Hybrid Information Flow Analysis
for Real-World C Code

Gergd Barany'®) and Julien Signoles?

! Inria Paris, Paris, France
gergo.barany@inria.fr
2 Software Reliability and Security Laboratory,
CEA, LIST, 91911 Gif-sur-Yvette Cedex, France
julien.signoles@cea.fr

Abstract. Information flow analysis models the propagation of data
through a software system and identifies unintended information leaks.
There is a wide range of such analyses, tracking flows statically, dynami-
cally, or in a hybrid way combining both static and dynamic approaches.

We present a hybrid information flow analysis for a large subset of the
C programming language. Extending previous work that handled a few
difficult features of C, our analysis can now deal with arrays, pointers
with pointer arithmetic, structures, dynamic memory allocation, com-
plex control flow, and statically resolvable indirect function calls. The
analysis is implemented as a plugin to the Frama-C framework.

We demonstrate the applicability and precision of our analyzer by
applying it to an open-source cryptographic library. By combining
abstract interpretation and monitoring techniques, we verify an infor-
mation flow policy that proves the absence of control-flow based tim-
ing attacks against the implementations of many common cryptographic
algorithms. Conversely, we demonstrate that our analysis is able to detect
a known instance of this kind of vulnerability in another cryptographic
primitive.

1 Introduction

Information flow analysis models the propagation of data through a software
system. It identifies unintended information leaks to guarantee confidentiality
of information. For instance, secret data are often forbidden from influencing
public outputs [10]. This is an instance of the non-interference property [12]
which states that certain kinds of computations have no effects on others. A more
precise standard property is termination-insensitive non-interference (TINI), i.e.,
non-interference without taking into account covert channels due to termination.

Information flow analyses for ensuring TINI can be static [15,23] or
dynamic [3]. The former examine the source code without executing it, while

This work was supported by the French National Research Agency (ANR), project
AnaStaSec, ANR-14-CE28-0014.
© Springer International Publishing AG 2017

S. Gabmeyer and E.B. Johnsen (Eds.): TAP 2017, LNCS 10375, pp. 23-40, 2017.
DOI: 10.1007/978-3-319-61467-0_-2

24 G. Barany and J. Signoles

the latter check the desired properties at runtime. Dynamic monitors have nei-
ther knowledge of commands in non-executed control flow paths, nor knowledge
of commands ahead of their execution. Russo and Sabelfeld [21] prove that such
dynamic monitors cannot be sound with respect to non-interference, while being
at least as permissive as flow-sensitive type system a la Hunt and Sands [15].
Flow-sensitivity means that the same variable may carry data of different secu-
rity levels (e.g. secret and public) over the course of the program execution. It
is particularly important in practice in order to accept more programs without
jeopardizing security. This leads to hybrid information flow in which the dynamic
monitors are helped with statically-computed information [19,21]. This paper
describes an analysis in this category.

TINI monitoring was refined by Bielova and Rezk by introducing the concept
of termination-aware non-interference (TANI) [7]. TANI monitors are required
to enforce TINI with the additional constraint that they do not introduce new
termination channels. That is, no information about secret values may be derived
from the fact that the monitored program terminates normally. The authors
prove that hybrid monitors such as ours do enforce this property.

Flows tracked by monitors may be either explicit or implicit. Explicit flows
are propagated through assignments when assigning secret data to a memory
location which therefore becomes secret. Indirect flows are usually propagated
through program control dependencies. For instance, when considering a sensi-
tive variable secret and the code snippet if (secret) x = 0; else y = 1;,
both variables x and y become sensitive because the fact whether secret is
zero leaks to the values of both x and y. In order to detect such a flow at run-
time when executing the then-branch (resp. else-branch), it is required to have
the knowledge of the update of y in the non-executing else-branch (resp. x in
the then-branch). This information is unfortunately not available at runtime: a
static analysis using points-to information [22] is necessary to pre-compute it.

In this paper, we discuss hybrid flow-sensitive information flow analysis for C
programs. In previous work, Assaf et al. demonstrated that indirect flows may
be carried through pointers [1,2]. They proposed a hybrid analysis through a
sound program transformation which encodes the information flows in an inline
monitor to detect TINI (and TANI) violations. A prototype was implemented
as a Frama-C plugin named Secure Flow. The soundness of the program trans-
formation relies on a static analysis in order to compute over-approximations of
written memory locations in some pieces of code. Later Secure Flow was extended
to arrays [4]. One benefit of a transformation-based approach is that it lets end-
users choose their verification techniques: they can verify all execution paths of
the generated program by static analysis, or some individual paths by runtime
verification, or even use a combination of both.

Our contributions are threefold: extending hybrid information flow
analysis for C programs containing many complex constructs; improving
the Frama-C plugin Secure Flow with this extension; and evaluating it
on an open-source cryptographic library by combining static and dynamic
techniques.

Hybrid Information Flow Analysis for Real-World C Code 25

The structure of the paper is as follows. Section 2 gives an overview of Secure
Flow, while Sect. 3 details the recently added features. Section4 evaluates our
tool on LibTomCrypt, and Sect. 5 describes related work.

2 An Overview of Secure Flow

This paper concerns the design and implementation of a hybrid information flow
monitor in the style of Le Guernic et al. [19] for the C programming language.
In this section we set the stage by describing the underlying Frama-C framework
and the constraints and goals that influenced our design. To make the paper
self-contained, we also discuss the handling of various language constructs of C
in our previous work [2,4].

2.1 Frama-C

Our analysis is implemented as a plugin for Frama-C [17], an open source analysis
and transformation framework for C programs. Frama-C parses the C source code
to build an abstract syntax tree (AST) that represents the input code. After
analyses and transformations, the AST can be pretty-printed to C source code
that can be processed by other tools, or compiled with a C compiler and executed.
Frama-C can be extended with plugins that implement new code analyzers and
transformers.

