
Ranking to Learn:

Feature Ranking and Selection via Eigenvector Centrality

Giorgio Roffo1,2(B) and Simone Melzi2

1 School of Computing Science, University of Glasgow, Glasgow, UK
Giorgio.Roffo@glasgow.ac.uk

2 Department of Computer Science, University of Verona, Verona, Italy
Simone.Melzi@univr.it

Abstract. In an era where accumulating data is easy and storing it
inexpensive, feature selection plays a central role in helping to reduce
the high-dimensionality of huge amounts of otherwise meaningless data.
In this paper, we propose a graph-based method for feature selection
that ranks features by identifying the most important ones into arbi-
trary set of cues. Mapping the problem on an affinity graph - where
features are the nodes - the solution is given by assessing the importance
of nodes through some indicators of centrality, in particular, the Eigen-
vector Centrality (EC). The gist of EC is to estimate the importance of
a feature as a function of the importance of its neighbors. Ranking cen-
tral nodes individuates candidate features, which turn out to be effective
from a classification point of view, as proved by a thoroughly experi-
mental section. Our approach has been tested on 7 diverse datasets from
recent literature (e.g., biological data and object recognition, among oth-
ers), and compared against filter, embedded and wrappers methods. The
results are remarkable in terms of accuracy, stability and low execution
time.

Keywords: Feature selection · Ranking · High dimensionality · Data
mining

1 Introduction

As data collection technologies advance and computer power grows, a torrent
of data is generated in almost every field computers are used [5]. Because the
volume, velocity, variety and complexity of datasets is continuously increasing,
pattern recognition methodologies have become indispensable in order to extract
useful information from huge amounts of otherwise meaningless data.

Feature Selection (FS) is one of the long existing methods that deals with
these problems [14]. Its objective is to select a minimal subset of those attributes
that allows a problem to be clearly defined. By choosing a minimal subset of fea-
tures, irrelevant and redundant features are removed according to some reason-
able criteria so that the original task can be achieved equally well, if not better.

c© Springer International Publishing AG 2017
A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 19–35, 2017.
DOI: 10.1007/978-3-319-61461-8 2

20 G. Roffo and S. Melzi

FS techniques can be partitioned into three classes [14]: wrappers (see Fig. 1),
which use classifiers to score a given subset of features; embedded methods (in
Fig. 3), which inject the selection process into the learning of the classifier; and
filter methods (see Fig. 2), which analyze intrinsic properties of data, ignoring
the classifier. Filters are also (relatively) robust against overfitting.

Most of these methods can perform two operations, ranking and subset selec-
tion: in the former, the importance of each individual feature is evaluated, usually
by neglecting potential interactions among the elements of the joint set [8]; in the
latter, the final subset of features to be selected is provided. In some cases, these
two operations are performed sequentially (first the ranking, then the selection)
[7,12,17,24,35]; in other cases, only the selection is carried out [13]. Usually,
the subset selection is supervised, while in the ranking case, methods can be
supervised or not. FS is NP-hard [14]; if there are n features in total, the goal is
to select the optimal subset of m � n, by evaluating

(
n
m

)
combinations; there-

fore, suboptimal search strategies are considered (see Sect. 2 for an overview).
With the filters, features are first considered individually, ranked, and then a
subset is extracted, some examples are Mutual Information [35], Relief-F [24],
Inf-FS [30,31] unsupervised and not [26], and mRMR [27]. Conversely, with
wrapper and embedded methods, subsets of features are sampled, evaluated,
and finally kept as the final output, for instance, FSV[7,12] and SVM-RFE [17].

In this work, we propose a novel graph-based feature selection algorithm
that ranks features according to a graph centrality measure (Eigenvector
centrality [6]). The main idea behind the method is to map the problem on an
affinity graph, and to model pairwise relationships among feature distributions
by weighting the edges connecting them.

The novelty of the proposed method in terms of the state of the art is that
it assigns a score of “importance” to each feature by taking into account all
the other features mapped as nodes on the graph, bypassing the combinatorial
problem in a methodologically sound fashion. Indeed, eigenvector centrality dif-
fers from other measurements (e.g., degree centrality) since a node - feature -
receiving many links does not necessarily have a high eigenvector centrality. The
reason is that not all nodes are equivalent, some are more relevant than others,
and, reasonably, endorsements from important nodes count more (see Sect. 3.2).
Noteworthy, another important contribution of this work is the scalability of the
method. Indeed, centrality measurements can be implemented using the Map
Reduce paradigm [20,23,34], which makes the algorithm prone to a possible
distributed version [29].

Our approach is extensively tested on 7 benchmarks of cancer classifica-
tion and prediction on genetic data (Colon [2], Prostate [11], Leukemia [11],
Lymphoma [11]), handwritten recognition (GINA [1]), generic feature selection
datasets (MADELON [15]), and object recognition (PASCAL VOC 2007 [9]). We
compare the proposed method on these data, while comparing it against seven
efficient approaches under different conditions (number of features selected and
number of training samples considered), overcoming all of them in terms of rank-
ing stability or classification accuracy.

Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality 21

Finally, we provide an open and portable library of feature selection algo-
rithms, integrating the methods with uniform input and output formats to facil-
itate large scale performance evaluation. The Feature Selection Library (FSLib
Matlab Toolbox1) and interfaces are fully documented. The library integrates
directly with MATLAB, a popular language for machine learning and pattern
recognition research.

