
Hierarchical Graph Transformation Revisited

Transformations of Coalgebraic Graphs

Julia Padberg(B)

Hamburg University of Applied Sciences, Hamburg, Germany
julia.padberg@haw-hamburg.de

Abstract. Concepts for structuring are fundamental to any modelling
technique. Hierarchical graphs allow vertical structuring, where nodes or
edges contain other nodes or subgraphs. There have been several sug-
gestions to hierarchical graphs that differ in terms of the underlying
graph type, the elements that are structured and the way the structur-
ing is achieved. In this contribution we aim at a more general notion
of hierarchical structures for graphs. We investigate several extensions
of the powersets that comprise arbitrarily nested subsets, and call them
superpower set. This allows the definition of graphs with possibly infi-
nitely nested nodes. Additionally, we allow edges that are incident to
edges. Coalgebras and comma categories are used to capture different
notions of hierarchies. The main motivation of this paper is the question
how to define recursion on a graph’s structure so that we still obtain an
M-adhesive transformation system.

Keywords: Graph · Hierarchy · Coalgebra · M-adhesive transforma-
tion system

1 Motivation

Graphs are commonly used to describe complex structures that may become very
large. For the sake of scalability many approaches using graphs have one or more
additional structuring notions. Hierarchical graphs (and graph transformations)
add some hierarchy to the nodes or to the edges. Various approaches to graphs
with hierarchy have been proposed, e.g. [5,7–9,19,22,24,28,29]. The resulting
techniques were used for modelling hierarchical hypermedia, distributed project
management, mobile and ubiquitous systems among others.

In this contribution we investigate the possible variations with respect to
their use in graph transformation systems. This allows choosing an adequate
hierarchical model and directly obtaining the results from M-adhesive transfor-
mation systems. The concept of graphs is very general and can be specialised
to directed and undirected graphs, as well as hypergraphs, typed, labelled or
attributed graphs. To cope with that many different approaches M-adhesive
transformation systems offer an abstract definition that requires some categori-
cal constructs and provides a common theory for many different types of graphs
and the corresponding transformation systems.
c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 20–35, 2017.
DOI: 10.1007/978-3-319-61470-0 2

Hierarchical Graph Transformation Revisited 21

Hierarchies are naturally presented by means of a recursion, since items of
one hierarchical level are expanded to several items of the next lower level. In
Sect. 2 we represent the recursive structure of the hierarchy as two constructions
that allow nested subsets of subsets. This construction – the superpower set –
yields the corresponding functors. Subsequently we investigate these functors
and show that coalgebraic graphs based on these functors yield M-adhesive
transformation systems. One advantage is that the additional graph structure is
not represented by additional arcs but in terms of containment given in a uniform
way based on functors. Moreover, we expand the notion of edges so that edges
between edges are possible. Although this leads to unconventional concepts such
edges have already been used, e.g. in AGG [2,14] or for graph grouping [19]. We
investigate several notions of hierarchies in graphs in more detail in Sect. 5:

Hierarchical Graphs comprise many different approaches to hierarchies in
graph, in Sect. 5.1 we discuss the relation to three of them, hierarchical hyper-
edges as in [9] and packages in [8]. The latter is a more general approach that
allows various types of graphs. In [24] hierarchical graphs are given that allow
trees as hierarchies for both nodes and edges.

Multi-Hierarchical Graphs as presented in [29] are sketched in Sect. 5.2. Their
hierarchy concept is given for nodes and they support several different hierarchies
in the same graph that are independent of each other.

Bigraphs [22] are an important theory for modelling ubiquitous computing
and combine two graphs to model both locality and connectivity. The first states
containment in terms of a forest, the latter the connection via hyperedges. They
can be considered to be a special case of hierarchical graphs (see Sect. 5.3).

Graph Grouping as given in [19] allows the analysis of large graphs by group-
ing nodes and edges into super nodes and super edges, see Sect. 5.4.

The main benefit of this contribution is the systematic representation of var-
ious hierarchy concepts for graphs that support graph transformation in terms
of M-adhesive transformation systems, i.e. the algebraic double pushout (DPO)
approach, see Sect. 3. Since the hierarchy concepts are the main focus we only
have investigated graph types without any additional data as labels or attributes.
Section 4 gives an overview over the hierarchy concepts that are obtained as coal-
gebraic graphs by varying the underlying categorical concepts. It summarizes the
concepts at an informal level and facilitate the establishment of transformation
systems for non-standard hierarchical graphs. Then we examine in Sect. 5 var-
ious different approaches to hierarchies in graphs. This contribution does not
aim at a general theory of hierarchical graphs but at the availability of algebraic
graph transformations for widely spread graph hierarchy concepts.

Structure of the paper. In the next section (Sect. 2) we investigate the different
constructions for an iterated power set construction. Section 3 details the use of
coalgebras for the construction of M-adhesive categories. The emerging hierar-
chical concepts are sketched in Sect. 4. We then discuss various approaches to
hierarchical graphs (see Sect. 5) and exemplarily compare them to their formu-
lation in terms of M-adhesive categories in Sect. 4. Subsequently in Sect. 6, we
discuss related work and concluding remarks in Sect. 7 close this contribution.

22 J. Padberg

2 Extension of the Powerset

One of the main technical results of this contribution is given in this section. We
introduce superpower sets1 that allow arbitrary nesting of subsets and are the
basic construction for the hierarchy concepts.

The superpower set is achieved by recursively inserting subsets of the super-
power set into itself. We here present two possibilities P and Pω. Both are func-
tors that preserve pullbacks of injective morphisms and hence can be deployed
in the formulation of M-adhesive transformation systems. These can be con-
structed from existing ones by various categorical constructions, namely product,
coslice, functor and comma categories (see Theorem 4.15 (construction of (weak)
adhesive HLR categories) in [10]) and from F -coalgebras based on suitable func-
tors F (see Theorem 1). In Sect. 4 we summarize the potential constructions
arising from these results.