To ease implementation of analyzers, Frama-C performs some normalizations
of the AST: in particular, side effects can only occur due to assignments, func-
tion calls or assembly code, but not nested inside other expressions as in C.
When needed, the frontend introduces assignments to temporary variables to
hold the values of side effecting operations. In both our implementation and in
the discussion below, we make use of the fact that side effects only occur at
these well-defined places. Another normalization is relevant to our implementa-
tion: the control flow of the logical operators && and || is made explicit by the
frontend by generating appropriate if and goto statements. Finally, all C loop
constructs are normalized into infinite loops of the form while (1) { ... }
containing if statements controlling the loop’s exits via break.

Frama-C supports a rich contract-based annotation language called ACSL
that can express assertions, function pre- and post-conditions, loop variants and
invariants, and other attributes of data types and variables [5]. ACSL annota-
tions are formatted as special comments with a leading @ character. Annotated
programs are thus compatible with all other compilers and analyzers for C that
ignore comments. Plugins may extend ACSL syntax with new kinds of annota-
tions and new predicate symbols. Our plugin uses such custom ACSL annotations
to specify initial information flow labels for variables and to express information
flow policies as assertions to be verified.

Our hybrid information flow analysis needs precise information on the targets
of pointers. For this we rely on Eva [8], a mature abstract interpretation based
Frama-C plugin computing an over-approximation of the values of all variables
in a program. Its results are accessible programmatically through its APL.

26 G. Barany and J. Signoles

2.2 Design Constraints

Our goal was to design an analysis that is as precise as possible while faithfully
preserving the semantics of programs that do not violate the given information
flow policy. The latter constraint was important for choosing the representation
of information flow labels in the instrumented program. A straightforward idea
would be to package each monitored variable x of type T in a structure with its
label, such as:

struct x_label { label t label; T x };

However, this would change the sizes of such variables and of compound types
containing such members. As a consequence, programs using C’s sizeof or
offsetof operator would compute different values with and without instrumen-
tation. We therefore chose to completely separate the storage of the program’s
original variables and the label variables introduced by our instrumentation.
Other design goals were related to precision: we track information flow through
pointer-based data structures as precisely as possible. We also track information
flow in structures in a field-sensitive way. For example, we want to keep separate
labels for the members of a structure holding a pair of a public and a private
cryptographic key.

2.3 Security Lattice and Status Annotations

At the time of writing, our analysis uses a simple two-element lattice using the
values 0 (public) and 1 (private). We use the char type for storing the labels
and the bitwise-or (|) operator as the join operator over the lattice. It would
be easy to extend this scheme to support any lattice isomorphic to a lattice of
bit vectors up to 64 bits. More general lattices would require a more complex
combination operator.

Users can use the custom ACSL annotation /*@ private */ (specific to
Secure Flow) to mark declarations of variables that have to be treated as sensitive;
their label variables are initialized accordingly. All other variables are considered
initially public. Custom ACSL annotations are also used to express the intended
flow policy through security annotations at arbitrary program points e. g.,

/*Q@ assert security_status(result) == public; */

Similarly, functions (such as I/O functions) may be annotated with preconditions
requiring their arguments to be public, e. g.

/*@ requires security_status(*x) == public; */
int send(char *x);

Such annotations are considered proof obligations to be discharged using
Frama-C’s static analyzers or provers, or to be turned into runtime assertions in
the instrumented program. The predicate symbol security_status is an ACSL
extension introduced by Secure Flow: its meaning is unknown to other Frama-C

Hybrid Information Flow Analysis for Real-World C Code 27

tools. To make the meaning explicit, our analysis translates such annotations
into a reference to the corresponding label variable. The resulting predicate can
then be analyzed by other Frama-C plugins as usual.

We do not predefine any flow policy: The policy is to be chosen by the user
and expressed in the form of assertions. However, as an optional tool we provide
a command line flag to ensure that the program’s control flow always depends
only on public information. The intention is to verify the absence of a certain
class of timing-based attacks against cryptographic software. The same policy
may be used to guard against denial-of-service attacks by users able to control
the iteration counts of loops. This policy is implemented by inserting an asser-
tion before every branching statement (if or switch) requiring the condition
expression’s label to be public.

2.4 Overview of Information Flow Monitoring

We briefly summarize the basics of the instrumentation done by Secure Flow.
These operations follow the literature [1,2,4,19].

For every variable x of arithmetic type, we add a label variable x of type char.
These are initialized to 1 (secret) for /*@ private */ annotations, to 0 (public)
otherwise. An expression’s label is obtained by mapping variables to labels and
replacing every operator by the combination operator |. Constants are public
(label 0). Every assignment in the program is instrumented with a corresponding
label assignment, e.g., forx = a + bweaddx =a | b.

In a branching statement like if(c) x = 0; else y = 1; the final values
of x and y depend on the path taken and thus on the condition. This is an implicit
information flow. We model it by introducing a label variable pc for the pro-
gram counter context in each branch or loop, initializing it from the conditional
expression’s label (pc = c) and using it in each label assignment controlled by
the branch, e.g., x = 0 | pc. This handles dependencies in the branch that is
actually executed, but the other branch must also be modeled. In the running
example, we therefore add an update y |= pc in the true branch and the same
for x in the false branch. Thus, no matter which branch is taken, all variables
updated in the entire if statement have the implicit flow from the condition
tracked correctly.

