a
Java object, and exposing it to the federation as an HLA object instance via
encapsulation. Encapsulation of an (OOP) object into an HLA object is explained in
Chap. 7.

Moreover, attributes are treated as first-class structures in HLA, where attribute
ownership is subject to change at runtime. A federate other than the one that created
an object can update an attribute of the object. Thus, it is possible for an object to be
distributed among multiple federates.

2.4.3.4 Class Hierarchy

For a complete object model, it is not sufficient to specify the object and interaction
classes separately; there is a need to specify the relationships among them as well.
HLA only allows class hierarchy using “is-a” relationship between classes, known
as single inheritance. In OMT, there is a predefined root class for object classes,
called HLAobjectRoot, and for interaction classes, called HLAinterac-
tionRoot. A class that generalizes a set of properties that may be extended by
more specialized classes is called superclass (base class in the OOP terminology),
and a class extended from it is called a subclass (derived class). A subclass inherits
all the properties of its superclass. For instance, Ship object class is a superclass
for CargoShip, RoRo, and Tanker classes as depicted in Fig. 2.7. Here,
Tanker class inherits the Name and Location attributes, and in addition, it
declares a new attribute, Oi1Capacity.

As we go top-down (from root to leaves), the generalization decreases and
specialization increases. Consequently, as the subclasses provide more concrete
domain objects, the superclasses provide the classification of classes and
reusability.
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Fig. 2.7 Class hierarchy

2.4.4 Object Model Template

Object Model Template (OMT) is a metamodel (thought of as a template) both for
specifying the data exchange and for providing a mechanism for the general
coordination as a federation agreement (SISO FEAT 2017) among federates (in the
form of FOM). It describes the structure of object models, as well as other relevant
information such as synchronization points, via specifying the syntax and the
format. Furthermore, the motivation behind developing a template for object
models is presented in the standard is to provide an established mechanism for
defining capabilities of the participants of the federation over their data exchange
specifications (in the form of SOM) and to enable the development of common tool
sets for object model development (IEEE Std 1516.2-2010 2010).

OMT is basically represented in tabular format and serialized in OMT data
interchange format (DIF). As federation agreements involve more than data
exchanged, it consists of a number of components in the form of tables, which can be
listed as Object Model Identification Table, Object Class Structure Table, Interaction
Class Structure Table, Attribute Table, Parameter Table, Dimension Table, Time
Representation Table, User Supplied Tag Table, Synchronization Table, Trans-
portation Type Table, Update Rate Table, Switches Table, Datatypes Table, Notes
Table, Interface Specification Services Usage Table, and FOM/SOM lexicon. These
tables are created for all federations and individual federates. While some require
specifications from the designer, certain tables may be left empty depending on the
situation.

While the reader is gently advised to go through the standard for the details of all
the tables, we would like to introduce some of the important ones. First to mention
is the Object Model Identification Table. The purpose of this table is to annotate the
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object model with the information about how the federate or the federation has been
developed. The information provided in this table includes version, modification
date, purpose of the object model, its limitations, point of contact, and references.
An example Object Model Identification Table, for our running example STMS, is
given in Table 2.2.

In the Object Class Structure Table, the hierarchical relationship of the classes is
specified. This table also indicates if a federate can publish, subscribe, or publish
and subscribe these classes. A sample object class hierarchy is depicted in
Table 2.3. In this example table, we can easily see the object class hierarchy. The

Table 2.2 Object Model Identification Table example for strait traffic monitoring simulation
(STMS) federation

Category Information

Name StmsFom

Type FOM

Version 2.0

Modification data 17/11/2016 12:00 AM

Security Unclassified

classification

Release restriction NA

Purpose A sample federation object model for this book
Application HLA general

domain

Description This object model is provided as a sample project in SimGe object

modeling tool

Use limitations

NA

Use history Topgu et al. (2008, 2016)
Keyword
Taxonomy Simulation, maritime traffic management
Keyword HLA, strait traffic management
POC
POC Type Sponsor
POC Name Okan Topgu
POC Okan Topgu
organization
POC telephone +1 (111) 111-1111 (fictitious)
POC e-mail otot.support@outlook.com
References
Type Stand-alone
Identification NA
Other Created by SimGe at 11/14/2016 19:06:49
Glyph

STMS
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Table 2.3 Object Class Structure Table example for STMS federation
HLAobjectRoot (N) Ship (N) CargoShip (PS)

RoRo (PS) ConRo (PS)
RoLo (PS)
Tanker (N) GeneralPurposeTanker (PS)

MediumRangeTanker (PS)
LongRangeTanker (PS)
VeryLargeCrudeTanker (PS)

Table 2.4 Parameter Table example for STMS federation

Interaction Parameter | Data Available Transportation Order

type dimension
Radio Call sign String VHF Hlabesteffort Timestamp
message Message String

Ship object class, which acts as a superclass for the derived classes: CargoShip,
RoRo, and Tanker. Moreover, we see that Ship is marked with N, indicating it is
neither publishable or subscribable (which can be thought of an abstract class)
while CargoShip is both publishable and subscribable (PS).

The Interaction Class Structure Table, likewise, consists of class—subclass
relations of interaction classes as well as their publish/subscribe capabilities. The
Attribute Table is used to specify the characteristics of object classes that are subject
to change in the course of federation execution. They are updated by the RTI and
made available to the related members of the federation. This table includes data
type, update type such as periodical or conditional, if it is conditional, the update
condition, ownership policy, publish/subscribe status, its dimensions, its transport
method, and its order of delivery. The Parameter Table specifies the parameters
that characterize the interaction classes (see Table 2.4 for an example). One must
note that while the attributes can be published and subscribed on an individual
basis, interaction parameters cannot be. So, although the Parameter Table looks like
the Attribute Table, one should keep this difference in mind. Thus, a Parameter
Table only possesses data type at the parameter level, while having dimensions,
transportation, and order at the interaction class level.

All the OMT components are given in detail in Chap. 5.

24.5 HLA Object Models

The HLA standard specifies three types of object models. These are simulation
object model (SOM), federation object model (FOM), and Management Object
Model (MOM).
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2.4.5.1 Federation Object Model
The participants of distributed simulation require a common understanding about
the communication among themselves. FOM provides a standard way of defining a
major part of federation agreements (SISO FEAT 2017). FOM mainly describes the
format and the structure of data and events that can be exchanged among federates
in a federation execution in form of objects and interactions with their attributes and
parameters, respectively. Using FOM, designers can specify the data exchange in
their federation in a standard format. There is one FOM per federation. So FOM can
be regarded as an information contract that enables the interoperability among
federates. FOM takes the form of a file at runtime, called FDD/FED file, which is
supplied to the RTT in the federation execution. A new FOM can be developed from
scratch for each federation as well as an existing reference FOM can be reused.
The HLA Evolved standard also supports the modular federation object models
(FOMs). The details of the FOM modularity are discussed in the following sections.
The reference FOMs are developed for increasing the interoperability by the
simulation communities to agree on a common data model. For instance, real-time
platform-level reference FOM (RPR-FOM) is developed to provide a preready
reference FOM for real-time platform-level simulations targeting in general the
pre-HLA simulations that use the DIS protocol (SISO 2015).

