
3FeatureIDE in a Nutshell

FeatureIDE implements a general support to implement feature-oriented software
product lines. In this chapter, we give a general overview on the functionalities of
FeatureIDE. To get a first impression of FeatureIDE, we use a small “Hello World”
application. As FeatureIDE supports all phases of the feature-oriented software
development process, we introduce how all these phases are realized.

First, we explain how to configure Eclipse to display the FeatureIDE perspective
in Sect. 3.1. In Sect. 3.2, we show how to load an example product line which we
will use in this chapter for illustration purposes. Based on this example, we explain
the general structure of FeatureIDE projects in Sect. 3.3. The support for domain
engineering in the form of feature models is introduced in Sect. 3.4. In Sect. 3.5,
we show how to implement variability using feature-oriented programming. After
implementing software variability, the program can be configured by selecting the
required features. How product configuration is supported is explained in Sect. 3.6.
Finally, we show in Sect. 3.7 how the configured program can be generated and
executed.

3.1 Opening the FeatureIDE Perspective

For an optimal functional support, Eclipse offers several specialized perspectives.
A perspective predefines views, editors, and menu entries that provide dedicated
support for specific tasks (e.g., debugging) or programming languages (e.g., Java).

FeatureIDE provides a perspective to support product-line development. The
standard representation consists of several views, such as FeatureIDE Outline, Col-
laboration Diagram, Feature Model Edits, and FeatureIDE Statistics, which are dis-
cussed in detail later in the book. Furthermore, besides others, the perspective also
consists of the editor and the package explorer that is also used by other plug-ins.
To select the FeatureIDE perspective, follow Instruction 3.1. After the FeatureIDE
perspective is selected, it appears in the top-right corner of Eclipse (Fig. 3.1).

© Springer International Publishing AG 2017
J. Meinicke et al.,Mastering Software Variability with FeatureIDE,
DOI 10.1007/978-3-319-61443-4_3

19



20 3 FeatureIDE in a Nutshell

Fig. 3.1 Open the perspective selection dialog via the button (right). Select the FeatureIDE entry
(left) FeatureIDE

Instruction 3.1 (Open the FeatureIDE Perspective)

1. Open the perspective selection dialog by any of the following options:
• Press the button with the tooltip Open Perspective in the upper-right
menu toolbar of Eclipse

• Press Window ! Perspective ! Open Perspective ! Other. . . in the
menu bar of Eclipse

2. Select the entry for FeatureIDE.

3.2 Loading FeatureIDE Examples

To introduce to the FeatureIDE, we use a simple hello world product line. To ease
the comprehension and to get an optimal overview, we use an existing example that
can be installed via FeatureIDE’s example wizard. It is required that the plug-in
FeatureIDE example project is installed.

In Fig. 3.2, we present an overview of the example wizard which provides
all example projects of FeatureIDE. Using the pages (e.g., Composer or Book



3.2 Loading FeatureIDE Examples 21

Fig. 3.2 Overview of existing projects in the Example Wizard of FeatureIDE

Example), we cluster the example into categories. In this book, we always refer to
the examples in the page Book Example. In this chapter, we use aHelloWorld project
created with the composition tool FeatureHouse (Apel et al. 2013b). It is possible
to directly select the project in the project overview, or to filter the overview by the
filter text box. If the user identified a specific project of interest, the project must be
checked and confirmed using the Finish button.TheExampleWizard always presents
all FeatureIDE example projects regardless of the installed FeatureIDE plug-ins.

The projects of the Example Wizard can be in different states: normal (black),
warning (yellow), and error (red). In detail, projects have an error state if they would
result in an error after or during the installation step. It is not allowed for a developer
to install projects with an error state (i.e., the Finish button is not selectable). For
instance, if a project is already installed in the current workspace, it is not possible
to install this project without an error. By contrast to projects with an error state,
the warning state does not block an installation of the specific project. However, it
is also likely that the project will not correctly work with the given Eclipse setting.
The warning gives some suggestions to solve the project’s problem. For instance, the
warning state can be the result of a missing plug-in that has to be installed before
we can use the project.



22 3 FeatureIDE in a Nutshell

In the remainder of this chapter, we use the project HelloWorld-FH-Java. How
to check out the project using the example wizard is explained in Instruction 3.2.
Using this example, we will explain the main parts of FeatureIDE to understand
its general process to develop product lines, namely, the project structure, feature
modeling, implementation, configuration, product generation, and execution.