Pointers p that can be dereferenced n times are treated by introducing n
corresponding label pointers p-d1 to p_dn [2]. We maintain the invariant that
whenever p points to some object x, its label pointer p_.dl points to x, and
analogously for multiple dereferences. As the number of label pointers depends
on p’s type, pointer type casts are not supported in general. Reads/writes of *p
are instrumented with corresponding label reads/writes of *p_d1i. If p may refer
to several targets, say x and y, the actual choice of a target at run time may
depend on secret data (e.g., if (secret) p = &x; else p = &y;). An assign-
ment to *p has an information flow from p to all of its targets because inspecting
the targets after the assignment may allow inferences on p and thus the secret
data. We use pointer analysis to resolve a safe overapproximation of the set of
targets and insert appropriate label updates x |=p, y |= p.

28 G. Barany and J. Signoles

Arrays introduce information flows from indices to any element the index
may refer to [4]. The labels for distinct elements must therefore be shared; we
use a single summary label arr_summary to model all elements of an array arr.
Due to sharing, writes to the array must be modeled using monotonically non-
decreasing weak updates of the summary label, e.g., arr_summary |= i | v for
an assignment arr[i] = v. Pointers to array elements must be modeled by two
label pointers: One to the array’s summary label and one to the exact array
element, which is needed to preserve the above pointer invariant.

3 New Features of Secure Flow

We now move on to the main contributions of this paper by presenting the way
Secure Flow handles other features occurring in numerous C programs.

3.1 Structures and Unions

Our analysis treats structures in a field-sensitive way: for every struct type s
defined by the program, we define a corresponding label struct type s. The
members of this struct are the labels of the members of s computed in the usual
way; that is, if s has a member m of a pointer type, s has the appropriate number
of label pointer members m_di and m_di_summary. Arrays of structures have a
corresponding summary structure.

We could, in principle, treat C’s union types in exactly the same field-
sensitive way as structs. In practice, there are problems with the precision of
our current implementation: mapping the results of the pointer analysis to our
symbolic lvalue representation may identify too many overlapping fields and thus
track too many information flows that are not present in the actual program.

3.2 Unstructured Control Flow: goto Statements

The use of the goto statement is widespread in systems software written in C:
it is frequently used in functions that check a series of conditions and jump to
cleanup code at the end of the function in case of an error. The goto statement
may also appear in Frama-C’s AST due to some normalizations: Frama-C intro-
duces goto statements to model early returns from the middle of a function,
for continue statements in for loops, and to model short-circuit evaluation of
the logical && and || operators. We must therefore be able to treat programs
with gotos, at least in these restricted forms.

A problem with goto is the propagation of information flows to objects that
might be modified if the branch containing the goto were not taken. This is
similar to the label updates we insert in if statements for the objects modified
in the other branch, but in the case of goto the effects are not local.

Consider the following example:

Hybrid Information Flow Analysis for Real-World C Code 29

x = 1;
if (cond) { goto end; }
x = 0;
end:
return Xx;

At the return statement, the value of x is 0 iff the value of cond is 0. There
is an information flow from the branch condition, via the goto statement, to x,
whose assignment is skipped when the goto is taken. We instrument this example
as follows:

x =1;
x =0 | pc;
pc |= cond | pc;
if (cond) { goto end; }
x = 0;
x =0 | pc;
end: o
x |= pc;
returni}{;

In general, we handle goto statements by ensuring that the program counter
label captures the condition controlling the goto no matter which path is taken.
We identify the branch controlling the goto and propagate its condition’s label
to all the program counter labels that may be traversed by the jump, including
the label for the goto’s target. In the example, the condition controlling the goto
is cond, and the only block possibly affected has the label pc (containing both the
controlling branch and the jump target). The update pc |= cond | pc performs
the propagation. Now, whether or not the jump is taken, subsequent assignments
in any affected block will take place in a context including the condition’s label.
For the case when the goto is taken, we also insert label updates at the target
statement. These update the labels of any variable whose assignments may have
been skipped by the goto. For simplicity, we just use the set of all variables that
may be modified anywhere in the target block (in the example, only x).

We handle not only goto statements from inner blocks to enclosing ones, but
also from outer blocks into more deeply nested ones. We omit the details, but
they follow the same principles as explained above. Our current implementation
only allows forward gotos, i.e., all goto statements must appear textually before
the corresponding target. This is just an artifact of the particular implementation
strategy we chose, but there are no theoretic difficulties with treating backwards
jumps the same way as forward jumps.

The analysis also handles break and continue statements in a similar way
as gotos: It propagates the program counter label of the branching statement
that controls the jump to the corresponding loop or switch statement.

30 G. Barany and J. Signoles

3.3 Function Calls

Our analysis handles function calls in different ways, depending on whether the
call is direct or indirect (i.e., through a function pointer) and whether the call’s
target has a definition in the same program or is external.

For direct calls to defined functions, we instrument both the caller and the
callee. The function’s parameter list is transformed by adding extra label para-
meters for the original parameters as well as a parameter for the program counter
label of the callee’s calling context. We also add global variables for the labels of
all defined functions’ return values; these labels are assigned before the function
returns. That is, a functionto add two numbers is instrumented as follows:

char add_return;

float add(char local_pc, float x, char x, float y, char y) {
float sum; B
char sum;
sum = X + y;
sum = x | y | local pc;

add_return = sum;
return sum;

}

At the call site, the function call is transformed accordingly to pass in all
the required labels. If the function’s return value is assigned to some object,
we insert corresponding assignments from the function’s return label variables
to the target object’s labels. This is the only case we need to handle because
function calls embedded in larger expressions are first transformed by Frama-C
into assignments to temporary variables.

Library functions which do not have definitions in the target program must
be treated separately. ACSL provides a syntax to express the side effects of such
functions using (possibly several) annotations of the form

assigns x1, ..., xn \from y1, ..., ym
meaning that the function may only modify the lvalues x1, ..., xn by using
at most the lvalues y1, ..., ym (but might not necessarily modify all the xi

or use all the yi).