The superpower set construction can be defined in various ways, here we
present two of them (see the supplemental report [23] for additional ones). Both
allow nesting of subsets of arbitrary depth.

Definition 1 (Superpower set P). Given a set M and P(M) the power set
of M then we define the superpower set P(M):

1. M ⊂ P(M) and P(M) ⊂ P(M).
2. If M ′ ⊂ P(M) then M ′ ∈ P(M).

P(M) is the smallest set satisfying 1. and 2.

Condition 1 ensures that sets may contain nested subset of different depth.
Pω differs from P as in each subset there are only subsets that have the same
depth in terms of nesting. So, for some non-empty set M with m ∈ M we have
{m,M} /∈ Pω(M) but {m,M} ∈ P(M).

Definition 2 Superpower set Pω). Given a set M we define P0(M) = M
and P1(M) = P(M) the power set of M . Then Pi+1(M) = P(Pi(M)) and
Pω(M) =

⋃
i∈N0

Pi(M).

The use of strict subsets ensures in both definitions that Russell’s antinomy
cannot occur. Both superpower set constructions yield well-founded sets with an
order based on the depth of the nested parentheses and hence allow induction.

Subsequently, we only investigate the properties of P. The results hold for
Pω and other possibilities of superpower sets as well, see [23].

Lemma 1 (P is a functor). P : Sets → Sets is defined for sets as in
Definition 1 and for functions f : M → N by P(f) : P(M) → P(N) with

P(f)(x) =

{
f(x) ;x ∈ M

{P(f)(x′) | x′ ∈ x} ; else

1 Although the nesting of sets or nodes (see Sect. 6) are well-known, to the author’s
knowledge neither the construction nor the corresponding functors have been con-
sidered before.

Hierarchical Graph Transformation Revisited 23

Example 1 (Functor P). Given sets N1 = {u, v, w}, N2 = {n1, n2, n3} and
f : N1 → N2 with f : u �→ n1, v �→ n1, w �→ n3 then we have
P(f) : P(N1) → P(N2) with for example P(f)({u, v, w, {u, v}, {v, {w, ∅}}}) =
{n1, n3, {n1}, {n1, {n3, ∅}}}.

Lemma 2 (P preserves injections). Given injective function f : M → N
then P(f) : P(M) → P(N) is injective.

For the proof see Lemma 2 in [23]. In this paper the proofs are only given if they
are relevant for understanding the concepts.

Lemma 3 (P preserves pullbacks along injective morphisms). Given a
pullback diagram (PB) in Sets with injective g1 : C ↪→ D, then P(A) in the
diagram (1) is pullback in Sets as well.

Proof. Pullbacks and the superpower set functor (see
Lemma 2) preserve injections, so πB : A ↪→ B, P(πB) : P(A) ↪→
P(B) and πP(B) : P ↪→ P(B) are injective. Since (PB) is
a pullback diagram we have A = {(b, c) | f1(b) = g1(c)}.
(1) commutes, since P is a functor. Let P be the pullback of
(P(D),P(f1),P(g1)), so P(f1) ◦ πP(B) = πP(C) ◦ P(g1). Hence,
P = {(B′, C ′) | P(f1)(B′) = P(g1)(C ′)} ⊆ P(B) × P(C).

Moreover, there is the unique
h : P(A) → P s.t. h(A′) =
(P(πB)(A′),P(fπC)(A′)) for
all A′ ⊆ A so that the dia-
grams (2) and (3) commute
along h: πP(B) ◦ h = P(πB) and
πP(C) ◦ h = P(πC).

We define h̄ : P → P(A) with

h̄((X,Y)) =

⎧
⎪⎨

⎪⎩

(b, c) ; if X = b ∈ B, Y = c ∈ C

{(x, y) | x ∈ X ∩ B, y ∈ Y ∩ C, f1(x) = g1(y)} ∪
⋃

(X′,Y ′)∈(X−B)×(Y −C) h̄(X ′, Y ′) ; else

and have:

1. h̄ is well-defined since h̄(X,Y) ∈ P(A).
2. (2) commutes along h̄, i.e. P(πB) ◦ h̄ = πP(B)(X,Y) is shown by induction

over the depth of the nested parentheses n.For n = 0, i.e. the atomic nodes,
let (b, c) ∈ P with b ∈ B and c ∈ C be given. P(πB) ◦ h̄(b, c) = P(πB)(b, c) =
b = πP(B)(b, c). Let be P(πB) ◦ h̄(X,Y) = πP(B)(X,Y) for sets with at most
n nested parentheses. Given (X̂, Ŷ) ∈ P with n + 1 nested parentheses and
let X̂ = B̂ ∪ X with B̂ ⊆ B and X ∩ B = ∅. Let Ŷ = Ĉ ∪ Y with Ĉ ⊆ C and
Y ∩ C = ∅. X and Y have at most n nested parentheses. Then

24 J. Padberg

P(πB) ◦ h̄(X̂, Ŷ)

= {x | x ∈ B̂ ∧ ∃y ∈ Ĉ : f1(x) = g1(y)} ∪
⋃

(X′,Y ′)∈(X×Y)

P(πB) ◦ h̄(X ′, Y ′)

IB
= B̂ ∪

⋃

(X′,Y ′)∈(X×Y)

πP(B)(X
′, Y ′)

= B̂ ∪ X

= πP(B)(X̂, Ŷ)

P(A) is isomorphic to the pullback P , since

– h◦ h̄ = idP , since πP(B) is injective and πP(B) ◦h◦ h̄ = P(πB)◦ h̄ = πP(B) ◦ idP .
– h̄◦h = idP(A), since P(πB) is injective and P(πB)◦ h̄◦h = πP(B)◦h = P(πB) =
P(πB) ◦ idP(A).