2.4.5.2 Simulation Object Model

With SOM, federates specify their capabilities and data interfaces. Thus, SOM
serves as the specification for describing the capabilities of federates to promote
reusability. You can determine the suitability of a federate for participation in a
federation by examining its SOM. The HLA OMT format is also applicable to
define SOMs.

2.4.5.3 Management Object Model

The HLA MOM is used to define the constructs for controlling and monitoring of a
federation execution. Federates require insight about the federation execution as
well as controlling the execution of individual federates, federation execution, or
the RTL. MOM utilizes the Object Model Template format and syntax to define the
information to be monitored and the control parameters. Its inclusion is compulsory
for all FOMs. This inclusion can be accomplished by consolidating MOM data by
HLA Standard Management and Initialization Module (MIM). MIM can be defined
as a subset of FOM that contains the tables that describe the MOM. All FOMs have
a default MIM that is specified by the standard, which can be overridden by a
user-supplied MIM.

24.6 Object Model Modularity

The HLA Evolved standard brings support for object model modularity, so that
SOM and FOM can be composed of one or more modules and one MIM. The
previous HLA versions used a monolithic object model. In the HLA Evolved, the



46 2 High Level Architecture

modules are introduced as the partial object models that lay out a modular com-
ponent to create more flexible and scalable object models (Moller et al. 2008). The
major aim is to separate the local (custom) object models from the standardized
object models (a.k.a. reference FOMs) such as RPR-FOM. Thus, as a design pat-
tern, one may extend the standardized object model by introducing a partial and
custom object model module, which is established upon a base stand-alone module
and then inherit all object classes from these base classes. This capability makes the
modules smaller and also promotes the reusability of object models for maintain-
able federations.

There are two types of FOM modules: stand-alone module and dependent
module. A stand-alone module can be used without other FOM modules, so that it
serves as a base object model that can be extended by other modules. A dependent
module contains some references defined in another FOM module. A reference can
point to a superclass (either an object class or an interaction class), a data type, a
transportation type, a dimension, or a note defined in another module (Moller et al.
2007). Because of this dependency, the dependent modules cannot be used as a
stand-alone FOM.

The stand-alone modules may contain references only to a MOM module.
Therefore, a MOM module is always required for FOM modules but optional for
SOM modules. One or more stand-alone modules together with a MOM module
can be used to build a FOM unless the definitions of concepts do not conflict in the
modules. Dependent modules can be built upon one or more stand-alone modules
or other dependent modules. But a dependent module cannot be used without a
stand-alone module.

The OMT Object Model Identification Table includes a type and identification
pair in its references section. So, one may specify the type of FOM/SOM as
stand-alone or dependent. If the type is dependency, then the identification field
must include all the dependent FOM/SOM module names.

As the RTI uses a subset of data from FOM in the form of an FDD file, the file
designators (i.e., the full name of the FDD file) are provided to the RTI in time of
creating the federation execution and joining the federation execution. See Chaps. 8
and 11 for implementation details and for how to use multiple FOM modules.

2.5 Interface Specification

The HLA federate interface specification (IEEE Std 1516.1-2010 2010) defines the
standard services and interfaces between the RTI and the federate applications to
support interfederate communication. In other words, this specification provides a
basis for functionally interfacing between a federate application and the RTI
component. The functional interface is defined in terms of RTI services, which are
arranged as seven groups:
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e Federation management (FM) provides the services to create, control, and
terminate a federation execution.

e Declaration management (DM) provides the services for federates to declare
their intentions on publishing or subscribing object classes and sending and
receiving interactions.

e Object management (OM) provides the services to register, modify, and delete
object instances, and to send and receive interactions.

e Ownership management (OwM) provides the services to transfer ownership of
attributes of object instances among the federates.

o Time management (TM) provides the services and the mechanisms to enable
delivering messages in a timely manner.

e Data distribution management (DDM) provides the services to refine data
requirements at the instance attribute level in terms of values, thus enables
reducing unnecessary data traffic.

e Support services (SS) includes the utilities for federates such as name-to-handle,
handle-to-name transformations, and getting update rate values.

The interface specification provides a description of the functionality of each
service and the arguments (both the supplied and returned) and preconditions
necessary for use of the service. Post-conditions specify any changes in the state of
the federation execution resulting from the call. Exceptions give all exceptions that
can be thrown by the service routine. The parts of interface specification are the
following:

Interface name and brief description of service;
Supplied arguments;

Returned arguments;

Preconditions;

Post-conditions;

Exceptions;

Related services.

Let us give an interface specification example for the confirm synchronization
point service, which is an RTlI-initiated service provided under the FM service
group. This service is used to indicate the result of a federation synchronization
point registration (see following section for a detailed explanation of federation
synchronization). Its supplied arguments are a synchronization point label,
registration-success indicator, and an optional failure reason. It has no defined
returned arguments. The interface specification also defines its preconditions such
that the federate needs to be joined to the federation execution and the joined
federate has invoked register federation synchronization point service for the
specified label argument. As a post-condition, it is specified what will be done in
case of a positive registration-success indicator. And the standard specifies one
exception for this service, which is federate internal error.
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An RTI service defines an interface in a programming language independent
way, where an RTI method is an implementation of that service using a particular
programming language such as C++, Java, and C#. An RTI service can be mapped
to more than one methods because of the different argument sets due to the optional
arguments in the service specification or because of indicating a success or failure
behavior of a service. For example, the “Confirm Synchronization Point” service,
discussed above, can be mapped to two methods showing the result as a success or
a failure. Below C++ method declarations are given:

// 4.12

virtual void synchronizationPointRegistrationSucceeded(
std::wstring const & )
throw (rtil5i16e::FederateInternalError);

virtual void synchronizationPointRegistrationFailed(
std::wstring const & R
rtil516e::SynchronizationPointFailureReason )
throw (rtil5l6e::FederateInternalError);

In connection with the points mentioned, the RTI methods provided for a pro-
gramming language constitute an Application Programming Interface (API) for
interfederate communication. Consequently, each federate must interact with RTI
by making method calls. The methods, which are provided to user federate
applications, constitute the federate interface. The methods are grouped into
(i) federate-initiated methods and (ii) RTI-initiated methods, to stress the direction
of the communication. The RTI-initiated methods are also called as callback
methods (see Fig. 2.8) callback methods. The Requests for calls should be included
in try-catch blocks to catch the exceptions thrown so that appropriate action may be
taken for error processing.

Typically, we make method calls when we want to instruct the RTI to do
something. For example, the federate, WhiteFdApp, in Fig. 2.9, calls the method
Request Federation Save to make the RTI to initiate a federate save. In response,
the RTI initiates a federate save by informing each federate with a callback method
“Initiate Federate Save.” Figure 2.9 depicts the federate interface and two-way
communication represented as a Unified Modeling Language (UML) sequence
diagram? (Fowler 2003). Here, all the interfederate communication is done by using
this federate interface (i.e., using the methods and callbacks). In some specific RTI
distributions (e.g., DMSO RTI 1.3 NG v6), a central process (e.g., RtiExec) is
required to run RTI software. RtiExec (RTI Executive) is a global process, where
each federate communicates with RtiExec to initialize its RTI components,
whereas each FedExec manages a federation execution.

