
Towards Seamless Hybrid Graphical–Textual
Modelling for UML and Profiles

Lorenzo Addazi1, Federico Ciccozzi1(B) , Philip Langer2, and Ernesto Posse3

1 School of Innovation, Design and Engineering,
Mälardalen University, Väster̊as, Sweden

{lorenzo.addazi,federico.ciccozzi}@mdh.se
2 EclipsSource, Wien, Austria
planger@eclipsesource.com
3 Zeligsoft, Ottawa, Canada

eposse@zeligsoft.com

Abstract. Domain-specific modelling languages, in particular those
described in terms of UML profiles, use graphical notations to maximise
human understanding and facilitate communication among stakeholders.
Nevertheless, textual notations are preferred for specific purposes, due
to the nature of a specific domain, or for personal preference. The mutu-
ally exclusive use of graphical or textual modelling is not sufficient for
the development of complex systems developed by large heterogeneous
teams. We envision a modern modelling framework supporting seam-
less hybrid graphical and textual modelling. Such a framework would
provide several benefits, among which: flexible separation of concerns,
multi-view modelling based on multiple notations, convenient text-based
editing operations, and text-based model editing outside the modelling
environment, and faster modelling activities.

In this paper we describe our work towards such a framework for
UML and profiles. The uniqueness is that both graphical and textual
modelling are done on a common persistent model resource, thus dramat-
ically reducing the need for synchronisation among the two notations.

Keywords: Hybrid graphical–textual modelling · Multi-view mod-
elling · UML · Profiles · MARTE · Xtext · Papyrus

1 Introduction

Model-Driven Engineering (MDE) has been largely adopted in industry as a
powerful means to effectively tame complexity of software and systems and their
development, as shown by empirical research [8]. Domain-Specific Modelling Lan-
guages (DSMLs) allow domain experts, who may or may not be software experts,
to develop complex functions in a more human-centric way than if using tradi-
tional programming languages. The Unified Modeling Language (UML) is the
de-facto standard in industry [8], the most widely used architectural descrip-
tion language [11], and an ISO/IEC (19505-1:2012) standard. UML is general-
purpose, but it provides powerful profiling mechanisms to constrain and extend
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 20–33, 2017.
DOI: 10.1007/978-3-319-61482-3 2

http://orcid.org/0000-0002-0401-1036

Hybrid Graphical–Textual UML 21

the language to achieve UML-based DSMLs (hereafter simply ‘UML profiles’);
in this paper we focus on them. Domain-specific modelling demands high level
of customisation of MDE tools, typically involving combinations and extensions
of DSMLs as well as customisations of the modelling tools for their respective
development domains and contexts. In addition, tools are expected to provide
multiple modelling means, e.g. textual and graphical, to satisfy the requirements
set by development phases, different stakeholder roles, and application domains.

Nevertheless, support for graphical and textual modelling, two complemen-
tary modelling notations, is mostly provided in a mutual exclusive manner. Most
off-the-shelf UML modeling tools, such as IBM Rational Software Architect [18]
or SparxSystems Enterprise Architect [4], focus on graphical editing features and
do not allow for seamless graphical–textual editing. This mutual exclusion suf-
fices the needs of developing small scale applications with only few stakeholder
types. For larger systems, with heterogeneous components and entailing differ-
ent domain-specific aspects and different types of stakeholders, mutual exclusion
is too restrictive and void many of the MDE benefits. When adopting MDE in
large-scale industrial projects, efficient team support is crucial. Therefore, mod-
elling tools need to enable different stakeholders to work on overlapping parts of
the models using different modelling notations (i.e., graphical and textual).

Establishing a seamless modelling environment, which allows stakeholders to
freely choose and switch between graphical and textual notations, can greatly
contribute to increase productivity as well as decrease costs and time to mar-
ket. Consequently, such an environment is expected to support both graphical
and textual modelling in parallel as well as properly manage synchronisation to
ensure consistency among the two. The possibility to leverage on different per-
spectives of the same information always in sync can also boost communication
among different stakeholders, who can freely select their preferred visualisation
means. A hybrid modelling environment for seamless graphical and textual mod-
elling would disclose the following benefits.

Flexible separation of concerns with multi-view modelling based on
multiple notations. The possibility to provide graphical and textual mod-
elling editors for different aspects and sub-parts (even overlapping) of a DSML
enables the definition of concern-specific views characterised by either graphical
or textual modelling (or both). These views can interact with each other and are
tailored to the needs of their intended stakeholders.

Faster modelling tasks. The seamless combination of graphical and textual
modelling is expected to reduce modelling time and effort thanks to two factors.

(1) The single developer can choose the notation that better fits her needs,
personal preference, or the purpose of her current modelling task. While
structural model details can be faster to describe using graph-based enti-
ties, complex algorithmic model behaviours are usually easier and faster to
describe using text (e.g., Java-like action languages).

(2) Text-based editing operations on graphical models, such as copy&paste
and regex search&replace, syntax highlighting, code completion, quick fixes,

22 L. Addazi et al.

cross referencing, recovery of corrupted artefacts, text-based differencing and
merging for versioning and configuration, are just few of the features offered
by modern textual editors. These would correspond to very complex opera-
tions if performed through graphical editors; thereby, most of them are cur-
rently not available for graphics. Seamless hybrid modelling would enable the
use of these features on graphical models through their textual view. These
would dramatically simplify complex model changes; an example could be
restructuring of a hierarchical state-machine by moving the insides of a hier-
archical state. This is a demanding re-modelling task in terms of time and
effort if done at graphical level, but it becomes a matter of a few clicks
(copy&paste) if done at textual level.