Fig. 1. Morphism in < IdSets ↓ P >

For a first impression graphs with arbi-
trarily nested nodes are defined. Note,
only the nodes are nested, but nodes
containing others do not have a name.
In Fig. 1 the node {m1,m2,m3} con-
tains the nodes m1,m2 and m3 but
it does not have a name. Edges are
hyperedges given as a subset of the
superpower set, so the first level of the
nesting of subsets defines the edges,
so the edge a4 connects the nodes
{n1, n2} and {n2, n4}. The edges have neighbours that are atomic nodes or
nodes containing nodes and are given by the neighbour function ngb : E → P(N).
The category of P-graphs is given by a comma category
< IdSets ↓ P >. The morphisms are given by mappings
of the nodes and arcs f = (fN , fE) : G1 → G2 with
fN : N1 → N2 and fE : E1 → E2 so that (1) commutes,
i.e. P(fN) ◦ ngb1 = ngb2 ◦ fN .

Example 2 (P-Graph). Figure 1 illustrates two P-graphs and the morphism based
on the mappings fN : N1 → N2 and fE : E1 → E2 with fN (m4) = n2, fN (mi) =
ni and fE(ei) = ai for i = 1, 2, 3. So, P(fN)({m1,m2,m4}) = {n1, n2}.

G1 = (N1, E1, ngb1 : E1 → P(N1)) with
N1 = {m1, .., m4}
E1 = {e1, e2, e3}

ngb1 : e1 	→ {m1, m2, m3}
e2 	→ {m1, {m1, m2, m4}
e3 	→ {m2, m4}

and G2 =
(N2, E2, ngb2 : E2 → P(N2))

with N2 = {n1, .., n4}
E1 = {a1, ..., a4}

ngb2 : a1 	→ {n1, n2, n3}
a2 	→ {n1, {n1, n2}
a3 	→ {n2}
a4 	→ {{n1, n2}, {n2, n4}}

Hierarchical Graph Transformation Revisited 25

3 M-Adhesive Categories Using Coalgebras

To express that nodes contain nodes again we need a mapping of nodes to super-
power set of nodes cnt : N → P(N). This is essentially a coalgebra. Coalge-
bras are often used for specifying the behaviour of systems and data structures
that are potentially infinite, for example classes in object-oriented programming,
streams and transition systems.

The second main result shows that coalgebras of functors
preserving pullbacks along injective morphisms form an M-
adhesive category.

An endofunctor F : Sets → Sets gives rise the category
of coalgebras SetsF with M

αM−→ F (M) – also denoted by
(M,αM) – being the objects and morphisms f : (M,αM) →
(N,αN) – called F -homomorphism – so that (1) commutes in Sets (see [26]).

Lemma 4 (Pullbacks along injections in SetsF). Given a functor F :
Sets → Sets that preserves pullbacks along an injective morphism, then SetsF
has pullbacks along an injective F-homomorphism.

For the proof see Lemma 10 in [23].
M-adhesive transformation systems (e.g. [12,25]) are an abstract framework for
graph transformations and allow a uniform description of the different notions
and results based on a class M of specific monomorphisms. These well-known
results comprise concepts for transformation, local confluence and parallelism,
application conditions, amalgamation and so on.

Definition 3 (Class of monomorphisms M). Let M be a class of monomor-
phisms in Sets that is PO-PB-compatible, that is:

1. Pushouts along M-morphisms exist and M is stable under pushouts.
2. Pullbacks along M-morphisms exist and M is stable under pullbacks.
3. M contains all identities and is closed under composition.

According to Property 4.7 in [26] if f : M → N is injective in Sets then f
is an F -monomorphism in SetsF. Obviously the class of all injective functions

MF = {(A,αA)
f
↪→ (B,αB) | f is injective in Sets} is PO-PB-compatible.

Theorem 1 (M-Adhesive Category). (SetsF,MF) is an M-adhesive cate-
gory if F preserves pullbacks along injective morphisms.

For the proof see proof of Theorem 1 in [23].
This allows M-adhesive transformation systems for various dynamic systems
based on coalgebras of functors the preserve pullbacks along injective morphisms.
For a first discussion see [23].

Example 3 (Nested nodes). Nested nodes can be constructed using the coalgebra
CoalgP based on the superpower set functor P. Given a set N the function cnt :
N → P(N) gives the nodes contained in a given node. This function yields an
M-adhesive category; the category of coalgebras CoalgP over P : Sets → Sets

26 J. Padberg

with the class M of injective morphisms.
The nesting of nodes can also be defined allowing the different kinds of nesting
using some functor F : Sets → Sets, so we have the contains function cnt :
N → F(N). This yields an M-adhesive category where G may be one of the
(super-)power functors, e.g. P, P(1,2), P or Pω or any other functor preserving
pullbacks of injections.

We now investigate the nesting of edges, that is neighbours of edges can again be
edges. Edges between edges have been already mentioned for the AGG approach
[14] and are used as super edges in graph grouping [19]. To define nested edges
we need to extend the neighbour function ngb to edges and nodes. So, we have
coalgebraic graphs with directed edges that can be considered as a many sorted
coalgebra using the functor F : Sets × Sets → Sets × Sets with F (N,E) =

(N,E)
(!,ngb)−→ (1, N ×N) where 1 is the final object and ! the corresponding final

morphism, see e.g. [26]. Corollary 2 in [23] extends the result of Theorem 1 to
many sorted coalgebras.

Corollary 1. Let F : Sets × Sets → Sets × Sets be given where F preserves
pullbacks along injections and let M be the class of pairs of injective morphisms
< fN , fE >. Then the category of coalgebraic graphs (CoalgF,M) is an M-
adhesive category.

