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Abstract. Refinements are model transformations that leave large parts
of the source models unchanged. Therefore, if refinements are executed
outplace, model elements need to be copied to the target model. Refine-
ments written in imperative languages are increasingly verbose, unless
suitable language facilities exist for creating these copies implicitly. Thus,
for languages restricted to general-purpose facilities, the verbosity of
refinements is still an open problem. Existing approaches towards reduc-
ing this verbosity suffer from the complexity of developing a higher-order
transformation to synthesize the copying code. In this paper, we propose
a generic transformation library for creating implicit copies, reducing the
verbosity without a higher-order transformation. We identify the under-
lying general-purpose language facilities, and compare state-of-the-art
languages against these requirements. We give a proof of concept using
the imperative QVTo language, and showcase the ability of our library
to reduce the verbosity of an industrial-scale transformation chain.
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1 Introduction

In model-driven engineering (MDE), imperative transformation languages are
widely used as vehicles for creating operational model transformations [4].
By including facilities known from general-purpose languages, imperative lan-
guages enable [26] the specification and execution of fit-for-purpose model
transformations.

One major purpose of model transformation is refinement [25], with use cases
such as desugaring [15], aspect weaving [17], or synthesis [7]. According to the
terminology used in [20], a model refinement “preserves large parts of the source
model and adds additional information”. Therefore, a refinement is endogenous
because source and target models are based on the same metamodel. Further-
more, refinements in MDE often need to preserve the source models as primary,
immutable artifacts. Thus, one possible approach is to create a temporary one-
to-one copy of the source model (e.g., a file copy) in order to refine the copy using
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an inplace transformation. However, this approach lacks end-to-end traceability
and leads to redundant copies of the changing elements. Therefore, refinement
transformations are often required to execute outplace [26] and need to copy the
unchanged elements during the refinement.

This paper addresses the problem that imperative languages are increasingly
verbose when used for outplace model refinements. The reason is that users need
to copy the unchanged elements explicitly by iterating over all links of each ele-
ment, resulting in a huge amount of boilerplate code that users must write and
maintain. Nowadays, maintainability of model transformations is already consid-
ered as a critical factor [1]. A well-known approach for reducing this verbosity is
the implicit copy design pattern [24], proposing a mechanism for creating copies
implicitly. However, such a mechanism must be supported by the transformation
language in use. Therefore, Lano and Kolahdouz-Rahimi request “suitable lan-
guage facilities to be present” [24]. On the one hand, languages such as ATL [18]
or Epsilon Flock [29] provide special-purpose facilities for implicit copies. On the
other hand, languages restricted to general-purpose facilities still suffer from an
increased verbosity because users need to create all copies explicitly.

In literature, other approaches exist towards reducing this verbosity [12,13,22].
These related works regard the copying as schematic-repetitive code [30], and use a
higher-order transformation (HOT, [32]) to synthesize the boilerplate code. How-
ever, such approaches suffer from the intrinsic complexity of developing a HOT [31],
and from the maintenance burden of re-executing the HOT to update the boiler-
plate code in case of metamodel evolution [28].

In this paper, we demonstrate that general-purpose facilities are sufficient to
realize the implicit copy pattern in imperative languages. Thereby, the language
facilities requested by Lano and Kolahdouz-Rahimi [24] are made explicit. We
regard the copying as generic code [30] and propose a transformation library that
provides implicit copies to reduce the verbosity of model refinements. We identify
an amount of four underlying language facilities that enable our approach, and
check state-of-the-art imperative languages against these facilities. Thereby, we
assess their ability to realize our library. In contrast to related work, we propose
a generic library that is reusable as-is for different metamodels, saving users from
the effort of developing a HOT and maintaining the synthesized boilerplate code.

As a proof of concept, we realize our library using the QVT Operational
Mappings language (QVTo, [27]), and showcase the ability of our library to
improve the maintainability of an industrial-scale transformation chain.

In summary, this paper makes the following contributions:

— We provide a concept for an implicit copy library that reduces the verbosity
of model refinements written in imperative transformation languages.

— We illustrate the required language facilities, and compare state-of-the-art
imperative languages against these requirements.

— We give a proof of concept using the imperative QVTo language.