>Throughout the book, we will specify the interactions among federates and the RTI as a UML
Sequence Diagram. In the diagram representations, we generally tend to use the UML diagrams as
a sketch, informal and incomplete, not to loose the focus and simplicity with a strict formalism. So,
the user without a deep UML background can folllow the diagrams easily. The reader may refer to
Fowler (2003), Larman (2004) for UML introduction.
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Fig. 2.9 The federate interface

B

The federate-initiated methods are called via a module, generally known as RTT
Ambassador, and the callbacks are received by Federate Ambassador (see
Fig. 2.10). The Federate Ambassador handles two types of incoming messages:
time-stamp-order (TSO) messages to receive messages delivered in order of
timestamp and receive order (RO) messages to receive messages delivered in order
received. So, the federate must iterate through the queues to process the waiting
callbacks. This operation is known as ficking or evoking.
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Federation management involves the services to initialize, finalize, monitor, and
dynamically control (e.g., saving and restoring) a federation execution.

2.5.1.1 Initialization and Finalization
Initialization services are used to connect to the RTI, to create a federation exe-
cution, and to join a federation execution. Before any interaction takes place
between the un-joined federate and the RTIL, a federate application must establish a
connection. After a connection is established, federate can interact with the RTI to
create a federation execution or to join a federation execution. During connect
method, we specify the callback model that the federate prefers. Although the
federate interface specification defines two types of callback model, which are
immediate callback model or evoked callback model, a native RTI implementation
may implement only one mode or both. In immediate callback model, the RTI shall
invoke callbacks immediately. In the evoked mode, the federate must explicitly call
a method (i.e., evoke callback or evoke multiple callbacks) to cause the callbacks to
be executed. In HLA 1.3 specification, there is no specification for connect service.
In this case, a federate can directly interact with the RTT after instantiating an RTI
Ambassador and a Federate Ambassador. In this case, to invoke callbacks, the tick
service is used.

Finalization services include resigning from the federation execution, destroying
the federation execution, and lastly terminating the connection between the federate
and the RTL

2,5.1.2 Federation Execution Monitoring Services

Monitoring services are generally employed by applications to monitor the feder-
ation executions. So, a federate may request a list of federation executions that are
currently running. The RTI replies this call with a list of federation execution



2.5 Interface Specification 51

O

W

:Federate RTI

I I
————TlistFederationExecutions(}————>
I
I
I

< —

|
|
reportFederationExecutions !
(theFederationExecutioninformationList)

JR—

Fig. 2.11 UML sequence diagram for monitoring federation executions. Notice the use of
synchronous (method calls by federate) and asynchronous (callbacks from the RTI) messages.
Synchronous ones have solid arrowheads. The open arrowheads are for asynchronous messages

information. Each entry in the list encapsulates a pair of the federation execution
name and the logical time implementation name. See Fig. 2.11 for interactions
between the federate and the RTIL.

2.5.1.3 Synchronization Services

Synchronization mechanism is provided to synchronize activities throughout the
federation executions. A synchronization point is used to specify a synchronization
activity. The synchronization points are declared in the OMT Synchronization
Table.

Federation synchronization begins with a federate requesting a synchronization
point registration (see Fig. 2.12 msg. 1). The RTI informs the requested federate
whether registration is successful (msg. 2) or not (msg. 3). The reason for a failed
synchronization point registration can be in case where a synchronization point
label is not unique. For instance, assume that a federate has registered a synchro-
nization point and as the synchronization process continues, another federate tries to
register the same synchronization (i.e., with the same label) and so gets a failure.
After a successful synchronization point registration, the RTI announces the syn-
chronization point to the related federates (or all federates) according to the
parameter selection on registration (msg. 4). When a synchronization point is
announced by the RTI, each federate receiving this callback (msg. 5) replies with a
Synchronization Point Achieved message after it successfully fulfills the synchro-
nization point requirement. When all the related federates report achievement (ei-
ther with success or failure), the RTI informs the related federates that the
synchronization is completed and reports the failed federates (msg. 6).

See Chap. 5 on how to declare synchronization points in the HLA OMT and
Chap. 9 how to implement the federation synchronization.
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Fig. 2.12 UML sequence diagram for federation synchronization

2.5.1.4 Save/Restore Services
Another important federation management service area is to save a federation
execution and then to restore it later to its state when the save is performed.

The interactions between federates and the RTI are depicted in Fig. 2.13. The
federation execution save is initiated with a Request Federation Save message
(Fig. 2.13 msg. 1). Here, the requesting federate provides a federation save label,
which will be used in restore operation. The federate may also supply a timestamp
to indicate the logical time for federation save. The timestamp can only be provided
by a time-regulating federate (see time management section below for time-related
concepts). When a timestamp is not present, then the RTI orders all joined federates
to save state as soon as possible with a initiate federate save service (msg.2). Now,
all joined federates are informed about a save operation. When a federate begins a
save operation, it informs the RTI with a federate save begun call (msg.3). So, the
federates may begin to save their application-specific data (whatever they want to
keep to restore its state again) in a data store (a file or a database). When the
federate completes its save operation, it informs the RTI by issuing a Federate Save
Complete message (msg.4). Finally, the RTI informs the joined federates either the
federation save operation is successfully completed or not by sending a federation
saved message (msg.5). In case of a successful federation save indication, then the
federates may shut down safely. Note that only one federation save can be in
progress (IEEE Std 1516.1-2010 2010).

To support the federation save operation, there are some additional services
provided by RTI interface (see Fig. 2.14). A federate may abort federation save
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Fig. 2.14 UML sequence diagram presenting the additional services for federation save

(msg.1) or may query the federation save status (msg.2). When a query is requested,
the RTI answers with a federation save status callback (msg.3). Note that these
additional services are unavailable in HLA 1.3 specification.

The federation restore operation is similar to the federation save operation. The
process begins with a Request Federation Restore service call (see Fig. 2.15,
msg.1). This call must be supplied with a federation save label argument. A valid
request is confirmed by the RTI using a confirm federation restoration request sent
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Fig. 2.15 UML sequence diagram for federation restore

to the requesting federate (msg.2). Then, the RTI informs all the federates that a
federation restoration is about to happen by issuing a Federation Restore Begun
callback (msg.3). Thus, the federates stop providing new information (e.g.,
updating attribute values) to the federation and wait for an initiate order. The RTI
instructs the joined federate to initiate a federate restore (msg.4). The federate must
return to its previous state indicated by the federation save label. Here, the federate
loads its saved application data kept in the federation save and as a result of this
service invocation, the federate’s handle and name change according to the pro-
vided arguments by the RTI from the values taken by the join federation execution
service. After federate completes its restoration, it informs the RTI by calling the
Federate Restore Complete service (msg.5) and waits for the invocation of the
federation restored service (msg.6).