To give an example we define nested hyperedges.

Example 4 (Nested hyperedges). Given a set of nodes N and a set of edge names
E and a function yielding the neighbours ngb : E → P(V � E).
Then the category of coalgebras CoalgF1

over F1 : Sets × Sets → Sets ×
Sets with F1(N,E) = (1,P(N � E)) yields the category of graphs with nested
hyperedges. The category of coalgebraic graphs with nested hyperedges CoalgF1

is an M-adhesive category. Analogously, graphs with nested, undirected edges
can be defined by the functor P(1,2) that yields only subsets containing one ore
two elements. And graphs with nested, directed edges can be defined by a functor
yielding (N � E) × (N � E), for both see [23].

Subsequently some properties are sketched that might be worthwhile when inves-
tigating coalgebraic graphs more deeply. These properties can be defined inde-
pendently of the underlying constructs and functors. Their definition depends
on the purpose of the approach and we merely hint at a possible formulation as
this contribution does not aim at a general theory of hierarchical graph trans-
formation.
Properties of nested nodes can be defined for example as follows:

– Nodes names are unique if cnt is injective.
– Nodes referring to themselves are the atomic nodes, so we define the set

aN = {n | cnt(n) = n}.
– Nodes are containers if they are not atomic.
– The set of nodes is well-founded if and only if

– X ∈ N ∧ Y ∈ cnt(X) implies, that Y ∈ cnt(N)

Hierarchical Graph Transformation Revisited 27

– X ∈ cnt(N) ∧ Y ∈ (X − N) implies, that Y ∈ cnt(N)
This ensures that the contains function cnt yields a directed acyclic graph.

– The set of nodes is hierarchical if and only if cnt(n) ∩ cnt(n′) �= ∅ implies
n = n′. This ensures that the neighbour function cnt yields a forest.

Properties of nested edges can be defined for example as follows:

– Common edges are those without nested edges. Hence, the set of common
edges is given by those edges e, where ngb(e) does not contain any edge.

– The function ngb∗ : E → P(N) yields the set of all incident nodes of
arbitrarily deep nesting and is defined by ngb∗(e) = {n ∈ N | n ∈
ngb(e)} ∪ ⋃

x∈ngb(e) ngb∗(x). Edges are node-based if is ngb∗ well-defined.
They are not node-based if they are incident to some container node which
is not well-founded.

– Edges are atomic if they are node-based and if the function ngb∗(E) ⊆ aN
only yields atomic nodes.

The notion of subgraphs given by a set of nodes can be transferred easily to
the above concepts using the recursive extension cnt∗(n) = {n ∈ N | n ∈
cnt(n)} ∪ ⋃

x∈cnt(n) cnt∗(x). A subgraph G[M] ⊆ G = (N,E, cnt, ngb) induced
by a subset of nodes M ⊆ N can be defined by G[M] = (M, {e ∈ E|ngb(e) ∈
cnt∗(M)}, cnt, ngb) where cnt, ngb are the corresponding restrictions. This yields
a notion of subgraph that comprises edges between inducing nodes. Note that
in [24] a different approach is chosen (see Sect. 5.1) where edges between nodes
that have the same parent need not have this parent.

4 M-Adhesive Categories of Hierarchical Graphs

The results of the both previous sections yield different M-adhesive categories
depending on the choice of the categorical construction and the underlying func-
tors. We obtain different types of hierarchical graphs and corresponding M-
adhesive transformation systems. Hence (DPO) transformations for each of these
types of hierarchical graphs are provided.

The neighbours of edges are given by the neighbour function ngb and the
nodes contained by node are given by the contains function cnt. The nodes may
be containers or atomic nodes, containers may have a name or not, depending on
the construction. The edges can be the well-known ones, (un-)directed, hyper-
edges with or without an order as well as ones having edges between edges. Next,
we state the categorical constructions, involved functors and relate the resulting
categories to the examples in this paper. For details and proofs see [23].

Example 5 (Types of hierarchical graphs and corresponding M-adhesive trans-
formation systems).

1. The comma category < IdSets ↓ P > as used in Example 2 is an M-adhesive
category because of the comma-category construction (see Theorem 4.15 in
[10]) and P preserving pullbacks of injections. It yields hierarchical graphs
with hyperedges between nodes and containers of nodes, but containers do
not have an explicit name.

28 J. Padberg

2. Combining the nested nodes based on the superpower set functor P as in
Example 3 with usual edges concepts leads to various types of coalgebraic
graphs and is closely related to hierarchical graphs in the sense of [8]. In
this case hierarchical graphs are given by G = (N,E, cnt : N → P(N), ngb :
E → H(N)). H determines edge type. Typical choices for H are P or ()∗

for hyperedges, P(1,2) for undirected edges or for directed edges the copying
functor X2 : Sets → Sets × Sets with X2(N) = N × N . For an example see
Sect. 5.1. Item 1.
We use a coalgebra over F1 : Sets × Sets → Sets × Sets with F(N,E) =
P(N) × H(N). Then the category of coalgebraic graphs (CoalgF1

,M) is an
M-adhesive category.

3. A hierarchy where the edges are refined by subnets (see [9]) is obtained by
the neighbouring function ngb : E → (N)∗ × Pω(N) that maps edges to a
pair where the first component defines the incident nodes and the second
component defines the nodes contained by the edges. This nesting is layered
as it is defined by the functor Pω, see Definition 2. The resulting graphs
are given by G = (N,E, ngb : E → N∗ × Pω(N)). The category of such
graphs is given by the comma category < IdSets ↓ G > with the functor
G = (()∗ × Pω) ◦ X2.
Note G(N) = (()∗ × Pω) ◦ X2(N) = (()∗ × Pω)(N,N) = N∗ × Pω(N). For
an example see Sect. 5.1. Item 2.