Paper Organization: Sect. 2 introduces a motivating example, before we dis-
cuss related work in Sect. 3. In Sect. 4, we present our implicit copy library and
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compare existing languages against the required facilities. We use QVTo to pro-
vide a proof of concept in Sect. 5, before concluding in Sect. 6.

2 DMotivating Example

As an illustrative example of a model refinement, we consider a statemachine
dialect that requires desugaring, i.e., semantics-preserving normalization to a
more basic syntactic form. In our dialect, every state of a statemachine may
refer to a do activity which is a behavior executed periodically. The activity is
released for execution in a fixed time interval (the period) and executes once per
period. In Fig. la, we show an excerpt from a statemachine including a state A
with a do activity named a() and a fixed period of 50 milliseconds.

o\ A
(

A A} 4 A )
do / a() period: 50 ms

(a) Original Statemachine (b) Refined Statemachine

Fig. 1. Example refinement of statemachine models

When transforming such models to an execution platform, the declarative
specification of a do activity needs to be refined to an equivalent operational
form. For example, in Fig.1b, we replaced the declaration of the do event by
a submachine with two substates and one clock ¢, measuring the time that
has already passed during the current period. Initially, the submachine is in
state Released, denoting a situation in which the behavior a() was released for
execution, but has not yet been executed in the current period. At latest after
50 ms, the invariant ¢ < 50ms forces the submachine to execute the behavior
a() by switching to state Idle. In this state, the submachine waits until the clock
constraint ¢ == 50ms is fulfilled, i.e., the end of the current period. At this time,
the activity is released for execution again. Therefore, the submachine switches
back to Released and resets the clock c to zero.

Our example refinement affects only states with do activities, whereas
all other model elements (e.g., transitions) remain unchanged. Copying the
unchanged model elements explicitly requires boilerplate code to iterate over
all elements and copy all their links to other elements. In language families like
UML with a multitude of different types included, the number of unchanged
elements might increase drastically, and lead to an advanced verbosity of the
boilerplate code for refinements. Thus, according to the implicit copy pattern,
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the transformation language in use should provide a mechanism to specify explic-
itly only the refinement of states. All other unchanged model elements should
be copied implicitly.

3 Related Work

In the following, we first review existing transformation approaches with respect
to built-in refinement support (cf. Sect. 3.1). Then, we discuss approaches using
a HOT for refinements in languages without built-in support (cf. Sect. 3.2).

3.1 Refinement as Built-in Language Facility

In Table 1, we check existing transformation approaches against the core require-
ments for model refinements described in Sect. 1. First, outplace transformations
must be supported, as opposed to inplace transformations on a one-to-one copy
of the source model. Second, languages need an implicit copy facility to reduce
the verbosity of refinements. If such a facility is available, we also check whether
end-to-end traceability between the source elements and their copies is provided,
and whether it is possible to execute a refinement during the copy process,
instead of creating a one-to-one copy.

The field of graph transformation (GT) provides approaches that are tailored
to inplace transformations. However, languages such as Henshin [3] support out-
place transformations as well, connecting models by means of a dedicated trace
model that provides traceability between source and target elements. Whereas
no implicit copy facility is given in general, Krause et al. [23] propose dynam-
ically typed graph transformations that enable the specification of concise and
generic rules for implicit copies’.

In contrast, approaches based on triple graph grammars (TGG) address out-
place transformations, connecting source and target models by means of a corre-
spondence graph. The correspondence graph ensures traceability between source
and target elements. Anjorin et al. [2] address refinement support for TGG by
enabling specialization of basic transformation rules. However, in general, no
mechanism for creating implicit copies is available.

The Epsilon Wizard Language (EWL, [21]) is a task-specific language for
manipulating user-defined selections of model elements. EWL is restricted to
inplace transformations. Therefore, no outplace transformations and no implicit
copies are supported.

The task of refining a model can also be viewed as a special case of model
migration to compensate metamodel evolution. In this field of model/metamodel
co-evolution, a large body of knowledge is already existing and surveyed in [14,
16,28]. In fact, the majority of approaches uses outplace transformations [16].
For example, Epsilon Flock [29] creates implicit copies using a conservative copy
strategy. The approach provides traceability and allows to execute refinements
as user-defined migrations during the copy process.