Similar to the save operation, additional services exist for aborting and querying
a federation restore.

2.5.2 Declaration Management

As pointed in the previous (HLA Data Model) section, HLA uses publish and
subscribe mechanism to exchange objects at runtime. In this regard, the declaration
management services provide all the required means for a federate to declare their
capability and interests in a federation execution.
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2.5.2.1 Functional Description
Before a federate involves in any data exchange during a federation execution, it
must declare its capability (i.e., data it will produce) and its interests (i.e., data it
will consume) to the RTL

To declare capability, the federate uses the Publish Object Class Attributes and
Publish Interaction Class services. Alternatively, a federate can change its decla-
rations by using Unpublish Object Class Attributes or Unpublish Interaction Class
services. To declare interest, the federate uses the corresponding Subscribe/
Unsubscribe services such as Subscribe Interaction Class service.

Furthermore, there are additional services to help the federate fine tune when to
start registration or begin sending interactions. Those services are listed below, and
how to use them is shown in Chap. 8.

e Start/Stop Registration For Object Class: When a federate is interested with the
data you can provide, the RTI informs you using this service. In other words, if a
federate A subscribes to an object class, which is published by federate B then B
is notified by the RTI that it can begin registration of the object instances related
to that class. In the same manner, if there is no federate left subscribed to the
object class, then the RTI informs the publishing federate to stop registrations.
A federate loses its interest when it unsubscribes or leaves the federation
execution.

o Turn Interactions On/Off: This works the same, but for interactions. When a
subscriber is found, then the RTI informs the publishing federate to begin
sending interactions.

The use of publish and subscribe services must conform to the FOM. For
instance, an object class must be specified as publishable in the FOM. So, a federate
can publish this object class.

2,5.2.2 Publish/Subscribe Diagrams

Publish and Subscribe Diagrams are introduced in (Topgu et al. 2003) as design
artifacts to focus on the object/interaction interests among the federates. The P/S
diagrams present the system in a snapshot view. Initially, all the federate interests
are being hard coded at system start-up. During a run, however, a federate can
change and re-declare its interests.

The general P/S diagram is a graph of Publish and Subscribe association
stereotype elements connected by their various static relationships. It depicts all of
the capabilities of member federates in terms of the objects and interactions that
they produce or they are interested in.

The rectangular shapes in the diagrams represent the HLA objects, which are
exchanged through federation. The oval shapes represent the (joined) federates. The
directed arc from a federate to an object means that the federate has the capability to
publish the object, and on the other hand a directed arc from an object to a federate
means that the federate is subscribed to the object or is interested in the published
object and its attributes or possibly subsets thereof.
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HLA 1.3 standard allows routing space definitions to define the object-exchange
regions by utilizing the RTI data distribution management capabilities. In that case,
all the exchanges of objects take place in Default Space predefined by the RTIL.

The diagrams can be expanded to reflect the system in detail by focusing on the
different views: The Class-based P/S diagrams and the Federate-based P/S
diagrams.

Class-Based P/S Diagrams
The Class-based P/S diagrams emphasize the P/S issues between a particular object
and a federate. Class-based P/S diagrams show all the common HLA objects and
interactions, and their parameters and attributes one by one while depicting the
interests of federates over these objects and interactions.

This type of diagram is suitable for federate designers. For example, assume that
a federate designer wishes to add a new federate into a federation. The first thing to
do is to design the P/S interests with the existing federation objects and interactions.

Notation: As in the stereotype notation, the “P” stands for “publishes,” “S” stands
for “subscribes,” and “PS” stands for “both publishes and subscribes.” It is possible
for a federate to publish or to subscribe a subset of the available attributes for a given
class. The sign “*” means “all attributes.” For interaction classes, it is not possible to
specify a subset. Interactions are produced and consumed as a single piece.

Federate-Based P/S Diagrams

The Federate-based P/S diagrams depict the capability and interest of a particular
federate. It can be used when reviewing existing federates for reuse. From these
diagrams, the user can easily check which classes that the federate is capable of
creating or needing.

2,5.2.3 Case Study: P/S Diagrams

Here, we provide the publish and subscribe interests of STMS federation. First, we
will present the class-based P/S diagrams and then we will give the federate-based
diagrams.

Ship object-class P/S diagram: Fig. 2.16 depicts the ship object class and its
attributes. The focus of the diagram is a specific object class. The Ship object
encapsulates the major properties of a ship that entered the strait. As shown
Fig. 2.16, only the ShipFd can create and update a ship object and its attributes.
StationFd is informed when a ship object is created or when its attributes are
updated to reflect the changes in their traffic display. The StationFd only subscribes
a subset of the attributes of the ship object. Those are the ship name (Callsign) and
its location.

Station object-class P/S diagram: Fig. 2.17 depicts the Station object class
and its attributes. Station object encapsulates the major properties of a traffic station
located along the strait. The diagram shows that only the station federate is
responsible to create and update a station object. The ShipFd is informed about
traffic stations around them.
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Track object-class P/S diagram: Fig. 2.18 depicts the Track object class and
its attributes. Track object is the encapsulation of a ship which is found in the area
of responsibility of a station, and it is used to exchange the track information
between traffic stations. Each track is managed only by one station when a ship is
within its area of responsibility. When ship passes to another area, which is man-
aged by a different station, then track ownership is also exchanged between stations.
Only the StationFd can create and update a track object and its attributes.

Radio message interaction-class P/S diagram: Fig. 2.19 depicts the
RadioMessage interaction class and its parameters. Radio message interaction is
the encapsulation of a radio transmission between ships and stations. It consists of
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[PS] RadioMessage
<<InteractionClass>>

PS(*) Callsign PS(*)
<> Message <——>
Timestamp

Fig. 2.19 Radio message interaction class P/S diagram

Fig. 2.20 ShipFd :
federate-based P/S diagram > [PS] RadioMessage
‘t PS(*) <<InteractionClass>>

| [S] Station
S(*) <<ObjectClass>>

[PS] Ship
<<ObjectClass>>

three parameters: Callsign, Message, and Timestamp for the transmission.
Remember that an interaction typically corresponds to an event in the sense of
discrete event systems. The primary difference between objects and interactions is
persistence: Objects persist, interactions do not.

ShipFd P/S diagram: Fig. 2.20 depicts all the P/S status of the ShipFd. Now,
the focus of the diagram is the federate. We can easily deduce that the ShipFd is
capable of generating ship objects and of sending radio message interactions while
it requires a station object.

StationFd P/S diagram: Fig. 2.21 depicts all the P/S status of the StationFd. It
is capable of generating station and track objects and of sending radio message
interactions while it requires a ship object to generate tracks.

2.5.2.4 Smart Update Reduction
Support for smart update reductionUpdate reduction is a new feature in the HLA
Evolved. An update rate is defined as the rate that attribute values are provided
either (i) by the RTI to a subscribing federate or (ii) by the owning federate to the
RTI (IEEE 1516.1-2010 2010). The update rates are defined by giving a name and a
maximum rate in the FOM of a federation according to the OMT and it is a part of
the FDD file used by the RTI at runtime.