We require such annotations for all functions without visible definitions;
Frama-C includes annotations for the C standard library functions. The analyzer
emits a warning for external functions without annotations and continues with
the (unsound) assumption that the called function has no visible side effects.
If a function is defined but has an assigns annotation, the analyzer trusts the
information from the annotation and does not use its own analysis of the func-
tion’s body to model the function’s externally visible effects. This improves the
analyzer’s efficiency while remaining safe since it is still possible to verify that
the function body satisfies this annotation thanks to other tools (for instance
Eva). Such annotations must be provided for recursive functions.

For a call to an external function with an annotation of

Hybrid Information Flow Analysis for Real-World C Code 31
assigns x \from Vi,1s +--5 Yn,1;

assigns x; \from yri, ..., Ynk;

we insert the corresponding label updates:

xg I=yia | ool Yau | Pc;

X 1= ye1 | oo ynx | pc;

This approach works even for functions taking void * parameters, such
as the standard memcpy function, whose assigns annotation expresses that it
assigns bytes in its output buffer from its input buffer. At the call site we use
the points-to analysis to resolve the pointer arguments to the underlying objects
of concrete types and are able to generate well-typed label updates.

However, the approach does not work for functions whose assigns annota-
tions include modifications to pointers. The semantics of assigns is that it
models all assignments that might be performed by the called function. As
we cannot be sure that these assignments will indeed take place, there is not
enough information to insert the label pointer assignments needed to main-
tain our pointer invariants (Sect.2.4). In such cases the analysis must reject
the input program with an error message. For example, we allow memcpy on
objects of the type struct foo {int a; float b[10];} but not on objects
of the type struct bar {int a; float *b;}. In the latter case, the analysis
would conclude that it is not able to track all the pointer-based flows that may
be performed by the function. However, the practical impact of this restriction is
low: memcpy calls can often be rewritten as assignments if needed, and not many
other standard C functions may have side effects on pointer-based structures.

For indirect function calls, we require that the points-to analysis is able
to resolve the function pointer’s target to a fixed set of candidate functions.
The transformation generates a switch on the function pointer’s value that
dispatches to the appropriate direct function call.

Functions with variable argument lists are not handled directly. Instead we
first invoke another Frama-C plugin named Variadic that transforms variable-
argument functions into functions that take a fixed number of arguments. The
resulting program can then be treated as usual by the information flow analysis.

Finally, functions introduce the issue of visibility of identifiers. Functions may
refer to other functions’ local variables via pointers, as in a call like f (&a). Inside
the function £ we must be able to refer to a’s label variable a. By default, we
allocate every variable’s label in the same scope as the original variable. However,
for such locals that may be referenced from other functions (as determined by
the points-to analysis), we make the corresponding label variables global instead.

3.4 Dynamic Memory Allocation

Our information flow analysis has special handling for the dynamic memory
allocation semantics of the standard C functions malloc, calloc, and realloc,

32 G. Barany and J. Signoles

as well as the free function. These functions operate on pointers of type void *,
which we do not allow in general. However, we do allow them in the context of
dynamic allocation, as long as the type conversions (made explicit as casts by
Frama-C) to or from more concrete types take place immediately at the place of
the function call. Otherwise (e.g., if the program assigns the result of malloc to
a pointer to void and only converts it at a later point), we reject the program.
We can thus obtain the concrete type of the allocated memory buffer. From
the expression specifying the size of the allocation, and knowing the target type,
we can compute the number of allocated elements. We insert calls to calloc to
dynamically allocate the same number of labels of the appropriate types:

float *q = (float *) malloc(42 * sizeof (float));
char *q.dl1 = (char *) calloc(42, sizeof(char));
char *q.dl_summary = ...; // see text below

The information flow in dynamically allocated data structures is thus tracked
via dynamically allocated labels, which allows us to track pointers with maximal
precision. However, there is a problem related to label updates in branches for
dynamically allocated memory areas. Consider the following program:

p = malloc(sizeof (int));
if (...) {*p=1; }else { ... }

As before, in the else branch we must insert updates for the summary labels
of all objects that may be referenced by p. This is easy if p may only point to
variables (say, x): We can insert an update x |= if_pc. However, in the case
where p points to dynamically allocated memory, we have no simple way of nam-
ing and enumerating the correct summary label to insert the necessary updates.
We must therefore introduce an approximation. Our analysis introduces one sta-
tically allocated summary label (i.e., a global variable) per dynamic allocation
site. At each such call site, label arrays are allocated dynamically, but the tar-
get’s summary pointer is pointed to the call site’s shared summary label. The
example above is instrumented as follows:

p = malloc(sizeof (int));

p-dl = calloc(l, sizeof (char));

static char dynalloc_site_l_summary = O;
p-dl_summary = &dynalloc_site_1_summary;
if pc = cond | global_pc;

if (cond) {
*p = 1;
*p_dl = 0 | if_pc;
} else {
dynalloc_site_l_summary |= if_pc;

}

This approach thus introduces aliasing between the summary labels of differ-
ent buffers allocated at the same site. Raising the information flow label of one

Hybrid Information Flow Analysis for Real-World C Code 33

object allocated at a certain call site automatically raises the labels of any other
object allocated at the same site. In the extreme, if a program contains only a sin-
gle static allocation site (e.g., because it uses a wrapper function around malloc),
all dynamically allocated objects share one summary. This is a source of impre-
cision in our current implementation.

The simplest way to resolve this issue is to turn an allocation site that may
be used in different contexts into explicitly different allocation sites. This could
be done by automatic inlining of functions performing dynamic allocation. In our
experiments with cryptographic software, we manually duplicate an allocation
function, introducing a special variant for the allocation of secret keys.