4. For hierarchies where the edges between nodes may have other parents than
the nodes and where the edges may contain subgraphs (as in [24]) the
coalgebraic graphs are given by the functions cnt : N → P(N � E) and
ngb : E → P(N) × P(N � E). We use the coalgebra with F2(N,E) =
(P(N � E),P(N) × P(N � E)). P(N � E) yields nested sets of nodes and
edges and P(N) yields the incident nodes of an hyperedge. To obtain an M-
adhesive category CoalgF2

we construct F2 from other functors that yield
M-adhesive categories. An example is in Sect. 5.1. Item 3

5. Multiple hierarchies can be constructed as coalgebraic graphs using a copying
functor Xi : Sets → Sets×Sets× ...×Sets. Then the contains function cnt :
N → ∏ ◦Xi ◦P(N) yields for each node i different nestings. For edges we may
use hyperedges ngb : E → P(N). The corresponding M-adhesive category
CoalgF3

of coalgebraic graphs is given by F3(N,E) = (
∏ ◦Xi ◦ P(N),P(N))

and corresponds to the multi-hierarchical graphs in Sect. 5.2.
6. For bigraphs, see Sect. 5.3, we use the functions cnt : N → P(N) and

ngb : E → P(N � E) × P(N � E). Again we obtain an M-adhesive category
CoalgF4

of coalgebraic graphs with F4(N,E) = (P(N),P(N �E)×P(N �E))
constructed from other functors.

7. The functions cnt : N → P(N) and ngb : E → N × N × P(E) allow the
description of graph grouping and give rise to the category of coalgebraic
graphs CoalgF5

with F5(N,E) = (P(N), N × N × P(E)) that corresponds
roughly to the the graph grouping in Sect. 5.4.

Hierarchical Graph Transformation Revisited 29

Varying the constructions, mainly comma categories, product categories and
coalgebras and varying the involved functors yield a huge amount of different
hierarchy concepts that all lead to well-defined transformation systems. The
above examples have been selected to show the width of this approach and to
relate it to existing notions of hierarchical graphs. It may as well be used to define
new appropriate hierarchy concepts. So, for a specific application the employed
hierarchy concept can be chosen out of many different ones.

5 Transformations of Hierarchical Graphs

Here we argue to what extent known concepts can be considered as M-adhesive
categories of hierarchical graphs. The detailed, mathematical investigation of
each of these examples is beyond the scope of this paper.

Labels and attributes are not considered in this paper, but labelled or
attributed graphs yield M-adhesive categories (see [10,12]) and at least labels
can be introduced into coalgebraic constructions (see [1,26]).

5.1 Hierarchical Graphs

Many possibilities to define hierarchical graphs have already been investigated,
e.g. [4,6–9,24]. In [13] the possibility of infinitely recursive hierarchies has already
been introduced as an infinite number of type layers. Here we sketch how three
of them, namely [8,9,24], can be considered in this framework.

1. Hierarchical Graphs as in [8]
In this approach graphs are grouped into packages via a coupling graph.
A hierarchical graph is a system H = (G,D,B), where G is a graph some
graph type, P is a rooted directed acyclic graph, and B is a bipartite coupling
graph whose partition contains the nodes of NG and of NP . All edges are
oriented from the first NG to the second set of nodes NP and every node in
NG is connected to at least one node in NP . For this approach we can consider
coalgebraic graphs in the coalgebra category CoalgF1

(see Example 5.2) with
cnt : N → P(N) being well-founded. Additionally a completeness condition,
stating that each atomic node is within some package, has to hold:
∀n ∈ N : cnt(n) = n ⇒ ∃p ∈ N : n ∈ cnt(p)

Fig. 2. Hierarchical graph as in [8]

The packages are the nodes that are
not atomic. The edge function is given
by ngb : E → H(N) where H(N)
determines the type of the underlying
graphs. In Fig. 2 we have an example
with two packages, that uses directed
egdes. So based on H = X2 we can give
this example as a coalgebraic graph.

30 J. Padberg

We have N = {n,m, x, y, z, p1, p2, p3}

with cnt(v) =

⎧
⎪⎪⎨

⎪⎪⎩

v ; if v ∈ {n,m, x, y, z}
{x, y, z} ; if v = p1
{n,m} ; if v = p2
{p1, p2} ; if v = p3

and ngb :

⎧
⎪⎪⎨

⎪⎪⎩

a �→ (y, x)
b �→ (y, z)
c �→ (m,n)
e �→ (z, n)

2. Hierarchical Hypergraphs as in [9] Hypergraphs H = (V,E, att, lab) in [9]
consist of two finite sets V and E of vertices and hyperedges. These are
equipped with an order, so the attachment function is defined by att : E →
V ∗. The hierarchy is given in layers, in the sense that subsets in the same
layer have the same nesting depth. So, edges are within one layer. Hierarchical
graphs < G,F, cts : F → H >∈ H are given with special edges F that contain
potentially hierarchical subgraphs. Figure 3a depicts a hierarchical graph that
can be considered to be a graph in the comma category < IdSets ↓ G > (see
Example 5.3). The graph G = (N,E, ngb) with ngb : E → N∗ × Pω(N)) is
defined so that edges are node-based.

3. Hierarchical Graphs as in [24] are obtained from hypergraphs by adding a
parent assigning function to them. Nodes and edges can be assigned as a
child of any other node or edge. These correspond to coalgebraic graphs in
the category CoalgF2

(see Example 5.4). The parent function coincides with
cnt : N → P(N � E) being well-founded and hierarchical and ngb : E →
P(N) × P(N � E) since edges can have children as well.