The update rate can be specified as a supplied argument (as update rate des-
ignator) when subscribing to object class attributes. In this case, the RTI provides
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Fig. 2.21 StationFd K
federate-based P/S diagram [PS] RadioMessage
I PS(*) <<InteractionClass>>
- [S] Ship
S(*) <<ObjectClass>>
[PS] Station
PS(*) <<ObjectClass>>
R [PS] Track
PS(*) <<ObjectClass>>

the value updates to the subscribing federate at a maximum update rate specified by
the designator. In case an update rate designator is not supplied in the subscription
step, then no update reduction takes place.

The update rate is also notified to the owning federate (i.e., the responsible
federate, which will update the attribute values) by the RTI with Turn Updates On
for Object Instance service (see the following section) as a returned argument (i.e.,
update rate designator). Thus, the owning federate can regulate its update rate with
respect to the maximum rate provided by the designator conforming to the feder-
ation agreement for update scheme.

Using the RTI support services, a federate can ask the RTI about the actual
update value of a specified update rate designator using Get Update Rate Value
service or the update rate value of a specific attribute using Get Update Rate Value
for Attribute service.

2.5.3 Object Management

In Sect. 2.4, we explained the object instances and object exchange. Now, let us see
which services are used. The object exchange is done by using the object
management (OM) services. A publishing federate must be capable of:

Registering (i.e., creating) an object instance;
Updating the values of the instance attributes;
Sending an interaction;

Deleting an object instance.

A subscribing federate must be capable of:

Discovering an object instance;

Reflecting the values of the instance attributes;

Receiving an interaction;

Removing an object instance (the RTI informs when an object is deleted by the
owner).
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Fig. 2.22 Object management services for an object instance

The services for interaction exchange are simply Send Interaction and Receive
Interaction services. The major object management services used in
object-exchange interaction is depicted in Fig. 2.22. When registering an object
instance, the federate may supply an object instance name. In this case, before
invoking the registration service, the name must be reserved by the registering
federate using Reserve Object Instance Name service.

As a design principle, for the sake of bandwidth utilization, a federation object or
interaction is only sent through network when interested federates join the feder-
ation execution, instead of periodically sending a heartbeat-like message. For
example, when EnviFd joins the federation, it only creates an environment object if
there exists an interested federate (i.e., a federate that has subscribed to the envi-
ronment object class) or not. If it exists, it registers the environment object. Again,
the RTI informs the registering federate to turn updates on (or off) for the object
instance. So, the federate can begin to update its attribute values, resulting in
diminished network load. See Chap. 8 for the details and the implementation of
Start/Stop Registration for Object Instance and Attribute Relevance Advisory
Switch services.

2.5.4 Ownership Management

The responsibility of deleting an object instance and updating its attribute values is
initially given to the creator federate. By using the ownership management
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(OwM) services, it is possible to share the responsibility for updating and deleting
object instances. To enable this, each attribute of an object instance has an owner.
The owning federate has the privilege to update the attribute. Thus, the ownership
of attributes of an object instance can be shared by more than one federate. To
delete an object, a special attribute, named as privilegeToDelete for HLA
1.3 and HLAprivilegeToDeleteObject for HLA Evolved, exists for all
object instances by default. The federate that owns this attribute for an object
instance has the right to delete the object. If the federate owns the
privilege-to-delete attribute of an object instance, then it has the delete responsi-
bility for that object. The OWM services enable federates to transfer the ownership
of an attribute including the ownership of the privilege-to-delete attribute.

The transferability of the ownership of an attribute is specified in the FOM
during design time. Each attribute has a property to indicate if the ownership of an
attribute of an object instance can be transferred to other federates or not. Transfer is
possible by divesting or acquiring the ownership. See Chap. 5 on how to specify
attribute ownership transferability in a FOM.

We can roughly talk about two strategies to deal with the ownership transfer: the
pull and push strategies. In general case, the federates try to negotiate to hand over
the ownership in both strategies. The conceptual views (without an RTI) for both
strategies are depicted in Fig. 2.23.

In the pull strategy, a federate tries to acquire the ownership of some of the
attributes of a specific object instance. The specified attributes can be either
unowned (orphaned) or owned by some federate. In case of unowned attributes, the
RTI simply informs the acquiring federate whether the ownership is transferred or
not. This method is known as orphaned-attribute pull. In case the attributes are
owned by a federate, then the willing federate and the owned federate must agree on
transfer. The willing federate (acquiring federate) explicitly asks the RTI to acquire
the ownership of the attributes of a specific object instance. The owned federate
either accepts the transfer of the ownership or does not. This method is known as
the intrusive pull.

Do you want the ownership

of my attributes of m: i
| Request the ownerhip of object instance? Joined
your attributes of your Federate
object instance.

Acquiring Owning Divesting /j';?rijr
Federate Federate Federate PR,
The owning federate Ves | want o take
accepts or rejects the W

request

(a) Pull Strategy (b) Push Strategy

Fig. 2.23 Conceptual views for pull and push strategies
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In the push strategy, a federate does not want the ownership of some attributes of
a specific object instance that it owns. In this strategy, there are two methods to
push the ownership. In the first method, the federate may unconditionally give up
the ownership of some attributes to immediately relieve its responsibility of
updating and/or deleting an object instance. This is called as unconditional push.
The specified attributes become unowned. And the RTI seeks for a willing federate
to own those attributes until attributes are owned. The second method is called
negotiated push. In this case, there is a federate, which is willing to divest the
ownership of all or some of its attributes of an object instance. The ownership
transfer is completed as the result of negotiation when a willing federate is found.
The willing federate follows a pull strategy to take the ownership. See Chap. 9 on
how to implement these strategies.

2,5.5 Data Distribution Management

Data distribution management (DDM) services are employed to filter data distri-
bution to reduce the volume of both the transmission and the reception of
federation-wide data. Federates may create data filters to refine data transmission
and reception in the form of distribution regions.

DDM services are related with other RTI services. Therefore, we can group
DDM services into three categories. The first category includes core DDM services,
used to manage the regions based on the dimensions defined in the FOM. The other
categories involve the services related with the declaration management and object
management services to transmit and receive data with regions. The regions are
associated with an object class attribute or with an interaction class for subscription.

The core DDM services are the following:

e Create region;
e Commit region modifications, and
e Delete region.

The DDM services related with the declaration management services are as
follows:

Subscribe object class attributes with regions;
Unsubscribe object class attributes with regions;
Subscribe interaction class with regions;
Unsubscribe interaction class with regions.

The DDM services related with the object management services are listed below.
The regions are associated with an object instance attribute or with an interaction (in
send operation).
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Register object instance with regions;
Request attribute value update with regions;
Send interaction with regions;

Associate regions for updates, and
Unassociate regions for updates.

The implementation of services is explained in Chap. 9 with some case studies.