3.5 Summary of Restrictions

We briefly summarize the restrictions on input programs that can be analyzed
by Secure Flow.

— Most kinds of type casts between pointer types are forbidden; casts to and
from void * related to dynamic memory allocation are allowed, as are casts
between void * and character pointer types.

— The program must contain assigns annotations for all external functions
(provided by Frama-C for the C standard library) and recursive functions.

— Calls to external functions may not have side effects on pointers, but may
have side effects on their targets.

— No backwards jumps with goto are allowed (this is only an artifact of the
current implementation).

— The analysis is imprecise (i.e., overly conservative) if logically separate mem-
ory areas are allocated at the same call site of malloc. This can be avoided
by inlining/specializing functions that perform dynamic allocation.

Overall, these conditions do not impose disproportional restrictions on well-
written systems code, as long as the entire program is available for whole-
program analysis, or annotated with assigns annotations for the missing parts.

4 Evaluation

We evaluate our hybrid information flow analysis by checking an information
flow policy to protect against timing attacks on a cryptographic library. This
verification also illustrates one of the main benefits of our hybrid approach:
combining static and dynamic verification.

4.1 Background on the Chosen Flow Policy

Timing attacks and other side-channel attacks are an important class of vulner-
ability in the implementations of cryptosystems; a recent article by Genkin et al.
gives a good overview of a wide range of techniques and targets [11]. The class
of timing attack that interests us is caused by conditional branching on data

34 G. Barany and J. Signoles

derived from the cryptosystem’s secret key. This type of vulnerability typically
occurs in asymmetric (also known as public-key) cryptosystems such as RSA,
where the core of the algorithm loops over the bits of the secret key and decides
based on the value of each bit which mathematical operation to perform.

In general, the two branches of an if statement take different amounts of
time, and an attacker who is able to measure a cryptographic operation’s execu-
tion time may use this to deduce information about the secret key. Such attacks
are known against implementations of several cryptosystems in common use,
including both RSA and elliptic curve cryptography [6,11]. Even if timing dif-
ferences cannot be measured directly, attackers on the same machine may be
able to observe instruction cache misses that allow them to deduce the same
kind of information [20].

We therefore chose a flow policy forbidding control flow based on secret infor-
mation; this is a useful property to verify on real-world cryptographic code. We
note in passing that there are also timing attacks based on the order of accesses
to lookup tables and the corresponding data cache misses. These are independent
of control flow and outside of the scope of our current analysis.

In the following sections we discuss our analysis of the cryptographic imple-
mentations in the LibTomCrypt library (http://www.libtom.org/).

4.2 Symmetric Cryptosystems

LibTomCrypt includes implementations of 14 different symmetric cryptosystems.
This class of system typically works by breaking the input into fixed-sized blocks,
then performing permutations and substitutions of the bytes in each block based
on look-up tables indexed by the key and a loop counter. The number of oper-
ations per block is fixed by the algorithm, and the number of blocks to be
processed depends only on the length of the message (which we do not consider
secret information). Thus we did not expect to find timing attacks against this
class of system. As these programs are safe with respect to our flow policy, they
are a good test to ensure that our analysis does not introduce imprecisions.

We use a separate driver program for each of the cryptosystems. The driver
calls LibTomCrypt’s initialization routines for the given system, then encrypts 10
megabytes of random data, decrypts the encrypted data, and quits. We perform
whole-program analysis, applying Frama-C to each driver program and the entire
LibTomCrypt source code. However, the (fixed) key and data to be encrypted
are not exposed to Frama-C to avoid the possibility that Eva specializes its results
to a given key or input.

Our analyzer was able to instrument and analyze all of the programs with
only one significant change to LibTomCrypt: the internal states of all the differ-
ent systems are stored in a union, only one member of which is used at a time.
As discussed in Sect. 3.1, our analysis is currently unable to analyze accesses to
unions precisely. We therefore changed the type of this union to struct. After
this change, we can successfully instrument each of the 14 different symmetric
cryptosystems. On the instrumented program, Eva successfully statically verifies

http://www.libtom.org/

Hybrid Information Flow Analysis for Real-World C Code 35

for each of the systems that the flow policy is satisfied, i.e., no branch condition
in the program depends on the key.

We next turned to dynamic analysis of the instrumented programs to evaluate
instrumentation overhead. We compiled both the original driver program and
the program instrumented by our hybrid information flow analysis with GCC
version 4.8.4 at optimization level -02 and ran them on an Ubuntu Linux system
on an 8-core Intel Core i7 CPU clocked at 2.30 GHz. Table 1 shows the execution
times of the programs in seconds. We ran each program five times and report the
median of the runs. We report execution times of the original program and the
instrumented version in seconds as well as the slowdown due to instrumentation.

Table 1. Execution time of symmetric cryptographic algorithms with and without
instrumentation and with additional E-ACSL instrumentation.

Program | Original | Instrumented | Slowdown | +E-ACSL | 4+-Slowdown
aes 0.11s 0.33s 3.0x 6.87s 20.8x
anubis 0.13s 0.36s 2.8% 6.84s 19.0x
blowfish |0.19s 0.44s 2.3% 6.99s 15.9%
casth 0.26s 0.50s 1.9% 8.46s 16.9x
kasumi |0.42s 0.76s 1.8x 11.24s 14.8x
khazad |0.15s 0.33s 2.2x 7.26s 22.0%
kseed 0.30s 0.53s 1.8x 7.60s 14.3x
noekeon |0.22s 0.41s 1.9x% 6.69s 16.3x
rc2 0.42s 0.61s 1.5% 7.42s 12.2x
rch 0.15s 0.35s 2.3x 7.76s 22.2%
rcb 0.18s 0.36s 2.0x 741s 20.6 %
saferp 0.28s 1.97s 7.0% 27.66's 14.0x
twofish | 0.15s 0.36s 2.4x 6.97s 19.4x
xtea 0.30s 0.47s 1.6x 7.04s 15.0%

Slowdowns for most of the programs are below or near a factor of 2. This is the
order of magnitude we expected, inserting one or more assignment statements
for every assignment in the program. We have not yet been able to determine
the reason for the large slowdown factor of 7.0 for the one outlier, saferp.