! http://www.ckrause.org/2013/04/copying-emf-models-with-henshin.html
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Similar to Flock, ATL provides a refining execution mode that implicitly
copies all the unchanged model elements from the source model to the target
model. The refining mode provides traceability and also allows to execute refine-
ments during the copy process because user-defined transformation rules override
the default copy behavior.

The QVT standard provides languages with support for outplace transfor-
mations. Whereas QVTr supports no implicit copies, QVTo provides a copy
mechanism in terms of its deepclone operation [27]. However, this operation
does not provide traceability between the source elements and their copies, and
does not allow to execute refinements during the copy process.

Table 1. Comparative overview on refinement support

GT |TGG EWL Flock | ATL | QVTr | QVTo
Outplace )| v X 4 v v v
Implicit Copy | (V)" | X X v oX v
-Traceability | (v) |- - v 4 - X
-Refinement | X - - v v - X
#Qutplace is supported by graph transformation languages such as
Henshin.

PLanguages such as Henshin provide a trace model.
“Implicit copies are supported by dynamically typed graph transfor-
mations [23]

3.2 Refinement Using Higher-Order Transformations

The work by van Gorp et al. [13] extends graph transformations with declarative
copy annotations for elements to be copied. A HOT is used to transform these
implicit annotations into executable graph transformations with an explicit copy
behavior. The use of annotations reduces the verbosity of the transformations,
and also allows to specify refinements to be executed during the copy process.

Unlike the above approach that uses graph transformations as inputs for
the HOT, Goldschmidt et al. [12,19,20] generate a full set of copy rules from a
specific metamodel, one rule for each type. The copy rules generated by the HOT
are based on the declarative QVTr language. In order to execute refinements
during the copy process, it is possible to override specific copy rules with custom
refinement rules. Furthermore, the authors also discuss the possibility of using
another HOT to weave the refinement rules into the copy rules, receiving a single
comprehensive refinement transformation.

Whereas the above approaches focus on declarative languages, the work by
Kraas [22] addresses an imperative transformation language in terms of QVTo,
similar to the scope of this paper. The author uses a HOT to generate an imper-
ative copy transformation for a specific metamodel. Similar to the declarative
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case, one copy operation for each type inside the metamodel is generated. These
default copy operations can be overridden by user-defined refinement operations.

A common drawback of the above approaches is that developing a HOT is
generally considered a tedious task [31]. Furthermore, if the HOT can not be
re-exccuted automatically, frequent metamodel evolution can easily evolve into
serious maintenance efforts to update the generated code manually. Nevertheless,
in this paper, we consider the HOT-based approach described by Kraas [22] as
our baseline due to its focus on imperative transformations.

4 A Generic Library for Implicit Copies

In this section, we present our approach towards reducing the verbosity of imper-
ative model refinements. In Sect. 4.1, we describe our conceptual approach based
on a generic transformation library that provides implicit copies. In Sect. 4.2, we
extrapolate the required language facilities, and compare state-of-the-art imper-
ative languages against these requirements.

4.1 Conceptual Approach

Our approach enables model refinements based on general-purpose facilities of
imperative transformation languages. Instead of using a HOT, we provide a
generic library implementation that encapsulates the repetitive copying behav-
ior, and is reusable by arbitrary user-defined refinement transformations.

As an example, Fig.2a shows a metamodel excerpt for statemachines. We
assume a type Element to be the implicit supertype of all model elements, similar
to the Object class in Java. The only type affected by the normalization intro-
duced in Sect. 2 is State because additional substates and transitions are added
to replace the declarative do Activity. The elements of type Transition and any
other types omitted in Fig. 2a should be copied without changes.

«Library»
ImplicitCopy

substates [*]
~ — P <T extends Element> T :: transform() : T

in*] ! i

State Transition Operation import»
Redefinition
out [*] :
«Transformation»
| .
do Activity |1 | Refinement
__ - State :: transform() : State
(a) Metamodel Excerpt (b) Refinement Architecture

Fig. 2. Application scenario for model refinement
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Figure 2b illustrates our approach at the architectural level. We introduce
a transformation library named ImplicitCopy that can be imported by arbitrary
Refinement transformations. Our library consists of a single operation named
transform that receives an arbitrary model element. In its basic form, the opera-
tion returns a one-to-one copy of the element, including copies of all cross-linked
elements. To make our operation applicable to arbitrary elements, the context
type T (representing the received element) is a generic subtype of Element. Since
transform returns a copy, T also acts as the return type. In Fig.2b, we use a
double colon to separate the operation’s context type from the operation name,
whereas a single colon separates the operation name from its return type.