Here, we will provide a theoretical background for DDM services by giving defi-
nitions of important concepts, on which DDM services are based.

A dimension is the fundamental DDM concept, which is defined as “a named
interval of nonnegative integers” (IEEE Std 1516.1-2010 2010). The interval
begins with zero to a dimension upper bound specified in the FOM (i.e., FDD).
A federation object model may specify one or more dimensions so that each
attribute or interaction can be associated with a set of available dimensions. See
Chap. 5 on how to specify a dimension and how to associate an attribute or an
interaction class with a set of dimensions in a FOM.

A range is “a continuous half-open interval on a dimension” (IEEE Std
1516.1-2010 2010). The range has end points denoted by a lower bound and an
upper bound. Since the interval is half-open, the lower bound is closed (where it
is denoted by a square bracket and the value is included) and the upper bound is
open (where it is denoted by a parenthesis and the value is excluded). According
to the HLA Evolved specification, the upper bound must be greater than the
lower bound and the minimum possible difference between them can be one.
A region can be a one-dimensional region or multi-dimensional region based on
the region specification.

A region specification “is a set of ranges. The dimensions contained in a region
specification shall be the dimensions of the ranges that are included in the region
specification. A region specification shall contain at most one range for any
given dimension.” (IEEE Std 1516.1-2010 2010). Each range is a region
specification is normalized as zero to dimension’s upper bound. In specification,
the upper bounds are not included.

Note that dimensions are design entities while regions are runtime entities (i.e.,
they are created at runtime).

A region template is “an incomplete region specification where one or more
dimensions have not been assigned ranges.” (IEEE Std 1516.1-2010 2010).
When a region specification is associated with the related element (i.e., object
class attribute or interaction class for subscription, object instance attribute for
update, and interaction for sending), then it is defined as a region realization
(IEEE Std 1516.1-2010 2010).

The RTI provides a default region including a range beginning from zero to the

dimension’s upper bound for each dimension specified in the FDD.

For a hypothetical example, let us assume that a FOM declares two dimensions

called as X and Y. These dimensions define a two-dimensional coordinate system
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Fig. 2.24 Two-dimensional coordinate system and sample regions

(see Fig. 2.24), for which federates may express an intention to send or receive data
by associating its attributes and interactions with the dimensions. To realize the
intention, the regions must be created for subscription and update purposes. In
Fig. 2.24, two regions are illustrated. Both regions are defined using the ranges
specified on the dimensions. As shown in the figure, the ranges are specified by a
lower and upper bounds on a specific dimension. For instance, Region 1 is
specified by the Range A on X and Range C on Y.

2,5.6 Time Management

The main concern of services and mechanisms provided by time management
(TM) is to coordinate the advance of (logical) time of each federate and to deliver
messages in a consistent order during the federation execution. For this purpose,
there are total 23 time management services, four of which are RTI-initiated call-
backs (IEEE Std 1516.1-2010 2010).

2,5.6.1 Basics
Before giving the details of time management services, it would be useful reviewing
some terms related to time issues in HLA and the RTI. As we introduced time and
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change in a general sense in Chap. 1, time in HLA is regarded as a point in the HLA
time axis, whereas the time will advance in intervals through these points. So, a
federate can reference these points on the time axis to associate itself or some of its
messages (IEEE Std 1516.1-2010 2010). Messages are events or some activities
such as sending an interaction. Association of a federate with the HLA time axis in
terms of discrete time creates a federate logical time. Associating the activities
means that the federate assigns a timestamp (a designation of logical time) to the
message with related to the HLA time axis. A major purpose of TM services is to
enable sending and receiving TSO messages ordered with a timestamp.

Each federate is assigned a logical time in joining a federation execution, and
then the joined federates may advance along the time axis during the federation
execution. To advance time in the federation and to advance federates along the
HLA time axis, we need time advancement strategies, also referred as time man-
agement mechanisms. Since the specific strategy used for time management is
driven by the purpose of the simulation, it is important to control the advancement
of federates along the time axis in light of differing internal time management
mechanism implemented by the federate applications. So, another major purpose of
the time management services is to control the advancements of federates. In
general, a federate may advance its time using the following strategies (Fujimoto
1998):

Time step advancement. Federate advances its time in fixed (time) steps.
Event-based advancement. Federate advances its time to the timestamp of the
next TSO message (event).

e Optimistic advancement. Federate is free to advance its time, but in case it
receives a message with a timestamp less than its current logical time, then it roll
backs its time.

The first two strategies are known as the conservative time management and the
third strategy is known as the optimistic time management (Fujimoto 2000). The
logical time advancement of a federate may be constrained by another federate. In
general, there are four main federate types in relation to time as depicted in
Table 2.5.

By default, all federates start out as “Neither.” During federation execution,
federates can change their states dynamically. See Chap. 9 on how to implement the
federate types related to time management.

All regulating federates (meaning both TR and TC&TR federates) are respon-
sible to regulate advancement of (TC) federates along the time axis. To guarantee
that a regulating federate would not send any TSO message during a time period,
TR federates have a lookahead value. The lookahead value represents a duration of
time (i.e., a time interval), whereas this value also can be modified during the
execution. Only TR federates have the capability to send a TSO message with a
timestamp. “Semantic differences exist between the way time is represented for the
purpose of depicting timestamps versus calculating lookahead. When depicting
timestamps, time can be considered to be an absolute value on the HLA time axis,
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Table 2.5 Federate types per time management

Types Explanation
Time-constrained A constrained federate can receive TSO messages, but cannot send.
(TC) Besides, their time advance is constrained by regulating federates

Time-regulating (TR) | A regulating federate can send a TSO message. It can still receive a
TSO message but as an RO message. In addition, they can progress any
time without any constraint. So, they regulate the federation time flow

Both TC and TR (TC | Federates that are both constrained and regulating have the union of the

and TR) constrained and regulating federates’ characteristics. In other words,
they can send and receive TSO messages (receive with time
information), can regulate federation time flow, and are constrained by
other regulating federates

Neither TC and TR Federates that are neither constrained nor regulating do not participate
in federation time management. So, they have complete freedom in
managing their own time advance. They cannot send TSO messages,
but they can receive TSO messages without time information

and thus, time comparisons can be done to determine if one timestamp is greater
than another. Lookahead, in contrast, represents a duration of time, which can be
added to timestamps but is generally not used for comparison purposes.” (IEEE Std
1516.2-2010 2010).

TC federates can receive TSO messages, and they are volunteered to be regu-
lated by a TR federate for its time advancement. The RTI guarantees that no
additional TSO message with a timestamp less than the TC federate’s current
logical time will be delivered to the TC federate. To insure this, a bound is asso-
ciated with the federate by the RTI, so the federate cannot advance beyond its
bound. This bound is called as the Greatest Available Logical Time (GALT), which
specifies the greatest logical time to which the RTI insures it can grant an advance
without having to wait for other joined federates to advance. So, a constrained
federate cannot advance beyond its GALT. In general, GALT is important for the
TC federates to advance their logical time, but actually all federates have a GALT
value, because they may want to switch into constrained and to set a new logical
time. GALT is calculated by the RTI with regard to some parameters such as the
logical time, lookahead, and requests made by TR federates to advance time. If
there is no TR federate, then GALT is undefined, whereas a federate may advance
its logical time to any point in the time axis.