The last two columns in Table1 show the additional instrumentation over-
head when using Frama-C’s E-ACSL plugin [18]. Indeed Eva proves all secu-
rity assertions, but must leave some memory safety properties unproved due to
approximations made during the analysis. E-ACSL instruments the program to
dynamically monitor accesses to memory blocks to ensure memory safety at run-
time. This is needed because the correctness of the information flow analysis is
only guaranteed if the program is memory safe. We report the absolute execution
time in seconds for each benchmark instrumented with information flow tracking

36 G. Barany and J. Signoles

and memory safety monitoring. The last column shows a slowdown of 10 to 20
which is typical of this monitoring for E-ACSL version 0.8 [24].

The table does not show the memory use of the programs, which behaves
fairly regularly: All of the original programs use about 32 MB as they are linked
statically to the same library containing the lookup tables for all the different
algorithms, and to the same buffer of random input data. These programs do
not use dynamic memory allocation. For the instrumented programs memory
use increases to about 52 MB, a factor of 1.6. This, too, is as expected: These
algorithms perform byte-oriented processing, and we currently monitor each byte
in the various byte arrays and lookup tables with a 1-byte label of type char.
That is, we essentially double the memory used by monitored data. The relative
overhead would be smaller for programs that mainly use larger types than char.
With E-ACSL, memory use grows to about 190 MB, an additional factor of 3.7.

This combination of Eva and E-ACSL demonstrates the ability of our hybrid
approach to combine static and dynamic analyses. Here Eva proves the security
assertions, while E-ACSL validates at runtime the remaining safety properties.
Both together ensure that our programs are safe with respect to our flow policy.

4.3 Elliptic Curve Cryptography

As a representative of the class of public-key (asymmetric) cryptosystems, we
chose to analyze LibTomCrypt’s implementation of elliptic curve cryptography
(ECC). The library offers two implementations of the underlying algorithm: one
of the implementations is known to be faster but vulnerable to timing attacks,
while the other is claimed to be resistant to timing attacks. The vulnerable
operation is the multiplication of a point on an elliptic curve with a scalar in
the function 1tc_ecc_mulmod. The scalar k is part of the system’s private key.
In a loop, the function inspects k’s bits one by one and, depending on its value,
performs some arithmetic or continues to the next loop iteration.

Elliptic curve operations must be done on multiple-precision integers.
LibTomCrypt is able to use one of several multiple-precision arithmetic libraries;
we chose its sister project LibTomMath. Again, we perform whole-program
analysis using Frama-C on a driver program, the LibTomCrypt library, and
LibTomMath. Some rewrites were needed to make it possible to analyze this sys-
tem with our information flow analyzer. The biggest change concerned LibTom-
Crypt’s interface to its math library, which needlessly uses void * pointers
throughout to refer to multiple-precision integers. As discussed in Sect. 2.4, our
analysis cannot deal with such programs. We manually changed the types in this
internal interface to the concrete type of LibTomMath’s integers.

For the information flow analysis we also had to be able to label the private
ECC key as secret. In LibTomCrypt all integers are allocated by the mp_init
function, which calls malloc. Due to the context sensitivity problem described
in Sect. 3.4, all integers share the same dynamic allocation summary label, thus
marking the secret key as secret would trivially make every number secret. To
avoid this we duplicated mp_init as mp_init_secret and used this variant to

Hybrid Information Flow Analysis for Real-World C Code 37

allocate the numbers in the secret key. As the malloc call site is no longer shared,
this version no longer suffers from the false sharing issue.

We also had to change a few places where backwards jumps with goto state-
ments were used to implement loops. In all cases we were able to rewrite the
code to avoid using a goto. We added ACSL annotations of the form

assigns result->dp[..], result->sign \from
a->dp[..], a->sign, b->dp[..], b->sign[..]

to some of the basic mathematical functions in LibTomMath (addition, subtrac-
tion, multiplication) to speed up Eva. These annotations express that the sign
and digits (dp) of the result of such an operation depend only on the sign and
digits of the operands. Finally, we simplified code for parsing serialized ECC
keys. The code was in principle analyzable, but its complexity caused unneces-
sary slowdowns in Eva, hindering our experiments.

After these changes, we were able to apply our program transformation.
Subsequent static analysis using Eva has shown that the flow policy is indeed
violated: The secret label is propagated from the secret key to a conditional
branch as discussed above. We can thus confirm the known timing vulnerability.

However, our analysis also found essentially the same bug in the variant of
the 1tc_ecc_mulmod function that is claimed to be resistant to timing attacks by
performing the same amount of work on different branches that depend on secret
information. We give a simplified description of this implementation. Depending
on a variable i (the next bit of the key, 0 or 1) and another 0-1 variable mode
derived from i, the code performs a conditional branch and executes either
a call ecc_ptdbl(M[i], M[i]), doubling some value M[i] and storing it back
into M[i], or ecc_ptdbl (M[1], M[2]), doubling M[1] and ignoring the result by
storing it into a dummy location M[2]. This is in violation of our flow policy, as
the conditional branch on secret data remains in the program. We believe that
this implementation may give a false sense of security in the light of cache-based
attacks, and that it should be replaced by a version that does not suffer from
this problem [6, Sect. 3].