Instruction 3.2 (Import the HelloWorld-FH-Java Example)

1. Open the example wizard by any of the following options:
• Press New ! Example in the context menu of the Project/Package
Explorer

• Press New! Examples! FeatureIDE! FeatureIDE Examples in the
upper-left menu toolbar of Eclipse

• Press File! New! Example in the menu bar of Eclipse
2. Select FeatureIDE Examples
3. Press Next
4. Select Book Example tab
5. Select the project Part I ! Chapter 3! HelloWorld-FH-Java
6. Press Finish

3.3 Structure of FeatureIDE Projects

With FeatureIDE, we aim to support all phases of feature-oriented software
development. Independent of the generation mechanisms, we need (a) a feature
model to define features and their interdependencies, (b) configurations to define
specific features representative of a certain product, (c) files that implement the
feature’s functionalities, and (d) generated source files that represent the product
for the selected configuration. In the following, we give an overview on how
FeatureIDE supports all these phases using the HelloWorld project.

After loading the HelloWorld project using the Example Wizard, we take a
first look into the FeatureIDE project structure. In the following, we assume
that the FeatureIDE perspective is active as some buttons may not be available
in other perspectives. In this perspective, the loaded project is shown in the
package explorer (cf. Fig. 3.3a). In the structure, we can see all main parts of
a FeatureIDE project: (1) the model.xml for the domain modeling, (2) the
directory features for the feature implementations, (3) the directory configs
that consists of product configurations, and (4) the folder src that contains the
generated product. The current configuration, marked with a green pencil (cf. the
file BeautifulWorld.config), is used to generate the product using the
feature implementation. Depending on the generation tool, the directory for feature
implementations can be the same as for the generated product (e.g., for Antenna and
AspectJ).



3.3 Structure of FeatureIDE Projects 23

Hello

Feature

Wonderful

Beautiful

World

HelloWorld

(a) 

(c) (d) 

(b) 
HelloWorld

src

(default package)

HelloWorld.java

JRE System Library
configs

features

model.xml

Beautiful

Hello
HelloWorld.java

Wonderful

World

BeaitifulWorld.config
Hello.config

HelloWorld.config

Wonderfulworld.config

Generated Product

Configuration

Feature Implementation

Feature Modeling Wonderful

Hello Feature World

HelloWorld

Beautiful

Fig. 3.3 Default project structure of a FeatureIDE project based on feature-oriented programming
and Java, including feature modeling, configuration feature implementation, and generation of
products. (a) General structure of FeatureIDE projects. (b) Feature modeling. (c) Configuration.
(d) Feature implementation

The model.xml represents the domain model of a software product line using a
feature model. Feature models are used to describe the common and variable parts of
a software product line. FeatureIDE can use these information for other parts of the
development cycle (e.g., domain implementation, product generation). By default,
the model.xml is connected to the FeatureModel Editor (cf. Fig. 3.3b). Using this
editor, we can edit the feature model in a graphical manner. In Sect. 3.4, we present
a brief overview of the facilities using the Feature Model Editor. In addition, we
present a closer look in Chap. 5 on Page 43.

Let us consider the directory configs that is used for a product configuration.
This directory contains a set of files with the extension config. Each of them
is one specific product configuration in compliance to the feature model that is
described in the model.xml. In addition, one of the existing files is marked
with a pencil symbol (in Fig. 3.3 the file BeautifulWorld.config), which
indicates that this product is selected for product generation and execution (see
Sect. 3.7). FeatureIDE offers a specialized editor (i.e., the Configuration Editor)



24 3 FeatureIDE in a Nutshell

which allows a developer to configure specific products and to prevent mistakes
during the configuration process (cf. Fig. 3.3c). The Configuration Editor is the
default editor of the configuration files (i.e., automatically opened using double-
click). We present a brief overview on the configuration and execution of products
in Sect. 3.6. More details are given in Chap. 6 on Page 63.

The directory features represents the domain implementation of FeatureIDE
projects based on feature-oriented programming (FOP; see Chap. 13 on Page 143 for
more details). FOP separates the implementation of each feature that we introduced
in the model.xml in a dedicated subdirectory of the directory features.
The directory is separated into folders for each feature, which each contains the
corresponding program artifacts (cf. Fig. 3.3d which implements the feature Hello).
Each file in the directory features is connected to the default Eclipse editor. Thus,
if we double-click on a Java file, the Java Editor will be opened. Afterward, it is
possible to edit each file in a straightforward manner as given in an Eclipse Java
project.

Finally, the selected features from the current configuration are generated into the
source folder src. This folder is then compiled by the underlying compiler (e.g.,
the Java compiler for Java projects). Thus, the generated product can be executed as
usual in Eclipse.