Moreover, each federate has a Least Incoming Time Stamp (LITS), which
specifies the smallest timestamp a federate will receive in the future.

For further details, the reader is gently advised to go through (IEEE Std
1516.1-2010 2010; IEEE Std 1516.2-2010 2010) for HLA 1516-2010 and (DMSO
2002; Fujimoto 1998) for HLA 1.3 standard.

2.5.6.2 HLA Services Related with Time
The messages that can be associated with time are summarized below. The mes-
sages correspond the activities in terms of RTI services.
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e OM services

— Update attribute value;
— Reflect attribute values;
— Send interaction;

— Receive interaction;

— Delete object instance;
— Remove object instance.

e DDM services
— Send interaction with regions

The message order type (i.e., either TSO message or RO message) for delivery
must match the preferred order type of data specified in the FOM for each object
class attribute and interaction parameter (see Chap. 5 on how to specify the message
order type). A federate may change the preferred order type of an interaction or an
attribute at runtime by using the Change Interaction Order Type and Change
Attribute Order Type services, respectively.

The exact order type of a sent message and a received message is somewhat
complex, and it is dependent on some conditions such as the preferred order type of
data declared, whether a timestamp is supplied or not, and whether the federate is
regulating or constrained. The details are presented in (IEEE Std 1516.1-2010
2010). To summarize:

e The order type of a sent message is TSO if and only if preferred order type is
TSO, the sending federate is regulating, and a timestamp is supplied with the
message.

e The order type of a received message is TSO if and only if order type of sent
message is TSO, and the receiving federate is time-constrained.

2,5.6.3 Advancing Time

Each federate is assigned a logical time upon joining a federation execution and
then the joined federates may only advance along the time axis during the execution
with Time Advance Grant after invoking the TM services such as Time Advance
Request or Next Message Request (the full list is displayed in Fig. 2.25) according
to their time advancement strategies. See Chap. 9 on how to achieve advancing
time.

25.64 HLA13

In HLA 1.3 specification, the TM jargon differs. See Table 2.6 for a map. The
keywords change in service naming. For example, Query “Logical” Time service
corresponds to Query “Federate” Time service in HLA 1.3 or Next “Message”
Request Available service corresponds to Next “Event” Request Available service
in HLA 1.3. For further details of time management in HLA 1.3, see (DMSO 2002).
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Table 2.6 HLAI.3 and IEEE 1516-2010 HLA 1.3 keywords
IEEE 1516-2010 TM Jargon keywords
Logical time Federate time
Message Event
GALT LBTS (lower bound
timestamp)
LITS Min. next event time

2.6 Full Life Cycle of a Federation Execution

For introduction, here we describe the full life cycle of a federation from the
perspective of a federate. So, we will know what kinds of services a federate and a
federation needs. A typical federation execution life cycle starts with the connection
to the RTI as depicted in Fig. 2.26, and then:
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Fig. 2.26 Typical federation execution from the perspective of a federate

e Federate application connects to the RTI to use federate services and interact

with the RTL.

e Federate first tries to create the federation execution if not created till then and
then joins the federation execution. After joining the federation execution, a
joined federate instance in the RTI is created that represents the federate in the

federation execution.
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e Federate should inform the RTI about its capabilities and interests by publishing
and subscribing the object classes and interaction classes. Thus, it establishes its
initial data requirements.

e Federate registers (creates) objects that it will provide to other federates.

e Federate may register new objects or update the values of the instance attributes
that it registered; may discover new objects, that are created by other federates;
may receive updates for the subscribed attributes; and may send and receive
interactions.

e Federate deletes objects, which it holds the privilege to delete (generally the
objects that created by the federate itself) before leaving.

e Federate manages its time according using RTI time management services (e.g.,
Time Advance Request), if it specifies a time management policy (e.g.,
time-regulating federate).

e Federate manages ownership of attributes, if necessary.

e Federate resigns and tries to destroy the federation execution and succeeds if it
happens to be the last federate.

e Federate disconnects from RTIL

The order is important. For example, you cannot register an object instance
before publishing the related object class. Or, you cannot join the federation exe-
cution before connecting to the RTIL.

This typical federation execution life cycle affects the design of federates. With
no surprise, basic program flow of federates is divided into three phases: system
initialization (start-up), main application loop (operation), and system termination
(shut down) (Fig. 2.27).

System initialization and termination phases include the RTI initialization and
termination phases, which involve some federation-wide principles. Generally,
there are two federation management models: centralized and non-centralized
models. In the centralized model, a specific federate is responsible for the initial-
ization and termination of the federation execution. In non-centralized models, each
federate has the equal responsibility for initialization and termination. Initialization
and termination phases also include the initialization and termination activities for
the scenario play-out, respectively.

INITIALIZATION OPERATION TERMINATION
(Startup) (Main Simulation Loop) (Shutdown)

Fig. 2.27 Basic program flow of a typical federate
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2.6.1 Initialization

HLA does not mandate the creation of a federation execution to the privilege of a
particular federate. This policy provides flexibility and non-centralization. One may
design that the first job of any one of the federate applications is to try to create a
federation execution. The first federate succeeds to create the federation execution if
the specified federation execution does not exist, while subsequent federates receive
an exception, which indicates that the federation execution does already exist and
then they directly join the federation.

In some RTI releases, if joining the federation execution is attempted immedi-
ately after the creation of the federation execution, the federation execution may not
yet be initialized to communicate with the federate (e.g., the Fedexec process is
not forked and initialized in case of HLA 1.3). Beforehand, we cannot assume
which federate is the first, so the join logic will loop until the join is successful or
until some predetermined number of join attempts are exhausted.

The creation of a federation execution requires a federation name. It designates a
unique federation execution, and the participating federates use it to join into the
specified federation execution. All member federates should agree on the unique
federation execution name. Therefore, the federation execution name either should
be distributed by hand to all participants at start-up or the federation execution
name should be hard coded in federates.

2.6.2 Operation

The operation phase generally includes the main simulation loop and an alternative
behavior path. The main simulation loop specifies the behavior of the federate for
the normal federate execution, which includes the object management, time man-
agement, and the ownership management services, while the alternative behavior
path is used for abnormal situations such as when save and restore is requested in
the federation execution or when MOM interactions are required. The main sim-
ulation loop is elaborated in Chap. 8, and, furthermore, it is extended for a
graphics-intensive federate application in Chap. 11.

2.6.3 Termination

The shutdown/termination of federation execution is accomplished by the federate
that resigns from the federation execution last. In a non-centralized simulation, the
same rule applies here; all federates, while resigning, attempt to terminate the
federation execution. The last one succeeds while others receive an exception
because the federation still has members and resign from the federation without
terminating it.