A possible solution is to replace the branch on i and mode by a lookup table
to determine the arguments for the function call. The following variant of the
computation sketched above is correctly accepted by our static analysis without
raising an alarm about secret-dependent control flow:

int i1_tb1[2][2] = {{1,1},{i,i}}, i2_tb1[2][2] = {{2,2},{i,i}};
ecc_ptdbl (M[il_tbl[mode]l [i1], M[i2_tbl[mode] [1]11);

For dynamic analysis, we use a test program that performs 3000 repetitions
of the basic ECC operation ecc_shared_secret. The original program executes
in 0.73s (median of five runs), using 1400 kB of memory. We run the dynamic
analysis with instrumentation to propagate labels, but without aborting the pro-
gram on policy violations (which would happen instantaneously). With instru-
mentation, execution time increases to 4.71s (6.5x) and memory use to 1553 kB
(1.1x). The current version of E-ACSL does not scale well to programs of several
hundreds of thousands of lines of code, so we did not run it on this benchmark.

38 G. Barany and J. Signoles

5 Related Work

As mentioned before, this paper is based on work by Assaf et al. [1,2] and
Barany [4] which focused on sound hybrid information flow analysis of a subset
of C including pointers, arrays and pointer arithmetics. We extend this work
to a larger subset of C including structures, unstructured control flow, indirect
function calls and dynamic memory allocation.

There is an abundant literature on information flow analysis. However, as far
as we know, there is no hybrid information flow analysis that handles a subset
of the C programming language as large as ours. To our knowledge, the only
approaches that handle real-world programs target JavaScript [13,16].

First, Kerschbaumer et al. [16] handle JavaScript’s arrays, structures,
unstructured control flow and function calls. However, the details are omit-
ted except for unstructured control flow. There is no mention of indirect func-
tion calls. Second, Hedin et al. develop JSFlow [14] with its extended hybrid
version [13]. They track arrays, structures, function calls and dynamic alloca-
tions precisely. They also support JavaScript’s closures which are usually encoded
via function pointers in C. However, there is no mention of unstructured control
flow. Also they target a less permissive notion of non-interference than ours:
they do not allow to assign secret values to locations that previously held public
values (the converse, overwriting a secret value by a public value, is allowed). In
contrast, our approach only uses such constraints at user-defined program points
through security annotations. However, we could encode their non-interference
property by adding an assertion to every assignment statement.

Regarding the C programming language, previous work which aims at target-
ing a large variety of C programs is based on taint analysis, either statically [9]
or dynamically [25]. However taint analysis is not appropriate for verifying non-
interference properties similar to ours because it does not detect all kinds of
indirect flow. The aforementioned approaches are no exception.

6 Conclusions

We have presented Secure Flow, a hybrid information flow analysis for real-world
C programs. Secure Flow instruments C code with monitoring code after an aux-
iliary static analysis. The instrumented code tracks information flow labels for
all values of interest, as determined by a flexible annotation system for express-
ing information flow policies. After instrumentation, the code may be analyzed
statically or may be executed for dynamic monitoring. Our experiments show
that the overhead of dynamic monitoring is reasonable.

Secure Flow is implemented as a plugin for the Frama-C platform. It is about
3500 lines of OCaml code, blank lines excluded. It supports a large subset of C,
including important real-world features such as pointers with pointer arith-
metic, dynamic allocation, goto statements, and function pointers. Future work
includes removing current restrictions, including at least backwards jumps and
several memory allocations from the same call site.

Hybrid Information Flow Analysis for Real-World C Code 39

We have demonstrated Secure Flow, in combination with the static analysis

tool Eva and the monitoring tool E-ACSL, on a real-world cryptographic library.
Our experiments show that they can verify the absence of an important class
of timing attacks in many cryptosystem implementations. It has also found a
known timing vulnerability in another cryptosystem, but also a similar issue in
the alternative implementation supposedly correcting the vulnerability.

References

10.

11.

12.

Assaf, M.: From qualitative to quantitative program analysis: permissive enforce-
ment of secure information flow. Ph.D. thesis, Université de Rennes 1 (2015).
https://hal.inria.fr/tel-01184857

Assaf, M., Signoles, J., Tronel, F., Totel, E.: Program transformation for non-
interference verification on programs with pointers. In: Janczewski, L.J., Wolfe,
H.B., Shenoi, S. (eds.) SEC 2013. TAICT, vol. 405, pp. 231-244. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-39218-4_18

Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:
Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages
and Analysis for Security, PLAS 2009, pp. 113-124. ACM (2009). http://doi.acm.
org/10.1145/1554339.1554353

Barany, G.: Hybrid information flow analysis for programs with arrays. In: Hamil-
ton, G., Lisitsa, A., Nemytykh, A.P. (eds.) Proceedings of the Fourth International
Workshop on Verification and Program Transformation, Eindhoven, The Nether-
lands, 2nd. Electronic Proceedings in Theoretical Computer Science, vol. 216, pp.
5-23. Open Publishing Association, April 2016

Baudin, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. http://frama-c.com/acsl.html

Bernstein, D.J., Lange, T.: Failures in NIST’s ECC standards (2016). https://cr.
yp-to/newelliptic/nistecc-20160106.pdf

Bielova, N., Rezk, T.: A taxonomy of information flow monitors. In: Piessens, F.,
Vigano, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 46-67. Springer, Heidelberg
(2016). doi:10.1007,/978-3-662-49635-0-3

Blazy, S., Biihler, D., Yakobowski, B.: Structuring abstract interpreters through
state and value abstractions. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI
2017. LNCS, vol. 10145, pp. 112-130. Springer, Cham (2017). doi:10.1007/
978-3-319-52234-0_7