The rest of the paper is organized as follows. A brief overview of the related
literature is given in Sect. 2, mostly focusing on the comparative approaches
we consider in this work. Our feature selection algorithm is described in Sect. 3.
Graph construction and weighting are presented in Sects. 3.1 and 3.2 respectively,
while the employed Eigenvector centrality is discussed in Sect. 3.3. Section 4 con-
tains the experimental evaluations and results. Finally, conclusions are provided
in Sect. 6.

2 Related Work

Since the mid-1990s, few domains explored used more than 50 features. The sit-
uation has changed considerably in the past few years and most papers explore
domains with hundreds to tens of thousands of features. New approaches are
proposed to address these challenging tasks involving many irrelevant and redun-
dant cues and often comparably few training examples. Among the most used
FS strategies, Relief-F [24] is an iterative, randomized, and supervised approach
that estimates the quality of the features according to how well their values
differentiate data samples that are near to each other; it does not discriminate
among redundant features (i.e., may fail to select the most useful features),
and performance decreases with few data. Similar problems affect SVM-RFE
(RFE) [17], which is a wrapper method (see Fig. 1) that selects features in a
sequential, backward elimination manner, ranking high a feature if it strongly
separates the samples by means of a linear SVM.

Fig. 1. Wrapper models involve optimizing a predictor as part of the selection process.
They tend to give better results but filter methods are usually computationally less
expensive than wrappers.

1 The FSLib is publicly available on File Exchange - MATLAB Central at: https://it.
mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library.

https://it.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library
https://it.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library

22 G. Roffo and S. Melzi

Fig. 2. Filter methods: the selection of features is independent of the classifier used.
They rely on the general characteristics of the training data to select features with
independence of any predictor.

Fig. 3. In embedded methods the learning part and the feature selection part can not
be separated.

Batti [4] has developed the Mutual Information-Based Feature Selection
(MIFS) criterion, where the features are selected in a greedy manner. Given a
set of existing selected features, at each step it locates the feature xi that max-
imizes the relevance to the class. The selection is regulated by a proportional
term β that measures the overlap information between the candidate feature and
existing features. In [36] the authors proposed a graph-based filter approach to
feature selection, that constructs a graph in which each node corresponds to each
feature, and each edge has a weight corresponding to mutual information (MI)
between features connected by that edge. This method performs dominant set
clustering to select a highly coherent set of features and then it selects features
based on the multidimensional interaction information (MII). Another effective
yet fast filter method is the Fisher method [13], it computes a score for a feature
as the ratio of interclass separation and intraclass variance, where features are
evaluated independently, and the final feature selection occurs by aggregating
the m top ranked ones. Other widely used filters are based on mutual informa-
tion, dubbed MI here [35], which considers as a selection criterion the mutual
information between the distribution of the values of a given feature and the
membership to a particular class. Mutual information provides a principled way
of measuring the mutual dependence of two variables, and has been used by a
number of researchers to develop information theoretic feature selection criteria.
Even in the last case, features are evaluated independently, and the final feature
selection occurs by aggregating the m top ranked ones. Maximum-Relevance
Minimum-Redundancy criterion (MRMR) [27] is an efficient incremental search
algorithm. Relevance scores are assigned by maximizing the joint mutual infor-
mation between the class variables and the subset of selected features. The com-
putation of the information between high-dimensional vectors is impractical, as

Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality 23

the time required becomes prohibitive. To face this problem the mRMR pro-
pose to estimate the mutual information for continuous variables using Parzen
Gaussian windows. This estimate is based on a heuristic framework to minimize
redundancy and uses a series of intuitive measures of relevance and redundancy
to select features. Note, it is equivalent to MIFS with β = 1

n−1 , where n is
the number of features. Selecting features in unsupervised learning scenarios is
a much harder problem, due to the absence of class labels that would guide
the search for relevant information. In this scenario, we compare our approach
against the recent unsupervised graph-based filter dubbed Inf-FS [31]. In the
Inf-FS formulation, each feature is a node in the graph, a path is a selection
of features, and the higher the centrality score, the most important (or most
different) the feature. It assigns a score of “importance” to each feature by tak-
ing into account all the possible feature subsets as paths on a graph. Another
unsupervised method is the Laplacian Score (LS) [19], where the importance
of a feature is evaluated by its power of locality preserving. In order to model
the local geometric structure, this method constructs a nearest neighbor graph.
LS algorithm seeks those features that respect this graph structure. Finally, for
the embedded method (see Fig. 3), we include the feature selection via concave
minimization (FSV) [7], where the selection process is injected into the training
of an SVM by a linear programming technique.

3 Proposed Method

3.1 Building the Graph

Given a set of features X = {x(1), . . . , x(n)} we build an undirected graph
G = (V,E); where V is the set of vertices corresponding, one by one, to each vari-
able x. E codifies (weighted) edges among features. Let the adjacency matrix A
associated with G define the nature of the weighted edges: each element aij of A,
1 ≤ i, j ≤ n, represents a pairwise potential term. Potentials can be represented
as a binary function ϕ(x(i), x(j)) of the nodes x(k) such as:

aij = ϕ(x(i), x(j)). (1)

The graph can be weighted according to different heuristics, therefore the
function ϕ can be handcrafted or automatically learned from data.