The termination phase consists of three stages (Fig. 2.28): RTI termination, local
model termination, and graphics termination. At RTI termination stage, the created
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Fig. 2.28 Termination of a federation (Topgu et al. 2016)

objects are deleted and other federates are informed, and then the federate resigns
and tries to destroy the federation. At model termination stage, the local objects that
represent the simulation entities are deleted to free up the application memory, and
finally at graphics termination stage, the graphics subsystem is shut down.

2.7 Example Federation Deployment

UML deployment diagrams are used to plan and design the execution environment
in software-intensive systems by depicting the hardware components and software
components. In this context, the specialized and extended form of deployment
diagrams can be employed to capture the execution details of federation require-
ments such as node (i.e., hardware component) information (e.g., physical location,
IP address, port number, operating system, etc.), network information (e.g., network
type, bandwidth, etc.), and which federates (i.e., software component) hosted by
which nodes (Topcu et al. 2003; Topcu and Oguztiiziin 2005).

An example UML deployment diagram for an HLA federation execution is
presented in Fig. 2.29. Here, we can see that there are five hosts, where four of them
are distributed in a TCP/IP network and one (Node 4) is a Web client connecting
from Internet. The diagram shows us which federate is executed on which host and
gives some information about the host (e.g., the host’s operating system).

2.8 Federation and Federate States

During a federation run, federates and the federation execution can be found in
specific states from the viewpoint of the RTI. Those states are useful to define the
context of federates and the federation execution during simulation run.
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Fig. 2.29 Typical federation execution deployment. The federate applications can be deployed to
execute on heterogeneous environments such as Linux/Windows or various versions of Windows

2.8.1 Federation Execution States

Federation execution states are depicted in Fig. 2.30. Initially, the federation exe-
cution is in Federation Execution Does Not Exist state when no fed-
eration execution exists (either it is not created yet or is destroyed). The directed
links show the events that trigger the transition from one event to another event.
After the federation execution is created and running, the federation execution state
transits to Federation Execution Exists state. This state is a composite
state that encapsulates two substates: No Joined Federates and Support-
ing Joined Federates. The substates are not essential from the viewpoint of
federate developer. Therefore, we do not go into the details further. The RTI
implementers may refer to (IEEE Std 1516.1-2010 2010) for details.

2.8.2 Federate States

A federate is either connected or not connected according to its connection with
RTI. Figure 2.31 depicts the basic state diagram from a federation management
perspective. The Connected state is a composite state including the states where a
federate is joined the federation execution (Joined state) or not (Not Joined
state). The joined federate state also includes some substates such as active federate
state, federate save in progress state, and federate restore in progress state from the
perspective of the RTI (IEEE Std 1516.1-2010 2010).
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Fig. 2.30 UML state diagram for federation execution
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Fig. 2.31 UML state diagram for a federate

Most distributed interactive simulations use scenarios to drive the simulation
execution. Using a federation-wide scenario slightly changes the lifetime of federate
introducing new states for a scenario-dependent run. See (Top¢u and Oguztiiziin
2010; Topgu et al. 2016) for the details of the scenario-related federate states.

2.9 Summary

In this chapter, we presented a thorough introduction to the concepts and principles
of HLA mostly from the perspective of a federate application developer. Various
aspects of the standard, including its historical roots, concepts, and the rules that
govern its operation, have been covered.

HLA provides a prominent software framework for distributed simulations with
special emphasis on interoperability and reusability of simulation components
(Dahmann et al. 1997). HLA has been evolving constantly since its introduction.
Currently, HLA is at its third stage, known as HLA Evolved. The HLA standard
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consists of three main components: the HLA Rules, Interface Specification, and the
Object Model Template. The rules specify some policy that federates and federation
executions must conform. The interface specification presents a standard interface
for the interaction between a federate and the RTI. The OMT specifies the standard
for the HLA object models, namely FOM, SOM, and MIM. HLA uses an
object-exchange mechanism employing the RTI as the mediator between publishers
and subscribers. The RTI library also provides an API with programming language
bindings such as Java and C++ for federation developers exposing all the federate
service areas; federation management, declaration management, object manage-
ment, data distribution management, time management, and ownership manage-
ment. A typical life cycle of a federation execution from the perspective of a
federate involves initialization, operation, and termination phases. In the initial-
ization phase, a federate joins the federation execution and then declares its capa-
bility and interests to the RTI. During the operation phase, which involves the main
simulation loop, the federate registers its objects, updates the attribute values, and
sends interactions as it can discover new objects, receive interactions, and reflect the
attribute value updates. The federate may also transfer the ownership of some of
attributes of its objects to another federates. Of course, time is an important aspect
of simulation. Therefore, a federate can interact with the RTI to manage its time
policy. In the termination phase, the federate resigns from the federation execution.

As it became a widely accepted standard in the area of distributed modeling and
simulation over the last decade, and we see that many new distributed simulation
applications in both the civilian and, to a larger extent military realm are being built
to be HLA compliant. In this regard, this chapter lays the technical background to
develop HLA-compliant distributed simulations.

2.10 Questions for Review

—_

Is it a requirement that all the federates use the time management services?
Explain the FOM Modularity in HLA Evolved. Show the extension and union
techniques in sample FOM modules.

What is WSDL? Explain the relation of it with HLA.

What is DLC API?

Explain the “Connect and List Services” property in HLA Evolved.

Discuss the differences of HLA federation management services specified in
HLA 1.3 and HLA Evolved standards.

7. Discuss the differences of HLA time management services specified in HLA
1.3 and HLA Evolved standards.

N

S kW
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Table 2.7 Time data for federation execution

Federate Time management Federation time Lookahead Time
scheme Teurrent Tookahead step
Fd-1 R 17 10 5
Fd-2 RC N/A (late joining) - -
Fd-3 RC 16 4 4
Fd-4 C 18 - 4
Fd-5 RC 16 5 5
Fd-6 N 0 - 6
8. Discuss the differences of HLA data distribution management services specified
in HLA 1.3 and HLA Evolved standards.
9. Discuss the pros and cons of a wrapper API around RTI. In this respect, discuss
RACoN APIL
10. Explain the class-based filtering and value-based filtering in HLA by giving
examples.
11. What are the major components of HLA? Explain each shortly.
12. Table 2.7 presents the time information of federates in a federation execution.

13.

14.

15.

In this regard, draw a time diagram for each federate and then:

a. Show LBTS value for each federate and state whether the federate will
proceed or not.

b. Assume that the federate Fd-2 joins the federation execution at time ¢ = 20.
Calculate the LBTS value for Fd-2.

Answer the below questions regarding to the two-dimensional space depicted in
Fig. 2.24.

a. Draw the region specified by the range A on the dimension X and the range
D on the dimension Y.

b. Draw the region specified by the range B on the dimension X and the range
C on the dimension D.

c. If we want to cover all the distribution space (in other words, if we want to
create a single region equal to the default region), what should we do?

Why is it desirable to have larger lookahead values? Consider time-driven and
event-driven federates separately.

It is often remarked that HLA compliance, by itself, does not guarantee
interoperability of simulations. What else is required on the part of developers?
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