In our example, the Refinement transformation includes a redefinition of the
generic transform operation for elements of type State. By returning a subtype of
Element, the operation makes use of covariant return types. On the right-hand
side of Fig.3, we depict the pseudocode implementation. To avoid duplicate
copies, our library holds a cache of copied elements. The cache is a map between
the originals and their copies, providing the default get and put operations to
obtain or add a copy. Using the cache, the transform operation first checks for
an existing copy and, if present, returns it. Otherwise, it creates a new instance
of the same type as the received element, which is denoted by self. The new
instance is assigned to the result variable, and added to the cache immediately.

Subsequently, the operation reflectively traverses all features of the self ele-
ment, representing links to other elements. For each feature, the operation obtains
the current values (representing the linked elements), and invokes transform recur-
sively on each of them. At this point, we apply the recursive descent design
pattern for model transformations [24]. In order to avoid duplicate copies in
a recursive invocation, it is of crucial importance that every result is added to
the cache immediately after its creation. Thereby, we also ensure termination

transformation Refinement; library ImplicitCopy;
main() { r.> <T extends Element> T :: transform() : T {

if (cache.contains(self)) {

statemachine.transform(); — + return cache.get(self);
} }
—P State :: transform() : State { var result := self.type.new();
cache.put(self, result);
}
for (feature : self.type.features) {
var values := self.get(feature);
var copies := values.transform(); — -
result.set(feature, copies); @

}

return result;

Fig. 3. Interaction of refinement transformation and implicit copy library
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because the recursion takes place only during the first execution of the oper-
ation for a particular element. Finally, the resulting copies are assigned to the
respective feature of the result, which is returned at the end of the operation.
On the left-hand side of Fig. 3, we depict a transformation using our library
to refine statemachine models. From its main operation, the refinement invokes
transform on a statemachine, as depicted by @. Accordingly, the library imple-
mentation of the operation executes. However, when invoking the operation
recursively on a State contained in the statemachine, a virtual operation call
depicted by @ ensures that the redefining implementation executes instead.
Thereby, we ensure that refinements can be executed during the copy process.

4.2 Language Facilities

The concept described in Sect. 4.1 requires four core facilities of imperative lan-
guages in order to apply our approach successfully. In the following, we extrap-
olate these facilities (F1-F4) from our conceptual approach.

(F1) Module Superimposition [33] is the ability to layer separate transfor-
mation modules by means of importing. Thereby, it is possible for arbitrary
transformations to import and reuse our implicit copy library.

(F2) Dynamic Dispatch of virtual operations is required to distinguish at
runtime between the generic copying behavior implemented by our library,
and the user-defined refinement behavior. The default copying operation
needs to be polymorphic in order to support redefinitions for specific model

Table 2. Comparative overview on language facilities

Xtend | K3 | ATL | ETL | QVTo

Built-In Facility X X v x| xb

Module Superimposition (F1) | v/ v I/ v v

Dynamic Dispatch (F2) 4 ) SR v v
Reflection (F3) v v Xt v v

Generic Return Types (F4) | (v)® | X' |x X X
Successful Implementation v X | X v v

2The Epsilon family provides refinement facilities in terms of Epsilon
Flock.

PQVTo provides a deepclone operation that is restricted to one-to-one
copies.

‘Kermeta 3 does not support dynamic dispatching for methods of
aspect classes.

dATL provides no access to the reflective API of the EMF modeling
framework.

°Xtend supports generic return types, but not in combination with
dynamic dispatch.

fKermeta 3 does not support generic return types for methods of
aspect classes.



Reducing the Verbosity of Imperative Model Refinements 27

element types. At runtime, the executing implementation depends on the
actual type of the element that the operation has been invoked on.