3.4 Modeling Variability with FeatureModels

Instruction 3.3 (Opening the Feature Model Editor)
Open the feature model editor by:

• Double-click on the model.xml in the Project/Package Explorer

As described in the last section, the feature model of a product line is stored in the
file model.xml of each FeatureIDE project. In this section, we describe the default
editor for the model.xml, the Feature Model Editor. To open the model.xml using the
Feature Model Editor, follow Instruction 3.3.

In Fig. 3.4, we depict the FeatureIDE Feature Model Editor using our example
project HelloWorld-FH-Java. This editor offers three tabs that can be used for

Fig. 3.4 The Feature Model
Editor allows product-line
developers to edit feature
models, such as the Hello
World feature diagram of the
example HelloWorld-FH-
Java



3.5 Implementation of Software Variability 25

Fig. 3.5 The Constraint
Dialog supports the
product-line developers
during the creation of
cross-tree constraints

editing. First, the editor offers a tab for graphical editing of feature diagrams. The
second tab allows a developer to define the feature order, which may be needed to
ensure a correct product generation of a FeatureIDE project (more details are given
in Chap. 5 on Page 43). Third, the Feature Model Editor also offers a tab that allows
a developer to directly edit the textual representation as *.xml file.

Let us take a closer look into the graphical editor. In Fig. 3.4 on the next page, we
depict the feature model of the project HelloWorld-FH-Java with the page Feature
Diagram. With the editor, a developer is able to add, remove, and change features
and their dependencies. For instance, it is possible to rename the feature Feature

to Specification or to add the feature Perfect as a child feature to the existing
Alternative-group. Furthermore, we can change dependencies so that, for instance,
the feature Feature is a mandatory feature. In particular, it is also possible to add
cross-tree constraints to the feature model. The developer can describe an arbitrary
propositional formula based on the set of existing features. Therefore, FeatureIDE
offers an additional dialog that ensures the syntactical correctness of described
cross-tree constraints (see Fig. 3.5 on the following page). The dialog can be opened
using the context menu or a double-click on an existing cross-tree constraint.
Using the Constraint Dialog, the developer immediately gets feedback about the
correctness of the constraint to prevent the creation of incorrect constraints.

3.5 Implementation of Software Variability

The implementation of a product line and the respective implementation pro-
cedure differs according to the used programming language (e.g., Java, C++)
and generation mechanism (e.g., preprocessors). In this chapter, we only focus
on an introduction based on the programming language Java and the generation
mechanism feature-oriented programming (FOP) using the FeatureIDE project



26 3 FeatureIDE in a Nutshell

HelloWorld-FH-Java. In Chap. 17 on Page 199, we give some further insights into
the support of other languages and paradigms.

As presented in Sect. 3.3 on Page 22, a FeatureIDE project based on FOP consists
of two source folders: the folder src for generated source files and the folder features
for implementation artifacts. Thus, the editable implementation artifacts of a product
line based on FOP are located in the folder features. In contrast, the folder src is
only the output folder for the generator and the content changes by each product
generation (i.e., build process). Therefore, it is not intended to manually change the
files of folder src. Nevertheless, the folder src can be helpful if program failures
occur and more details are needed to find the error. To avoid accidentally changing
the generated code, the files are marked as derived and the user gets a warning when
trying to modify them.

Let us take a look into the folder features. The folder consists of a set of
subfolders that represents the feature modules of the specific FOP project. In detail,
each concrete feature of the feature model described in the model.xml is represented
by one subfolder in which implementation artifacts and respective program files can
be described. For instance, the example project HelloWorld-FH-Java (see Fig. 3.4
on the previous page) consists of four concrete features (Hello, World, Beautiful,
and Wonderful) that are represented as subfolders in the source folder features (see
Fig. 3.3 on Page 23). Each of the feature modules contains implementation artifacts,
Java files, which we can edit to change the behavior of the product line’s products.
To open a source file, follow Instruction 3.4.

Instruction 3.4 (Open a Source File for a Specific Feature in Feature-
House)
Open a feature implementation by:

• Double-click on features ! <feature> ! <class>.java in the Project/
Package Explorer

3.6 Creating Configurations

Instruction 3.5 (Opening the Configuration Editor)
Open the configuration editor by:

• Double-click on a *.config file in the config folder of the Project/Package
Explorer

Before we are able to run a specific product of the Hello World product line,
we need to select all features that should be included. Therefore, FeatureIDE
provides configuration files, in which the selection is stored. As described above,
all existing configurations of a project are stored in the directory config and the



3.7 Product Generation and Execution 27

Fig. 3.6 The Configuration Editor with Configuration, Advanced Configuration, and Source tab
to support the config file editing

active configuration (i.e., the product that is used for the build process) is marked
by a green pencil. Typically only the active configuration is built automatically
on each change. To open a configuration with the Configuration Editor, follow
Instruction 3.5.