3.2 ϕ-Design

The design of the ϕ function is a crucial operation. In this work, we weight the
graph according to good reasonable criteria, related to class separation, so as
to address the classification problem. In other words, we want to rank features
according to how well they discriminate between two classes. Hence, we draw
upon best-practice in FS and propose an ensemble of two different measures
capturing both relevance (supervised) and redundancy (unsupervised) proposing

24 G. Roffo and S. Melzi

a kernelized-based adjacency matrix. Before continuing with the discussion, note
that each feature distribution x(i) is normalized so as to sum to 1.

Firstly, we apply the Fisher criterion:

fi =
|μi,1 − μi,2|2
σ2

i,1 + σ2
i,2

,

where μi,C and σi,C are the mean and standard deviation, respectively, assumed
by the i-th feature when considering the samples of the C-th class. The higher
fi, the more discriminative the i-th feature. However, a natural generalization
of this score into a multi-class framework is given by

fi =
∑C

c=1(μi,c − μi)2

σ2
i

where μi and σi denote the mean and standard deviation of the whole data set
corresponding to the i-th feature (i.e., σ2

i =
∑C

c=1(σi,c)2).
Because we are given class labels, it is natural that we want to keep only the

features that are related to or lead to these classes. Therefore, we use mutual
information to obtain a good feature ranking that score high features highly
predictive of the class.

mi =
∑

y∈Y

∑

z∈x(i)

p(z, y)log
(p(z, y)

p(z)p(y)

)
,

where Y is the set of class labels, and p(·, ·) the joint probability distribution.
A kernel k is then obtained by the matrix product

k = (f · m�),

where f and m are n × 1 column vectors normalized in the range 0 to 1, and k
results in a n × n matrix.

To boost the performance, we introduce a second feature-evaluation metric
based on standard deviation [17] – capturing the amount of variation or disper-
sion of features from average – as follows:

Σ(i, j) = max
(
σ(i), σ(j)

)
,

where σ being the standard deviation over the samples of x, and Σ turns out to
be a n × n matrix with values ∈ [0,1].

Finally, the adjacency matrix A of the graph G is given by

A = αk + (1 − α)Σ, (2)

where α is a loading coefficient ∈ [0,1]. The generic entry aij accounts for how
much discriminative are the feature i and j when they are jointly considered;
at the same time, aij can be considered as a weight of the edge connecting the
nodes i and j of a graph, where the i-th node models the i-th feature distribution
(we report the sketch of our method in Algorithm1).

Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality 25

Algorithm 1. Eigenvector Centrality Feature Selection (EC-FS)
Input: X = {x(1), ..., x(n)} , Y = {y(1), ..., y(n)}
Output: v0 ranking scores for each feature

- Building the graph
C1 positive class, C2 negative class
for i = 1 : n do

Compute μi,1, μi,2, σi,1, and σi,2

Fisher score: f(i) =
(μi,1−μi,2)

2

σ2
i,1+σ2

i,2

Mutual Information: m(i) =
∑

y∈Y

∑
z∈x(i) p(z, y)log

(
p(z,y)

p(z)p(y)

)

end for
for i = 1 : n do

for j = 1 : n do
k(i, j) = f(i)m(j),

Σ(i, j) = max
(
σ(i), σ(j)

)
,

A(i, j) = αk(i, j) + (1 − α)Σ(i, j)
end for

end for
- Ranking
Compute eigenvalues {Λ} and eigenvectors {V } of A
λ0 = max

λ∈Λ
(abs(λ))

return v0 the eigenvector associated to λ0

3.3 Eigenvector Centrality

From a graph theory perspective identifying the most important nodes corre-
sponds to individuate some indicators of centrality within a graph (e.g., the
relative importance of nodes). A first way used in graph theory is to study
accessibility of nodes, see [10,28] for example. The idea is to compute Al for
some suitably large l (often the diameter of the graph), and then use the row
sums of its entries as a measure of accessibility (i.e. scores(i) = [Ale]i, where e
is a vector with all entries equal to 1). The accessibility index of node i would
thus be the sum of the entries in the i-th row of Al, and this is the total number
of paths of length l (allowing stopovers) from node i to all nodes in the graph.
One problem with this method is that the integer l seems arbitrary. However,
as we count longer and longer paths, this measure of accessibility converges to
a index known as eigenvector centrality measure (EC) [6].

The basic idea behind the EC is to calculate v0 the eigenvector of A associated
to the largest eigenvalue. Its values are representative of how strongly each node
is connected to the other nodes. Since the limit of Al as l approaches a large
positive number L converges to v0,

lim
l→L

[Ale] = v0, (3)

the EC index makes the estimation of indicators of centrality free of manual
tuning over l, and computationally efficient.