Ceara, D., Mounier, L., Potet, M.L.: Taint dependency sequences: a characteri-
zation of insecure execution paths based on input-sensitive cause sequences. In:
The 3rd International Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2010), pp. 371-380 (2010)

Denning, D.E., Denning, P.J.: Certification of programs for
secure information flow. Commun. ACM 20(7), 504-513 (1977).
http://doi.acm.org/10.1145/359636.359712

Genkin, D., Packmanov, L., Pipman, I., Shamir, A., Tromer, E.. Physi-
cal key extraction attacks on PCs. Commun. ACM 59(6), 70-79 (2016).
http://cacm.acm.org/magazines/2016 /6 /202646-physical-key-extraction-attacks-
on-pces/fulltext

Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, April 1982

https://hal.inria.fr/tel-01184857
http://dx.doi.org/10.1007/978-3-642-39218-4_18
http://doi.acm.org/10.1145/1554339.1554353
http://doi.acm.org/10.1145/1554339.1554353
http://frama-c.com/acsl.html
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
http://dx.doi.org/10.1007/978-3-662-49635-0_3
http://dx.doi.org/10.1007/978-3-319-52234-0_7
http://dx.doi.org/10.1007/978-3-319-52234-0_7
http://doi.acm.org/10.1145/359636.359712
http://cacm.acm.org/magazines/2016/6/202646-physical-key-extraction-attacks-on-pcs/fulltext
http://cacm.acm.org/magazines/2016/6/202646-physical-key-extraction-attacks-on-pcs/fulltext

40

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

G. Barany and J. Signoles

Hedin, D., Bello, L., Sabelfeld, A.: Value-sensitive hybrid information flow control
for a javascript-like language. In: Proceedings of the 2015 IEEE 28th Computer
Security Foundations Symposium, CSF 2015, pp. 351-365. IEEE Computer Society
(2015)

Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow
in JavaScript and its APIs. In: Proceedings of the 29th Annual ACM Symposium
on Applied Computing, SAC 2014, pp. 1663-1671. ACM (2014)

Hunt, S., Sands, D.: On flow-sensitive security types. In: Conference Record of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2006, pp. 79-90. ACM (2006). http://doi.acm.org/10.1145/1111037.
1111045

Kerschbaumer, C., Hennigan, E., Larsen, P., Brunthaler, S., Franz, M.: Information
flow tracking meets just-in-time compilation. ACM Trans. Archit. Code Optim.
10(4), 38:1-38:25 (2013)

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573-609 (2015).
http://dx.doi.org/10.1007/s00165-014-0326-7

Kosmatov, N., Signoles, J.: A lesson on runtime assertion checking with Frama-C.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 386-399. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40787-1_-29

Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based
confidentiality monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006.
LNCS, wvol. 4435, pp. 75-89. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77505-8_7. http://dl.acm.org/citation.cfm?id=1782734.1782741
http://dl.acm.org/citation.cfm?id=1782734.1782741

Percival, C.: Cache missing for fun and profit (2005). http://www.daemonology.
net/papers/cachemissing.pdf

Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
2010 23rd IEEE Computer Security Foundations Symposium (CSF), pp. 186-199,
July 2010

Smaragdakis, Y., Balatsouras, G.: Pointer analysis. Found. Trends Program. Lang.
2(1), 1-69 (2015). https://yanniss.github.io/points-to-tutoriall5.pdf

Volpano, D., Irvine, C., Smith, G.: A sound type system for secure
flow analysis. J. Comput. Secur. 4(2-3), 167-187 (1996). http://dl.acm.org/
citation.cfm?id=353629.353648

Vorobyov, K., Signoles, J., Kosmatov, N.: Shadow State Encoding for Efficient
Monitoring of Block-level Properties Submitted for publication

Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: a practical
approach to defeat a wide range of attacks. In: Proceedings of the 15th Conference
on USENIX Security Symposium, USENIX-SS 2006, vol. 15. USENIX Association
(2006)

http://doi.acm.org/10.1145/1111037.1111045
http://doi.acm.org/10.1145/1111037.1111045
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/978-3-642-40787-1_29
http://dx.doi.org/10.1007/978-3-540-77505-8_7
http://dx.doi.org/10.1007/978-3-540-77505-8_7
http://dl.acm.org/citation.cfm?id=1782734.1782741
http://dl.acm.org/citation.cfm?id=1782734.1782741
http://www.daemonology.net/papers/cachemissing.pdf
http://www.daemonology.net/papers/cachemissing.pdf
https://yanniss.github.io/points-to-tutorial15.pdf
http://dl.acm.org/citation.cfm?id=353629.353648
http://dl.acm.org/citation.cfm?id=353629.353648

2 Springer
http://www.springer.com/978-3-319-61466-3

Tests and Proofs

11th International Conference, TAP 2017, Held as Part
of STAF 2017, Marburg, Germany, July 19-20, 2017,
Proceedings

Gabmeyer, S.; Johnsen, E.B. (Eds.)

2017, ¥, 163 p. 38 illus., Softcover

ISBEM: 978-3-319-61466-3

	Hybrid Information Flow Analysis for Real-World C Code
	1 Introduction
	2 An Overview of Secure Flow
	2.1 Frama-C
	2.2 Design Constraints
	2.3 Security Lattice and Status Annotations
	2.4 Overview of Information Flow Monitoring

	3 New Features of Secure Flow
	3.1 Structures and Unions
	3.2 Unstructured Control Flow: goto Statements
	3.3 Function Calls
	3.4 Dynamic Memory Allocation
	3.5 Summary of Restrictions

	4 Evaluation
	4.1 Background on the Chosen Flow Policy
	4.2 Symmetric Cryptosystems
	4.3 Elliptic Curve Cryptography

	5 Related Work
	6 Conclusions
	References