A developer can use FeatureIDE’s Configuration Editor to have a look into
the selected features of a *.config file and to change the selection. Therefore,
the Configuration Editor provides three pages, (a) a Configuration Page, (b) an
Advanced Configuration Page, and (c) a Source tab for the textual representation of
the file. Whereas the Source tab presents all selected features in a textual manner, the
Configuration and Advanced Configuration tabs support the configuration process
and ensure that the selection does not lead to invalid configurations. In Fig. 3.6, we
depict the Configuration and Advanced Configuration tabs using our Hello World
example. In Chap. 6 on Page 63, we present a more detailed description of the
configuration process.

3.7 Product Generation and Execution

Instruction 3.6 (Executing the Current Configuration)
Run the Current Configuration by any of the following options:

• Press Run As. . . ! Java Application in the upper menu toolbar of Eclipse
• Press Run As! Java Application in the context menu of the Project/Pack-

age Explorer
• Press Run! Run (Ctrl + F11) in the menu bar of Eclipse

Once the feature modeling, feature implementation, and product selection is
done, we can start to build and run a specific Hello World product. Therefore,
FeatureIDE reuses all well-known procedures that Eclipse provides for a project
build and launch. Thus, FeatureIDE allows a developer to use all ways to create and
run an Eclipse Run Configuration for FeatureIDE projects.



28 3 FeatureIDE in a Nutshell

Fig. 3.7 Create a Run Configuration for FeatureIDE projects using the toolbar

Fig. 3.8 Rerun the Run Configuration

Even if the concept of Run Configurations is well known by developers who
use Eclipse as an integrated development environment, we give a short overview on
how to create and use it. As mentioned above, Eclipse provides multiple ways to
create a Run Configuration as described in Instruction 3.6 (cf. Fig. 3.7). Depending
on the programming language, the submenu varies slightly. In this example, the
FeatureIDE project is based on a Java project. Thus, the submenu allows us to create
and launch a Run Configuration for Java. Afterward, we can reuse the created Run
Configuration to relaunch the project’s configuration (see Fig. 3.8).

Due to false settings, such as possible start parameters, the created Run Con-
figuration may not launch the project correctly. In this case, we have to set up the
created Run Configuration. Therefore, we use the menu entry Run Configurations. . .
(cf. Fig. 3.7). Using this menu entry, we can open the default dialog for Eclipse con-
figurations (cf. Fig. 3.9) that allows us to edit or create all kinds of configurations.
Depending on the type of the Run Configuration, we can define all needed start
information, such as the starting class or start parameters.

3.8 Summary and Further Reading

In this chapter, we gave a general overview on the basic functionalities of Fea-
tureIDE. We introduced to the support of FeatureIDE for the main phases of
feature-oriented software development. We showed how FeatureIDE supports
domain engineering with support to create and edit feature models. We explained
the general process of implementing variability in software. Then, we introduced



3.8 Summary and Further Reading 29

Fig. 3.9 Setup of Run Configurations

how FeatureIDE provides support to configure products. And finally, we showed
how these products can be generated and executed.

As this chapter’s purpose is only to give a general overview on the functionalities
of FeatureIDE, we give detailed descriptions and more specialized support in the
rest of this book. Support for feature modeling and product configuration will be
discussed in Part II. How FeatureIDE supports implementation with conditional
compilation (aka preprocessors) is explained in Part III. The support of feature-
oriented programming as used in this chapter is explained in Part IV. In Part V,
we shortly describe support for further generation mechanisms, namely, runtime
variability, black-box frameworks, and aspect-oriented programming. We also give
an overview on the purpose of all FeatureIDE views and editors in the last part.



http://www.springer.com/978-3-319-61442-7


	3 FeatureIDE in a Nutshell
	3.1 Opening the FeatureIDE Perspective
	3.2 Loading FeatureIDE Examples
	3.3 Structure of FeatureIDE Projects
	3.4 Modeling Variability with Feature Models
	3.5 Implementation of Software Variability
	3.6 Creating Configurations
	3.7 Product Generation and Execution
	3.8 Summary and Further Reading