26 G. Roffo and S. Melzi

Let us consider a vector, for example e, that is not orthogonal to the principal
vector v0 of A. It is always possible to decompose e using the eigenvectors as
basis with a coefficient β0 �= 0 for v0. Hence:

e = β0v0 + β1v1 + . . . + βnvn, (β0 �= 0). (4)

Then

Ae = A(β0v0 + β1v1 + . . . + βnvn) = β0Av0 + β1Av1 + . . . + βnAvn

= β0λ0v0 + β1λ1v1 + . . . + βnλnvn.
(5)

So in the same way:

Ale=Al(β0v0+β1v1+. . .+βnvn) = β0A
lv0 + β1A

lv1 + . . . + βnAlvn

= β0λ
l
0v0 + β1λ

l
1v1+. . .+βnλl

nvn, (β0 �= 0).
(6)

Finally we divide by the constant λl
0 �= 0 (see Perron-Frobenius theorem [25]),

Ale
λl
0

= β0v0 +
λl
1β1v1
λl
0

+ . . . +
λl

nβnvn

λl
0

, (β0 �= 0). (7)

The limit of Ale
λl
0

as l approaches infinity equals β0v0 since liml→∞
λl
1

λl
0

= 0, ∀l > 0.
What we see here is that as we let l increase, the ratio of the components of
Ale converges to v0. Therefore, marginalizing over the columns of Al, with a
sufficiently large l, corresponds to calculate the principal eigenvector of matrix
A [6]. Figure 4 illustrates a toy example of three random planar graphs. Graphs
are made of 700 nodes and they are weighted by the Euclidean distance between
each pair of points. In the example, high scoring nodes are those ones farther
from the mean (i.e., the distance is conceived as quantity to maximize), the
peculiarity of the eigenvector centrality is that a node is important if it is linked
to by other important nodes (higher scores).

Fig. 4. Eigenvector centrality plots for three random planar graphs. On the left, a sim-
ple Gaussian distribution where central nodes are at the peripheral part of the distrib-
ution as expected. The central and right plots, some more complicated distributions, a
node receiving many links does not necessarily have a high eigenvector centrality. Best
viewed in color.

Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality 27

To the aim of this work, the use of eigenvector centrality allows to individuate
candidate features, which turn out to be effective from a classification point of
view, since indicators of centrality characterize the global (as opposed to local)
prominence of a feature in the graph. Summarizing, the gist of eigenvector cen-
trality is to compute the centrality of a node as a function of the centralities of
its neighbors.

4 Experiments and Results

4.1 Datasets and Comparative Approaches

The datasets are chosen for letting the proposed method deal with diverse FS
scenarios, as shown on Table 1. In the details, we consider the problems of dealing
with few training samples and many features (few train in the table), unbalanced
classes (unbalanced), or classes that severely overlap (overlap), or whose samples
are noisy (noise) due to: (a) complex scenes where the object to be classified is
located (as in the VOC series) or (b) many outliers (as in the genetic datasets,
where samples are often contaminated, that is, artefacts are injected into the
data during the creation of the samples). Lastly we consider the shift problem,
where the samples used for the test are not congruent (coming from the same
experimental conditions) with the training data.

Table 1. This table reports several attributes of the datasets used. The abbreviation
n.s. stands for not specified (for example, in the object recognition datasets, the features
are not given in advance).

Name # samples # classes # feat. few train unbal. (+/−) overlap noise shift

GINA [1] 3153 2 970 X

MADELON [16] 4.4K 2 500 X

Colon [2] 62 2 2K X (40/22) X

Lymphoma [11] 45 2 4026 X (23/22)

Prostate [33] 102 2 6034 X (50/52)

Leukemia [11] 72 2 7129 X (47/25) X X

VOC 2007 [9] 10K 20 n.s X X

Table 2 lists the methods in comparison, whose details can be found in Sect. 2.
Here we just note their type, that is, f = filters, w = wrappers, e = embedded
methods, and their class, that is, s = supervised or u = unsupervised (using or
not using the labels associated with the training samples in the ranking oper-
ation). Additionally, we report their computational complexity (if it is docu-
mented in the literature). The computational complexity of our approach is
O(Tn + n2).

The term Tn is due to the computation of the mean values among the T
samples of every feature (n). The n2 concerns the construction of the matrix A.

28 G. Roffo and S. Melzi

Table 2. List of the FS approaches considered in the experiments, specified according
to their Type, class (Cl.), and complexity (Compl.). As for the complexity, T is the
number of samples, n is the number of initial features, K is a multiplicative constant,
i is the number of iterations in the case of iterative algorithms, and C is the number
of classes. N/A indicates that the computational complexity is not specified in the
reference paper.

Acronym Type Cl Compl.

Fisher [13] f s O(Tn)

FSV [7,12] e s N/A

Inf-FS [31] f u O(n2.37(1 + T))

MI [35] f s ∼O(n2T 2)

LS [19] f u N/A

Relief-F [24] f s O(iTnC)

RFE [17] w/e s O(T 2nlog2n)

Ours f s O(Tn + n2)

As for the computation of the leading eigenvector, it costs O(m2n), where m is
a number much smaller than n that is selected within the algorithm [22]. In the
case that the algorithm can not be executed on a single computer, we refer the
reader to [20,23,29,34] for distributed algorithms.

4.2 Exp. 1: Deep Representation (CNN) with Pre-training

This section proposes a set of tests on the PASCAL VOC-2007 [9] dataset. In
object recognition VOC-2007 is a suitable tool for testing models, therefore, we
use it as reference benchmark to assess the strengths and weaknesses of using
our approach regarding the classification task. For this reason, we compare our
approach against 8 state-of-the-art FS methods reported in Table 2. This exper-
iment considers as features the cues extracted with a deep convolutional neural
network architecture (CNN). We selected the pre-trained model called very deep
ConvNets [32], which performs favorably to the state of the art for classification
and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC). We use the 4,096-dimension activations of the last layer as image
descriptors (i.e., 4,096 features in total). The VOC-2007 edition contains about
10,000 images split into train, validation, and test sets, and labeled with twenty
object classes. A one-vs-rest SVM classifier for each class is learnt (where cross-
validation is used to find the best parameter C and α mixing coefficient in Eq. 2
on the training data) and evaluated independently and the performance is mea-
sured as mean Average Precision (mAP) across all classes.