(F3) Reflection of the underlying modeling framework. Given an element of a
concrete type, the copy operation needs to create a new instance of the same
type, which is only known at runtime. Furthermore, reflective access to all
features of an element’s type is required.

(F4) Generic Return Types (optional) to infer the type of a copied ele-
ment statically. When invoking the copy operation on an element of a certain
type, it is beneficial to obtain the identical return type at compile time. Oth-
erwise, type casting is required to establish type compatibility.

In order to point out the generality of our approach, we attempted to imple-
ment our library in five state-of-the-art imperative transformation languages,
namely Xtend, Kermeta 3 (K3), ATL, ETL, and QVTo, covering two of the
most widely used de-facto standards [4]. In Table2, we check these languages
against the facilities F1-F4. We also indicate if an built-in facility is already
provided, and if our concept could be implemented successfully.

5 Proof of Concept

We realized our concept of a generic implicit copy library using QVTo [27] as
one of the languages that lacks a built-in facility, and provides the mandatory
facilities F1-F3 identified in Sect. 4.2. QVTo enables the specification and execu-
tion of imperative model-to-model transformations, consisting of modules that
can define operations and import other modules. In QVTo, mapping operations
are used to transform a source element into a target element.

5.1 Library Implementation Using QVTo

We provide a reference implementation of our concept as a transformation library
for Eclipse QVTo, which is based on the Eclipse Modeling Framework (EMF).
Our library is ready to use and publicly available at an Eclipse update site?.
In QVTo, we use a mapping to implement the default transform operation.
Since QVTo does not support generic return types (F4), we use the implicit
supertype Element as both context and return type of our mapping. Below, we
show the mapping declaration and its implementation in QVTo.

2 http://muml.org/implicitcopy /updates
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mapping Element :: transform() : Element {
init {
var type := self.oclAsType (EObject) .eClass() ;
var factory := type.ePackage.eFactoryInstance;
result := factory.create(type);

}

type.eAllReferences->select (modifiable())->forEach(r) ({
var values := self.oclAsType (EObject) .eGet(r);
var copies := values.oclAsType(Element) .map transform
()
result.oclAsType (EObject) .eSet (r, copies);

For the received element denoted by self, our mapping creates a new
instance of the same type inside the init section, which allows to assign the
instance to the predefined result variable. By using EMF’s reflective API,
we obtain the concrete type of the self element, and use the corresponding
factory to create a new instance. QVTo does not require the manual imple-
mentation of the caching mechanism introduced in Sect.4.1. Instead, a built-
in traceability mechanism [27] records a trace link between the self and the
result elements at the end of the init section. If the mapping is invoked on
an element for which a trace record exists already, the copy will be obtained
from the trace automatically without executing the mapping again.

Subsequently, we link the result to the copies of all cross-linked elements.
For each modifiable reference r of the type, we obtain the collection of cross-
linked values using EMF’s eGet operation. We create the copies by casting
each of the values to the required type Element and invoking transform
recursively. Finally, we use a EMF’s eSet operation to create the links between
the result and the copies of the cross-linked elements.

5.2 Refinement Implementation Using QVTo

Transformations may use the identifier org.muml . ImplicitCopy to import
our library. As an example, we illustrate how we implemented the normalization
of do activities for statemachine models introduced in Sect. 2. Below, we show a
QVTo transformation named DoActivity operating on statemachine models
of type SM. In the main operation, the transformation starts the refinement
by invoking the imported transform mapping on all root elements of type
StateMachine.

For elements of type State, an additional mapping declared in the refine-
ment transformation is automatically executed instead of the default copying
operation. Inside this mapping, the state name as well as all incoming/outgo-
ing transitions and embedded regions of the state are preserved by recursively
invoking transform. Since the return type is Element, we use the oc1AsType
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operation to cast the copies to the required type. The do activity of a state is
not preserved, as it is replaced by an additional region that is created by the
mapping DoActivity2Region (omitted below). This new region contains the
additional states and transitions described in Sect. 2.

import org.muml.ImplicitCopy;
transformation DoActivity (in source : SM, out target : SM);
main () {
source.objects () [StateMachine] ->map transform() ;
}
mapping State :: transform() : State {
name := self.name;
incoming := self.incoming->
map transform() .oclAsType(Transition);
outgoing := self.outgoing->
map transform() .oclAsType(Transition) ;
regions := self.regions->map transform().oclAsType (Region)
regions += self.map DoActivity2Region() ;
}