In Fig. 4 the nodes N = {1, 2, 3, 6, 8, 9, 11} and the contains function cnt :
N → P(N � E), yield the nodes and their children. The hyperedges E =
{4, 5, 7, 10} with ngb : E → P(N × P(N � E)) yield the edges. Note in this
example the edges are not nested.
Contains and neighbour function are given by
cnt : 1�→1 8�→8

2�→2 9�→9
3�→{1, 2, 4} 11�→{8, 9}
6�→6

and ngb : 4�→({1, 2}, ∅)
5�→({2, 6}, ∅)
7�→({3, 6, 11}, ∅)

10�→({8, 9}, ∅)

5.2 Multi-Hierarchical Graphs

In [29] multiple hierarchies have been suggested, first ideas can be found in [24].
A finite set of child nesting functions is specified that relate nodes to set of
nodes and edges. This corresponds to a finite family (cnti : N → P(N � E))i<n

that are well-founded and hierarchical. For transformations of multi-hierarchical
graphs there is the M-adhesive category CoalgF3

of coalgebraic graphs (see
Example 5.5).

5.3 Bigraphs as an Hierarchy

Bigraphs [22] originate in process calculi for concurrent systems and provide a
graphical model of computation. A bigraph is composed of two graphs: a place

Hierarchical Graph Transformation Revisited 31

(a) as given in[9]

ngb : a 	→< xyz, ∅ >
b 	→< nm, ∅ >
c	→< v2v4, ∅ >
e1 	→< v1v2v3, {x, y, z} >
e2 	→< v4, {n,m} >

(b) as a graph in < IdSets ↓ G >

Fig. 3. Example of hierarchical hypergraphs

graph and a link graph. They emphasize interplay between physical locality
and virtual connectivity. Reaction rules allow the reconfiguration of bigraphs.
A bigraphical reactive system consists of a set of bigraphs and a set of reaction
rules, which can be used to reconfigure the set of bigraphs. Bigraphs may be
composed and have a bisimulation that is a congruence wrt. composition. Cate-
gorically, bigraphs are given as morphisms in a symmetric partial monoidal cat-
egory where the objects are interfaces. This construction corresponds to ranked
graphs as given in [15] where morphisms are given by a isomorphism class of con-
crete directed graphs with interfaces. [11] discusses extensively the relation of
bigraphs to graph transformations. In [16] a functor that flattens bigraphs into
ranked graphs is provided that encodes the topological structure of the place
graph into the node names. In [5] bigraphs are shown to be essentially the same
as gs-graphs that present the place and the link graph within one graph. We also
represent bigraphs within one graph, where the hierarchical structure is given
by a superpower set of nodes and the link structure is given by nested hyper-
edges. Here we abstract from the categorical foundations and give bigraphs as a
special cases of hierarchical graphs. Hence, we ignore their categorical structure,

(a) Example from [24] (b) corresponding coalgebraic graph

Fig. 4. Hierarchical graph in [24]

32 J. Padberg

(a) Example from [22] (b) as a graph in Coalg
F4

Fig. 5. Bigraph

but we obtain a transformation system. Nevertheless, often only the graphical
representation of bigraphs is used [3,30,31].

A bigraph is a 5-tuple: (V,E, ctrl, prnt, link) : 〈k,X〉 → 〈m,Y 〉, where V is
a set of nodes, E is a set of edges, ctrl is the control map that assigns controls
to nodes, prnt is the parent map that defines the nesting of nodes, and link
is the link map that defines the link structure. The notation 〈k,X〉 → 〈m,Y 〉
indicates that the bigraph has k holes (sites) and a set of inner names X and m
regions, with a set of outer names Y . These are respectively known as the inner
and outer interfaces of the bigraph.

Below we illustrate the relation of bigraphs to coalgebraic graphs in CoalgF4

(see Example 5.6) in an example. In Fig. 5a we have an introductory example
from [22] that we represent as a coalgebraic graph. The coalgebraic graphs in
the M-adhesive category CoalgF4

need to have well-founded and hierarchical
nodes, where the contains function represents the parent function, so cnt =
prnt. The function cntrl yields basically the in- and out-degree of each node.
The link function yields hyperedges, which we represent as directed hyperedges.
Hyperedges connecting outer names are represented as directed hyperedges with
the arc itself as the target, those connecting inner names as directed hyperedges
with the arc itself as the source. The regions correspond to the roots 0,1 of the
forests given by cnt and the site are the distinguished atomic nodes 0, 1, 2. The
nodes N = {0,1, v0, v1, v2, v3, 0, 1, 2} and the contains function cnt : N → P(N),
yield the place graph. The directed nested hyperedges E = {e1, e2, e3, e4, e5}
with ngb : E → P(N � E) × P(N � E) yield the link graph. We have:

cnt : 0�→{v0, v2}
1�→{v3, 1}

v0 �→{v1}
v1 �→{0}
v2 �→v2
v3 �→{2}
i�→i;for 0 ≤ i ≤ 2

and ngb : e1 �→({v1, v2, v3}, {v1, v2, v3})
y0 �→({v2}, {v2})
y1 �→({v2, v3}, {v2, v3})
x0 �→({x0}, {y1})
x1 �→({x1}, {v3})

Assuming cnt to be just well-founded we obtain bigraphs with sharing as in [28].

Hierarchical Graph Transformation Revisited 33

5.4 Graph Grouping

[19] aims at a fundamentally different application area, namely graph grouping to
support data analysts making decisions based on very large graphs. Here, a graph
hierarchy is established to cope with large amounts of data and to aggregate
them. Graph grouping operators produce a so-called summary graph containing
super vertices and super edges. A super vertex stores the properties representing
the group of nodes, and a super edge stores the properties representing the
group of edges. Basically this leads to a contains function cnt : N → P(N)
that are well-founded but not necessarily hierarchical and a neighbour function
ngb : E → N × N × P(E). These can be given as coalgebraic graphs in the
category of coalgebras CoalgF5

(see Example 5.7) that is M-adhesive.
But clearly this graph grouping is only sensible for attributed graphs since

these used to abstract the data.