Table 3 serves to analyze and empirically clarify how well important features
are ranked high by several FS algorithms. The amount of features used for the
two experiments is very low: ≈3% and ≈6% of the total. The results are sig-
nificant: our method achieved the best performance in terms of mean average

Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality 29

Table 3. Varying the cardinality of the selected features. The image classification
results achieved in terms of average precision (AP) scores while selecting the first 128
(3%) and 256 (6%) features from the total 4, 096.

PASCAL VOC 2007
First 128/4096 Features Selected First 256/4096 Features Selected

Fisher FSV Inf-FS LS MI ReliefF RFE Ours Fisher FSV Inf-FS LS MI ReliefF RFE Ours

52.43 87.90 88.96 89.37 12.84 57.20 86.42 88.09 82.65 90.22 91.16 90.94 73.51 81.67 88.17 90.79

13.49 80.74 80.43 80.56 13.49 49.10 82.14 80.94 83.21 80.07 83.36 84.21 75.04 71.27 83.30 84.72

85.46 86.77 87.04 86.96 80.91 75.42 83.16 88.74 89.14 86.15 88.88 89.31 85.48 83.54 86.12 89.15

79.04 83.58 85.31 83.51 61.50 63.75 78.55 86.90 87.05 80.68 87.24 87.84 75.25 73.30 86.13 87.42

46.61 39.80 44.83 49.36 35.39 18.33 46.24 47.37 52.54 49.00 52.65 49.44 48.94 35.67 47.28 53.20

12.29 72.89 76.69 76.98 12.29 31.54 74.68 76.27 77.32 78.69 79.23 79.97 59.23 63.83 79.38 80.57

82.09 78.61 85.78 85.82 63.58 74.95 83.94 85.92 85.86 84.01 86.74 87.06 85.27 82.76 85.61 86.56

75.29 82.25 83.34 81.81 40.96 66.95 81.02 83.29 83.46 83.49 85.61 84.98 79.16 76.78 84.50 85.57

54.81 52.37 58.62 60.07 16.95 29.07 59.84 60.57 63.14 62.54 63.93 64.23 63.20 48.19 62.16 64.53

47.98 61.68 59.23 65.50 11.42 11.42 62.96 60.55 66.51 70.18 67.96 71.54 22.96 51.28 64.20 69.71

49.68 63.50 67.69 63.86 12.62 12.62 67.05 67.70 68.42 69.27 71.78 71.01 65.77 52.24 71.43 70.95

81.06 80.57 83.16 83.21 70.70 68.12 80.07 83.00 84.24 84.15 85.08 85.20 82.03 74.85 83.52 85.20

74.91 83.33 81.23 81.75 14.13 63.06 81.55 82.79 85.68 83.13 85.28 85.41 71.36 75.53 83.47 85.28

13.18 71.42 81.32 80.24 13.18 34.43 76.57 82.20 84.29 81.16 84.20 83.81 81.01 70.68 82.97 84.12

91.33 90.03 89.10 89.33 91.08 88.85 89.03 91.27 91.95 89.99 90.65 90.64 91.77 90.38 90.64 91.99

47.89 39.40 45.38 47.94 13.23 13.30 48.61 49.05 54.94 47.95 53.86 54.31 48.98 34.74 50.18 55.88

10.87 68.82 73.35 74.05 10.87 10.87 66.86 73.80 73.43 75.84 79.01 81.57 10.87 11.73 75.47 78.85

45.87 56.08 58.94 58.92 13.30 13.31 62.06 61.32 66.46 59.77 63.07 63.92 58.78 44.74 66.68 64.86

63.51 88.52 91.42 91.48 58.62 73.32 88.46 91.30 84.05 90.61 93.21 93.16 81.33 82.93 90.24 92.31

64.29 65.61 66.79 62.99 47.25 24.96 67.10 67.30 71.44 69.19 70.56 70.75 71.39 55.59 73.17 72.49

54.60 71.69 74.43 74.69 34.72 44.03 73.32 75.42 76.79 75.80 78.17 78.47 66.57 63.09 76.73 78.71

precision (mAP) followed by the unsupervised filter methods LS and Inf-FS. As
for the methods in comparison, one can observe the high variability in classifi-
cation accuracy; indeed, results show that our method is robust to classes (i.e.,
by changing the testing class its performance is always comparable with the top
scoring method).

4.3 Exp. 2: Testing on Microarray Databases

In application fields like biology is inconceivable to devise an analysis procedure
which does not comprise a FS step. A clear example can be found in the analysis
of expression microarray data, where the expression level of thousands of genes
is simultaneously measured. Within this scenario, we tested the proposed app-
roach on four well-known microarray benchmark datasets for two-class problems.
Results are reported in Table 4. The testing protocol adopted in this experiment
consists in splitting the dataset up to 2/3 for training and 1/3 for testing. In
order to have a fair evaluation, the feature ranking has been calculated using only
the training samples, and then applied to the testing samples. The classification

30 G. Roffo and S. Melzi

is performed using a linear SVM. For setting the best parameters (C of the linear
SVM, and α mixing coefficient) we used a 5-fold cross validation on the training
data. This procedure is repeated several times and results are averaged over the
trials. Results are reported in terms of the Receiver Operating Characteristic or
ROC curves. A widely used measurement that summarizes the ROC curve is the
Area Under the ROC Curve (AUC) [3] which is useful for comparing algorithms
independently of application. Hence, classification results for the datasets used
show that the proposed approach produces superior results in all the cases. The
overall performance indicates that our approach is more robust than the others,
by changing the data it still produces high quality rankings.