5.3 Validation

The objective of our validation is to demonstrate the progress of our implicit
copy library in terms of maintainability, compared to the baseline approach
of using a HOT (cf. Sect.3.2). To this end, we consider a refinement scenario
in the context of MECHATRONICUML [5,11], a model-driven software design
method for cyber-physical systems. Since MECHATRONICUML combines numer-
ous domain-specific languages, the resulting domain models are based on a large,
industrial-scale metamodel. A key feature of MECHATRONICUML is domain-
specific model checking of the system behavior [9], which is modeled using a
real-time variant of UML statemachines. To this end, MECHATRONICUML uses
model refinements to align its statemachines to the syntax of the model checker
in use. This refinement is based on a QVTo transformation chain consisting of
eight refinement steps for statemachine models [9]. Each step refines only a par-
ticular syntactic feature, namely (1) scaling of time units, (2) disambiguation
of identifiers, (3) normalizing transition deadlines, (4) normalizing transitions of
composite states, (5) normalizing of do activities, (6) flattening of hierarchical
states, (7) normalization of entry/exit activities, and finally (8) normalizing of
urgency properties of transitions.
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Setting the Hypothesis. We argue that our approach outperforms the base-
line by reducing the size of transformation code that requires maintenance in
case of metamodel evolution. According to the quality model for QVTo pro-
posed in [10], we use lines of code for the quantification of transformation size.
In particular, we chose source lines of code (SLOC) as our base metric, which
represents the overall number of lines of code, excluding whitespace and com-
ments. On the basis of SLOC, we compute three different response variables:

1. Owerall code size which is the total number of SLOC.

2. Handuwritten code size as the number of SLOC that was written manually.

3. FEwvolving code size which is the number of SLOC that is metamodel-specific,
including both handwritten and generated code.

Our evaluation hypothesis is that our approach improves the maintainabil-
ity of the transformation chain by significantly reducing the evolving code size
compared to the baseline approach of using a HOT.

Planning. To conduct our validation, we implement each of the eight refine-
ment steps in four different stages, differing in what type of library is used to
enable implicit copies. The stage none denotes a naive implementation stage
without a copy library. All transformation steps implement the copying on their
own, resulting in huge code duplication between the different steps. For the
stage boilerplate, we avoid code duplication. Here, the copying is outsourced to
a central library containing the handwritten boilerplate code. In contrast, the
HOT-generated stage uses a HOT to generate this boilerplate code automati-
cally. Finally, the generic stage denotes the approach of using an implicit copy
library as proposed in this paper.

Validating the Hypothesis. We validate our hypothesis by traversing the
four aforementioned stages of implementation. The stages none and boilerplate
comprise manually implemented code only. For the stage HOT-generated, we
manually implement a HOT in QVTo that traverses an arbitrary Ecore meta-
model and generates the abstract syntax tree of a QVTo copy library. We refer
the reader to [22] for structural details on the synthesized code. In the generic
stage, we implement the implicit copy library as proposed in this paper.

After every stage, we count the SLOC of all transformation modules involved.
The respective modules include (1) the eight refinement steps, (2) a copy library
as used in all stages except none, and (3) a HOT as used only in the HOT-
generated stage. Finally, on the basis of SLOC values for all modules and all
different implementation stages, we calculate the response values for our vari-
ables by distinguishing between manually implemented and generated modules,
and between metamodel-specific and metamodel-independent modules.

Analyzing the Results. In Table 3, we list the results of our validation proce-
dure. For each implementation stage and each transformation module involved,
we show the resulting number of SLOC. In the rightmost columns, we present the
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resulting values of our response variables. In particular, we also show percentage
values indicating the increase/decrease compared to the preceding implementa-
tion stage. According to our results, the boilerplate approach reduces all three
variables by 71.3% compared to the type none. Whereas the HOT-generated
library leads to a minor increase of the overall transformation size by 4.0% com-
pared to the boilerplate approach, it further decreases the handwritten code size
significantly by another 31.4%. With respect to the evolving code size, no dif-
ference compared to the boilerplate approach is detected because the additional
HOT implementation is metamodel-independent. Finally, the generic approach
reduces the overall code size by another 37.7%, and the handwritten code size
slightly by 5.5%. Furthermore, we also detect a reduction of the evolving code
size by 36.2%. According to this significant reduction, we regard our evaluation
hypothesis as fulfilled.