6 Related Work

Abstraction in graph transformations is employed for different purposes, e.g. for
model checking, for a common theory for different types of graphs, for transfer-
ring concepts and results. Abstract approaches to graph transformations [10,12]
of different types of graphs comprise mainly M-adhesive transformation systems.
Other approaches to abstract graphs can be found in that uses the presentation
of graphs as a comma-category [17,27] or as a coalgebra [18]. F -graphs are a
family of graph categories induced by a comma category construction using a
functor F (see [27]). In [17] the notion of F -graphs based on a construction that
is a comma-category and has been encoded as a coalgebraic construction in [18]
using the basic idea from [26].

In [20,21] coalgebraic signatures are used to define various graph types and
yields first steps towards a new paradigm for graph transformation systems.
Moreover [20] is concerned with attributed graph transformations, since the
coalgebraic definition allows a uniform treatment of term algebras over arbi-
trary signatures and unstructured label sets. in contrast this contribution is
concerned with the inner structure of hierarchical graphs and establishes coalge-
bras as another possible construction for M-adhesive transformation systems.

7 Concluding Remarks

We have presented a novel approach to hierarchies in graphs and graph transfor-
mations. This approach supports the use of the mature and extensive theory of
algebraic graph transformations for graphs with many different and also uncom-
mon hierarchy concepts. The aim of our approach is not a generalisation of
hierarchy concepts in graph transformation but a possibility to access algebraic
graph transformation for graphs with a wide spectrum of hierarchy concepts.

The vision is a clear and simple access that provides a potential user with
the hierarchical technique that is most adequate for the purpose. This requires

34 J. Padberg

a much deeper treatment of the hierarchical concepts at the abstract categorical
level as well as an intuitive representation of these concepts.

To aim at this vision future work comprises then formulation of typical results
and notions for hierarchical graph transformations, as e.g. flattening, hierarchical
rule application or imposing a hierarchy. Moreover, the inclusion of labels, types
and attributes is central for realizing that vision. For this task the work in [21] is
an exciting prospect. Additionally, the transfer of existing concepts to this more
categorical approach is required based on further investigation of the relations
discussed in Sect. 5.

Acknowledgements. I am very grateful for the constructive and thorough comments
of the anonymous referees.

References

1. Adamek, J.: Introduction to coalgebra. Theor. Appl. Categories 14, 157–199
(2005). http://www.tac.mta.ca/tac/volumes/14/8/14-08abs.html

2. AGG: The attributed graph grammar system (2014). http://user.cs.tu-berlin.de/
∼gragra/agg/, revision: 10/29/2014 16:43:00

3. Benford, S., Calder, M., Rodden, T., Sevegnani, M.: On lions, impala, and bigraphs:
Modelling interactions in physical/virtual spaces. ACM Trans. Comput. Hum.
Interact. 23(2), 9: 1–9: 56 (2016). http://doi.acm.org/10.1145/2882784(2016)

4. Bruni, R., Corradini, A., Montanari, U.: Modeling a service and session calculus
with hierarchical graph transformation. ECEASST 30 (2010). http://journal.ub.
tu-berlin.de/index.php/eceasst/article/view/427

5. Bruni, R., Montanari, U., Plotkin, G.D., Terreni, D.: On hierarchical graphs: recon-
ciling bigraphs, Gs-monoidal theories and Gs-graphs. Fundam. Inform. 134(3–4),
287–317 (2014). http://dx.doi.org/10.3233/FI-2014-1103

6. Busatto, G.: An abstract model of hierarchical graphs and hierarchical graph trans-
formation. Ph.D. thesis, University of Paderborn, Germany (2002). http://ubdata.
uni-paderborn.de/ediss/17/2002/busatto/disserta.pdf

7. Busatto, G., Hoffmann, B.: Comparing notions of hierarchical graph transforma-
tion. Electr. Notes Theor. Comput. Sci. 50(3), 310–317 (2001). http://dx.doi.org/
10.1016/S1571-0661(04)00184--7

8. Busatto, G., Kreowski, H., Kuske, S.: Abstract hierarchical graph transformation.
Math. Struct. Comput. Sci. 15(4), 773–819 (2005). http://dx.doi.org/10.1017/
S0960129505004846

9. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. J. Com-
put. Syst. Sci. 64(2), 249–283 (2002). http://dx.doi.org/10.1006/jcss.2001.1790

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in TCS. Springer (2006)

11. Ehrig, H.: Bigraphs meet double pushouts. Bull. ATCS 78, 72–85 (2002)
12. Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transforma-

tion and HLR systems based on the DPO approach. Bull. EATCS 102, 111–121
(2010)

13. Engels, G., Schürr, A.: Encapsulated hierarchical graphs, graph types, and meta
types. Electr. Notes Theor. Comput. Sci. 2, 101–109 (1995). http://dx.doi.org/10.
1016/S1571-0661(05)80186--0

http://www.tac.mta.ca/tac/volumes/14/8/14-08abs.html
http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
http://doi.acm.org/10.1145/2882784
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/427
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/427
http://dx.doi.org/10.3233/FI-2014-1103
http://ubdata.uni-paderborn.de/ediss/17/2002/busatto/disserta.pdf
http://ubdata.uni-paderborn.de/ediss/17/2002/busatto/disserta.pdf
http://dx.doi.org/10.1016/S1571-0661(04)00184--7
http://dx.doi.org/10.1016/S1571-0661(04)00184--7
http://dx.doi.org/10.1017/S0960129505004846
http://dx.doi.org/10.1017/S0960129505004846
http://dx.doi.org/10.1006/jcss.2001.1790
http://dx.doi.org/10.1016/S1571-0661(05)80186--0
http://dx.doi.org/10.1016/S1571-0661(05)80186--0