Table 4. The tables show results obtained on the expression microarray scenario. Tests
have been repeated 100 times, and the means of the computed AUCs are reported for
each dataset.

Microarray databases

Colon Leukemia

Features # Features

Method 50 100 150 200 Average Time 50 100 150 200 Average Time

Fisher-S 91.25 88.44 89.38 87.81 89.22 0.02 99.33 99.78 99.78 99.78 99.66 0.01

FSV 85.00 88.12 89.38 89.69 88.04 0.18 98.22 98.44 99.11 99.33 98.77 0.37

Inf-FS 88.99 89.41 89.32 89.01 89.18 0.91 99.91 99.92 99.97 99.98 99.95 5.49

LS 90.31 89.06 89.38 90.00 89.68 0.03 98.67 99.33 99.56 99.56 99.28 0.07

MI 89.38 90.31 90.63 90.94 90.31 0.31 99.33 99.33 99.56 99.33 98.38 0.21

ReliefF 80.94 84.38 85.94 87.50 84.69 0.52 99.56 99.78 99.78 99.78 99.72 1.09

RFE 89.06 85.00 86.88 85.62 86.64 0.18 100 99.78 99.56 99.78 99.78 0.14

EC-FS 91.40 91.10 91.11 90.63 91.06 0.45 99.92 99.92 99.77 99.85 99.86 1.50

Lymphoma Prostate

Features # Features

Method 50 100 150 200 Average Time 50 100 150 200 Average Time

Fisher-S 98.75 98.38 98.38 100 98.87 0.01 96.10 96.20 96.30 97.30 96.47 0.02

FSV 98.22 98.44 99.11 99.33 98.77 0.18 96.70 96.70 96.50 96.30 96.55 0.63

Inf-FS 98.12 98.75 98.75 99.38 98.75 7.61 96.80 96.90 97.10 96.70 96.87 26.85

LS 90.00 96.88 99.38 98.75 96.25 0.04 85.80 94.60 96.90 97.00 93.57 0.24

MI 97.50 98.75 99.38 99.38 98.75 0.59 96.00 96.90 96.00 96.20 96.27 1.01

ReliefF 96.80 97.00 98.80 98.80 97.85 0.74 92.72 93.46 93.62 93.85 93.41 2.68

RFE 96.00 98.00 98.80 99.00 97.95 0.02 93.40 96.40 97.10 96.32 95.80 0.3

EC-FS 99.40 99.20 99.60 99.20 99.20 1.50 96.28 96.90 96.80 98.10 97.02 2.81

The quality of a feature subset is measured by an estimate of the classifica-
tion accuracy of a chosen classifier trained on the candidate subset. Stability of
the ranking is an important aspect when the task is knowledge discovery. The
rationale behind this fact is that the estimate of the quality of the candidate
subsets usually depends on many the training/testing split of the data. There-
fore different sequences of features may be returned from repeated runs of FS
approaches. In such a case, it is important to define if these numerous different

Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality 31

subsets of features have approximately equal quality, otherwise presenting the
user with only one subset may be misleading. We assessed the stability of the
selected features using the Kuncheva index [21]. This stability measure repre-
sents the similarity between the set of rankings generated over the different splits
of the dataset. The similarity between sequences of size N can be seen as the
number of elements n they have in common (i.e. the size of their intersection).
The Kuncheva index takes values in [−1, 1], and the higher its value, the larger
the number of commonly selected features in both sequences. The index is shown
in Fig. 5, comparing our approach and the other methods. A valid alternative is
the stability index based on Jensen-Shannon Divergence DJS , proposed by [18],
with a [0, 1] range, where 0 indicates completely random rankings and 1 means
stable rankings. Unlike Kuncheva measure, this metric is suitable for different
algorithm outcomes: partial sublists (top-k lists) as well as the least studied par-
tial ranked lists. Since in our case we work with full ranked lists, because all
the feature selection algorithms considered in this study produce permutations
of the original set of features, we preferred the widely used Kuncheva index.
The proposed method shows, in most of the cases, a high stability whereas the
highest performance is achieved.

LYMPHOMA

Fisher
FSV
Inf−FS
LS
MI
ReliefF
RFE
Ours

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KUNCHEVA STABILITY INDEX on BIOLOGICAL DATA

Ku
nc

he
va

 S
ta

bi
lit

y
In

de
x

COLON PROSTATELEUKEMIA

Features10 50 10
0

15
0

20
010 50 10
0

15
0

20
010 50 10
0

15
0

20
010 50 10
0

15
0

20
0

■
■

■
■

■

■

■

■

■■

■

■

■

■

■

■
■

■
■

■

■

■

■

■

■

■

■

■■■

■
■

■
■

■

■

■

■

■

■

■

■

■

■

■

■

■
■

■

■

■

■

■

■

■

■
■

■

■

■

■

■

■
■■

■
■

■
■

Fig. 5. The Kuncheva stability indices for each method in comparison are presented.
The figure reports the stability while varying the cardinality of the selected features
from 10 to 200 on different benchmarks.