Table 3. Resulting SLOC Values and Response Variables

Library Time Identi Dead|Transi|Do Hier |Entry/|Ur Lib HOT | Over |Hand |Evol
Type Units |fiers |lines [tions |Acti |archy | Exit gency |rary all written|ving
vities
None 1062 |1033 |1198 [1235 1281 (1755 |1082 1261 |N/A|N/A |9907 9907 9907
Boilerplate |53 24 189 |226 272|746 73 252 1009 |N/A |2844 2844 2844
-71.3% |-71.3% |-71.3%
HOT- 53 24 189 |226 272|746 73 252 1009 (115 |2959 1950 2844
generated +4.0% |-31.4% |£0%
Generic 53 24 196 |226 272|746 73 224 29 |N/A |1843 1843 1814
-37.7% |-5.5% |-36.2%

Threats to Validity. A threat to the validity of our findings is that SLOC
represents only the overall size of the transformation modules. Thus, it reflects
the potential vulnerability to metamodel evolution, but does not capture the
actual maintenance efforts over time in a real evolution scenario. Therefore, in
case of infrequent metamodel evolution or limited change impact, the benefits of
our approach might be less obvious. Furthermore, if it is possible to re-execute
the HOT automatically (e.g., by means of continuous integration), the evolving
code size might not be the crucial variable to measure maintenance effort. In
this case, the handwritten code size is a more meaningful metric.

Another threat is that the HOT we developed is a model-to-model trans-
formation and, therefore, generates an abstract syntax tree. Instead, using a
model-to-text transformation to generate the concrete syntax is expected to be
less cumbersome. However, since we restrict our validation to QVTo as a model-
to-model approach, involving an additional model-to-text engine would lead to
incomparability of the transformation size.

6 Conclusion and Future Work

In this paper, we present a transformation library that provides implicit copies
for imperative transformation languages without special-purpose refinement
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facilities. Thereby, we significantly reduce the verbosity of refinement transfor-
mations written in such languages restricted to general-purpose facilities. We
also discuss the generality of the approach by elaborating the core facilities that
imperative languages must provide in order to realize our approach. We give an
overview on state-of-the-art imperative languages with respect to the core facil-
ities. Thereby, we assess the applicability of our approach to these languages.
Our proof of concept demonstrates how a reduced verbosity contributes to an
improved maintainability of refinement transformations.

Our approach is beneficial for imperative transformation developers with
recurring model refinement tasks, provided that their favored transformation lan-
guage supports the identified facilities. If so, developing an implicit copy library
will eventually save development efforts, compared to the approach of writing
the boilerplate code manually for each refinement transformation. Furthermore,
compared to the approach of using a HOT to synthesize the boilerplate code,
our approach also saves maintenance efforts in scenarios with frequent meta-
model evolution. Finally, language engineers might use our approach to provide
transformation languages with a built-in standard library for implicit copies. For
now, we make a ready-to-use library available to QVTo developers.

Future work on our approach includes a more fine-grained specification of
refinements. Currently, refinement operations are specified per type and need to
address all of the type’s features, i.e., links to other types. In contrast, specifying
refinements per feature is a promising extension to our approach. At the tech-
nological level, our library implementation in QVTo could benefit from generic
return types for copy operations, as one of the language facilities identified in this
paper. In order to avoid type casting in case of such generic, type-preserving oper-
ations, QVTo might adopt the Oc1Self pseudo type proposed by Willink [34]
as an extension to OCL. Finally, we plan to extend the scope of our work towards
refining declarative transformation models [6], addressing also exogenous trans-
formations. In particular, we intend to combine our approach with generic exe-
cution algorithms [8], assisting in situations where complex mapping models can
not be executed by an algorithm, and therefore need to be refined manually
using an imperative language.

Acknowledgments. The authors thank Marie Christin Platenius and Anthony
Anjorin for helpful comments on earlier versions of the paper, and Mario Treiber for
assisting in our validation.
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