Hierarchical Graph Transformation Revisited 35

14. Ermel, C., Rudolf, M., Taentzer, G.: The agg approach: language and environ-
ment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of
Graph Grammars and Computing by Graph Transformation, pp. 551–603. World
Scientific Publishing Co., Inc. (1999). http://dl.acm.org/citation.cfm?id=328523.
328619

15. Gadducci, F., Heckel, R.: An inductive view of graph transformation. In: Presicce,
F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 223–237. Springer, Heidelberg (1998).
doi:10.1007/3-540-64299-4 36

16. Gassara, A., Rodriguez, I.B., Jmaiel, M., Drira, K.: Encoding bigraphical reactive
systems into graph transformation systems. Electron. Notes Discrete Math. 55,
207–210 (2016). http://dx.doi.org/10.1016/j.endm.2016.10.051

17. Jäkel, C.: A unified categorical approach to graphs (2015). https://arxiv.org/abs/
1507.06328

18. Jäkel, C.: A coalgebraic model of graphs (2016). https://arxiv.org/abs/1508.02169
19. Junghanns, M., Petermann, A., Rahm, E.: Distributed grouping of property graphs

with gradoop. In: Proceedings of the 17. Fachtagung, Datenbanksysteme für Busi-
ness, Technologie und Web. LNI, GI (2017) (to be published)

20. Kahl, W.: Categories of coalgebras with monadic homomorphisms. In: Bonsangue,
M.M. (ed.) CMCS 2014 2014. LNCS, vol. 8446, pp. 151–167. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44124-4 9

21. Kahl, W.: Graph transformation with symbolic attributes via monadic coalgebra
homomorphisms. ECEASST 71 (2014). http://journal.ub.tu-berlin.de/eceasst/
article/view/999

22. Milner, R.: Pure bigraphs: structure and dynamics. Inf. Comput. 204(1), 60–122
(2006). http://dx.doi.org/10.1016/j.ic.2005.07.003

23. Padberg, J.: Towards M-adhesive categories of coalgebraic graphs. Technical
report, ArXiv e-prints (2017). https://arxiv.org/abs/1702.04650

24. Palacz, W.: Algebraic hierarchical graph transformation. J. Comput. Syst. Sci.
68(3), 497–520 (2004). http://dx.doi.org/10.1016/S0022-0000(03)00064--3

25. Prange, U., Ehrig, H., Lambers, L.: Construction and properties of adhesive and
weak adhesive high-level replacement categories. Appl. Categorical Struct. 16(3),
365–388 (2008)

26. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput.
Sci. 249(1), 3–80 (2000). http://www.sciencedirect.com/science/article/pii/
S0304397500000566

27. Schneider, H.J.: Describing systems of processes by means of high-level replace-
ment. In: Handbook of Graph Grammars and Computing by Graph Transforma-
tion, vol. 3, pp. 401–450. World Scientific (1999)

28. Sevegnani, M., Calder, M.: Bigraphs with sharing. Theor. Comput. Sci. 577, 43–73
(2015). http://dx.doi.org/10.1016/j.tcs.2015.02.011

29. Ślusarczyk, G., �Lachwa, A., Palacz, W., Strug, B., Paszyńska, A., Grabska, E.:
An extended hierarchical graph-based building model for design and engineering
problems. Autom. Const. 74, 95–102 (2017)

30. Walton, L.A., Worboys, M.: A qualitative bigraph model for indoor space. In: Xiao,
N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol.
7478, pp. 226–240. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33024-7 17

31. Worboys, M.F.: Using bigraphs to model topological graphs embedded in orientable
surfaces. Theor. Comput. Sci. 484, 56–69 (2013). http://dx.doi.org/10.1016/j.tcs.
2013.02.018

http://dl.acm.org/citation.cfm?id=328523.328619
http://dl.acm.org/citation.cfm?id=328523.328619
http://dx.doi.org/10.1007/3-540-64299-4_36
http://dx.doi.org/10.1016/j.endm.2016.10.051
https://arxiv.org/abs/1507.06328
https://arxiv.org/abs/1507.06328
https://arxiv.org/abs/1508.02169
http://dx.doi.org/10.1007/978-3-662-44124-4_9
http://journal.ub.tu-berlin.de/eceasst/article/view/999
http://journal.ub.tu-berlin.de/eceasst/article/view/999
http://dx.doi.org/10.1016/j.ic.2005.07.003
https://arxiv.org/abs/1702.04650
http://dx.doi.org/10.1016/S0022-0000(03)00064--3
http://www.sciencedirect.com/science/article/pii/S0304397500000566
http://www.sciencedirect.com/science/article/pii/S0304397500000566
http://dx.doi.org/10.1016/j.tcs.2015.02.011
http://dx.doi.org/10.1007/978-3-642-33024-7_17
http://dx.doi.org/10.1016/j.tcs.2013.02.018
http://dx.doi.org/10.1016/j.tcs.2013.02.018

http://www.springer.com/978-3-319-61469-4

	Hierarchical Graph Transformation Revisited
	1 Motivation
	2 Extension of the Powerset
	3 M -Adhesive Categories Using Coalgebras
	4 M -Adhesive Categories of Hierarchical Graphs
	5 Transformations of Hierarchical Graphs
	5.1 Hierarchical Graphs
	5.2 Multi-Hierarchical Graphs
	5.3 Bigraphs as an Hierarchy
	5.4 Graph Grouping

	6 Related Work
	7 Concluding Remarks
	References