32 G. Roffo and S. Melzi

4.4 Exp. 2: Other Benchmarks

GINA has sparse input variables consisting of 970 features. It is a balanced data
set with 49.2% instances belonging to the positive class. Results obtained on
GINA indicate that the proposed approach overcomes the methods in compari-
son, and select the most useful features from a data set with high-complexity and
dimensionality. MADELON is an artificial dataset, which was part of the NIPS
2003 feature selection challenge. It represents a two-class classification problem
with continuous input variables. The difficulty is that the problem is multivariate
and highly non-linear. Results are reported in Table 5. This gives a proof about
the classification performance of our approach that is attained on the test sets
of GINA and MADELON.

Table 5. Varying the cardinality of the selected features. (ROC) AUC (%) on different
datasets by SVM classification. Performance obtained with the first 50, 100, 150, and
200 features.

FS challenge datasets

GINA - handwritten recognition MADELON - artificial data

Features # Features

Method 50 100 150 200 Average Time 50 100 150 200 Average Time

Fisher-S 89.8 89.4 90.2 90.4 89.9 0.05 61.9 63.0 62.3 64.0 62.5 0.02

FSV 81.9 83.7 82.0 83.6 82.7 138 59.9 60.6 61.0 61.0 60.7 732

Inf-FS 89.0 88.7 89.1 89.0 88.9 41 62.6 63.8 65.4 60.8 63.2 0.04

LS 82.2 82.4 83.4 83.2 82.7 1.30 62.8 62.9 63.3 64.7 63.4 8.13

MI 89.3 89.7 89.8 90.1 89.6 1.13 63.0 63.7 63.5 64.7 63.6 0.4

ReliefF 77.9 76.3 77.3 76.9 77.2 0.12 62.9 63.1 63.2 64.9 63.5 10.41

RFE 82.2 82.4 83.4 83.2 82.7 6.60 55.0 61.2 57.1 60.2 56.5 50163

EC-FS 90.9 90.3 90.4 89.5 90.3 1.56 63.6 63.8 63.7 63.3 63.7 0.57

FS techniques definitely represent an important class of preprocessing tools,
by eliminating uninformative features and strongly reducing the dimension of
the problem space, it allows to achieve high performance, useful for practical
purposes in those domains where high speed is required.

5 Reliability and Validity

In order to assess if the difference in performance is statistically significant, t-
tests have been used for comparing the accuracies. Statistical tests are used to
determine if the accuracies obtained with the proposed approach are significantly
different from the others (whereas both the distribution of values were normal).
The test for assessing whether the data come from normal distributions with
unknown, but equal, variances is the Lilliefors test. Results have been obtained
by comparing the results produced by each method over 100 trials (at each

Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality 33

trial corresponds a different split of the data). Given the two distributions xp of
the proposed method and xc of the current competitor, of size 1 × 100, a two-
sample t-test has been applied obtaining a test decision for the null hypothesis
that the data in vectors xp and xc comes from independent random samples
from normal distributions with equal means and equal but unknown variances.
Results (highlighted in Tables 4 and 5) show a statistical significant effect in
performance (p-value < 0.05, Lilliefors test H = 0).

6 Conclusion

In this paper we present the idea of solving feature selection via the Eigenvector
centrality measure. We design a graph – where features are the nodes – weighted
by a kernelized adjacency matrix, which draws upon the best-practice in fea-
ture selection while assigning scores according to how well features discriminate
between classes. The method (supervised) estimates some indicators of centrality
identifying the most important features within the graph. The results are remark-
able: the proposed method has been extensively tested on 7 different datasets
selected from different scenarios (i.e., object recognition, handwritten recogni-
tion, biological data, and synthetic testing datasets), in all the cases we achieve
top performances against 7 competitors selected from recent literature in feature
selection. Our approach is also robust and stable on different splits of the training
data, it performs effectively in ranking high the most relevant features, and it has
a very competitive complexity. This study also points to many future directions;
focusing on the investigation of different implementations for parallel computing
for big data analysis or focusing on the investigation of different relations among
the features. Finally, we provide an open and portable library of feature selec-
tion algorithms, integrating the methods with uniform input and output formats
to facilitate large scale performance evaluation. The Feature Selection Library
(FSLib is available on Matlab F ile Exchange at https://goo.gl/bvg1ha) and
interfaces are fully documented. The library integrates directly with MATLAB,
a popular language for machine learning and pattern recognition research.

References

1. GINA digit recognition database. In: IEEE Conference International Joint Confer-
ence on Neural Networks (2007)

2. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine,
A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor
and normal colon tissues probed by oligonucleotide arrays. PNAS 96(12), 6745–
6750 (1999)

3. Bamber, D.: The area above the ordinal dominance graph and the area below the
receiver operating characteristic graph. J. Math. Psychol. 12(4), 387–415 (1975)

4. Battiti, R.: Using mutual information for selecting features in supervised neural
net learning. IEEE Trans. Neural Netw. 5(4), 537–550 (1994)

https://goo.gl/bvg1ha

34 G. Roffo and S. Melzi

5. Bólon-Canedo, V., Sánchez-Maroo, N., Alonso-Betanzos, A.: Recent advances and
emerging challenges of feature selection in the context of big data. Knowl.-Based
Syst. 86, 33–45 (2015)

6. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5),
1170–1182 (1987)

7. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and
support vector machines. In: Conference International Conference on Machine
Learning (ICML) (1998)

8. Duch, W., Wieczorek, T., Biesiada, J., Blachnik, M.: Comparison of feature ranking
methods based on information entropy. In: IJCNN, vol. 2. IEEE (2004)

9. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results (2007)

10. Garrison, W.L.: Connectivity of the interstate highway system. Pap. Reg. Sci. 6(1),
121–137 (1960)

11. Golub, T.R.: Molecular classification of cancer: class discovery and class prediction
by gene expression monitoring. Science 286(5439), 531–537 (1999)

12. Grinblat, G.L., Izetta, J., Granitto, P.M.: SVM based feature selection: why are
we using the dual? In: Conference Ibero-American Conference on AI (2010)

13. Gu, Q., Li, Z., Han, J.: Generalized fisher score for feature selection. In: Computing
Research Repository (CoRR) (2012)

14. Guyon, I.: Feature Extraction: Foundations and Applications, vol. 207. Springer
Science & Business Media, Berlin (2006)

15. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature
selection challenge. In: NIPS, pp. 545–552 (2004)

16. Guyon, I., Li, J., Mader, T., Pletscher, P.A., Schneider, G., Uhr, M.: Competitive
baseline methods set new standards for the NIPS 2003 feature selection benchmark.
PRL 28(12), 1438–1444 (2007)

17. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. J. 46(1), 389–422 (2002)

18. Guzmán-Mart́ınez, R., Alaiz-Rodŕıguez, R.: Feature selection stability assess-
ment based on the Jensen-Shannon divergence. In: Gunopulos, D., Hofmann, T.,
Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS, vol. 6911, pp.
597–612. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23780-5 48

19. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in
Neural Information Processing Systems, vol. 18 (2005)

20. Kang, U., Papadimitriou, S., Sun, J., Tong, H.: Centralities in large networks: algo-
rithms and observations. In: Proceedings of the 2011 SIAM International Confer-
ence on Data Mining. Society for Industrial and Applied Mathematics, pp. 119–130
(2011)

21. Kuncheva, L.I.: A stability index for feature selection. In: Proceedings of the 25th
Conference on Proceedings of the 25th IASTED International Multi-Conference:
Artificial Intelligence and Applications, AIAP 2007, pp. 390–395. ACTA Press,
Anaheim (2007)

22. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, vol.
6. SIAM, Philadelphia (1998)

23. Lerman, K., Ghosh, R., Kang, J.H.: Centrality metric for dynamic networks. In:
Proceedings of the Eighth Workshop on Mining and Learning with Graphs, MLG
2010, pp. 70–77. ACM, New York (2010)

24. Liu, H., Motoda, H. (eds.): Computational Methods of Feature Selection. CRC
Press, Boca Raton (2007)

http://dx.doi.org/10.1007/978-3-642-23780-5_48

Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality 35

25. Meyer, C.D. (ed.): Matrix Analysis and Applied Linear Algebra. Society for Indus-
trial and Applied Mathematics, Philadelphia (2000)

26. Obertino, S., Roffo, G., Granziera, C., Menegaz, G.: Infinite feature selection on
shore-based biomarkers reveals connectivity modulation after stroke. In: 2016 Inter-
national Workshop on Pattern Recognition in Neuroimaging (PRNI), pp. 1–4, June
2016

27. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern
Anal. Mach. Intell. (PAMI) 27(8), 1226–1238 (2005)

28. Pitts, F.R.: A graph theoretic approach to historical geography. Prof. Geogr. 17(5),
15–20 (1965)

29. Rawat, A., Saha, S., Ghrera, S.P.: Time efficient ranking system on map reduce
framework. In: 2015 Third International Conference on Image Information Process-
ing (ICIIP), pp. 496–501 (2015)

30. Roffo, G., Melzi, S.: Online feature selection for visual tracking. In: International
Conference the British Machine Vision Conference (BMVC), September 2016

31. Roffo, G., Melzi, S., Cristani, M.: Infinite feature selection. In: IEEE Conference
International Conference on Computer Vision (ICCV) (2015)

32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

33. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo,
P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff,
P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate
cancer behavior. Cancer Cell 1(2), 203–209 (2002)

34. Wu, D.D., Deng, X., Li, Y.: Safety and emergency systems engineering mapreduce
based betweenness approximation engineering in large scale graph. Syst. Eng. Pro-
cedia 5, 162–167 (2012)

35. Zaffalon, M., Hutter, M.: Robust feature selection using distributions of mutual
information. In: Conference International Conference on Uncertainty in Artificial
Intelligence (UAI) (2002)

36. Zhang, Z., Hancock, E.R.: A graph-based approach to feature selection. In: Jiang,
X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 205–214.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20844-7 21

http://dx.doi.org/10.1007/978-3-642-20844-7_21

http://www.springer.com/978-3-319-61460-1

	Ranking to Learn:
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Building the Graph
	3.2 -Design
	3.3 Eigenvector Centrality

	4 Experiments and Results
	4.1 Datasets and Comparative Approaches
	4.2 Exp. 1: Deep Representation (CNN) with Pre-training
	4.3 Exp. 2: Testing on Microarray Databases
	4.4 Exp. 2: Other Benchmarks

	5 Reliability and Validity
	6 Conclusion
	References