Decoupling of modelling activities and modelling environment. Models
can be edited using any text editor even outside the modelling environment.

In this paper we describe our work on providing a framework able to provide
seamless hybrid graphical–textual modelling for UML profiles. The uniqueness
of our framework resides in the fact that, differently from current practices, both
graphical and textual editors operate on a common underlying model resource,
rather than on separate resources, thus heavily reducing the need for synchroni-
sation between the two. Our solutions are built upon open-source platforms and
with open-source technologies.

The remainder of the paper is organised as follows. Section 2 provides a snap-
shot of the states of the art and practice related to hybrid modelling. In Sect. 3
we outline our framework, the intended benefits, and the differences with current
practices. Details on the actual solution and exemplifications on a UML profile
are provided in Sect. 4. The paper is concluded with evaluation results, in Sect. 5,
and an outlook on current and future work, in Sect. 6.

2 States of the Art and Practice

mbeddr [14] is an open-source tool which supports extensions of the C language
tailored for the embedded domain. The tool focuses on enabling higher-level
domain-specific abstractions to be seamlessly integrated into C through modu-
lar language extensions. While mbeddr tackles the very relevant issue of bridging
abstraction gaps between modelling and target languages, it does not address
the seamless integration of different concrete syntaxes exploiting the same level
of abstraction. Umple [22] merges the concepts of programming and modelling
by adding modelling abstractions directly into programming languages and pro-
vides features for actively performing model edits on both textual and graphical
concrete syntaxes. The support for synchronisation is limited, thus prohibiting
certain kinds of modification at graphical level.

A plethora of other open-source tools such as FXDiagram [7], LightUML [10],
TextUML [21], MetaUML [15], PlantUML [17] focus on textual concrete syntax
for actively editing the modelling artefacts, while providing a graphical notation
for visualisation purposes only. FXDiagram is based on JavaFX 2 and provides

Hybrid Graphical–Textual UML 23

on the fly graphical visualisation of actions done through the textual concrete
syntax including change propagation; the focus is on EMF models. LightUML
focuses more on reverse engineering by generating a class diagram representa-
tion of existing Java classes and packages. TextUML is similar to FXDiagram
in the sense that it allows modellers to leverage a textual notation for defin-
ing models, in this case UML, and providing textual comparison, live graphical
visualisation of the model in terms of class diagrams, syntax highlighting, and
instant validation. MetaUML is a MetaPost library for creating UML diagrams
through a textual concrete syntax and it supports a number of read-only dia-
grams, such as class, package, activity, state machine, use case, and component.
Similarly, PlantUML allows the modelling of UML diagrams by using a textual
notation; graphical visualisations are read-only and exportable in various graph-
ical formats. None of these tools provides means for synchronised editing in both
textual and graphical notations nor the possibility to allow customisation of the
related concrete syntaxes. Besides FXDiagram, which is DSML independent,
the others focus on specific DSMLs, hence providing fixed textual and graphical
concrete syntaxes for the considered DSML.

Several research efforts have been directed to mixing textual and graphical
modelling. In [1], the authors provide an approach for defining combined tex-
tual and graphical DSMLs based on the AToM3 tool. Starting from a metamodel
definition, different diagram types can be assigned to different parts of the meta-
model. A graphical concrete syntax is assigned by default, while a textual one can
be given by providing triple graph grammar rules to map it to the specific meta-
model portion. The aim of this approach is similar to ours, but it targets specific
DSMLs defined through AToM3 and is not applicable to UML profiles. Charfi
et al. [3] explore the possibilities to define a single concrete syntax supporting
both graphical and textual notations. Their work is very specific to the mod-
elling of UML actions and has a much narrower scope than our work. In [19], the
authors provide the needed steps for embedding generated EMF-based textual
model editors into graphical editors defined in terms of GMF. That approach
provides pop-up boxes to textually edit elements of graphical models rather than
allowing seamless editing of the entire model using a chosen syntax. The focus
of that paper is on the integration of editors based on EMF, while ours is to
provide seamless textual and graphical modelling for UML profiles. Moreover,
the change propagation mechanisms proposed by the authors are on-demand
triggered by modeller’s commit, while we focus on on-the-fly change propaga-
tion across the modelling views. Related to the switching between graphical and
textual syntaxes, the approaches in [6,23] propose two attempts at integrating
Grammarware and Modelware. Grammarware is a tool by which a mixed model
is exported as text. Modelware is a tool by which a model containing graphical
and textual content is transformed into a fully graphical model. Transformation
from mixed models to either text or graphics is on-demand.

Projective editing is another way to enable different editing views for the
same models, as provided by mbeddr and MelanEE [2]. Concrete syntaxes are
not stored, only the abstract syntax is persistent. Thereby, the modeller edits

24 L. Addazi et al.

the abstract syntax directly, and then selects specific concrete syntax projec-
tions of it. The main benefit is the possibility to project the model in various
concrete syntaxes depending on the modeller. On the other hand, it complicates
modelling activities, since it requires to act directly on the abstract syntax of
the model through editors that are much more complex than parser-based text
editors. Jetbrains MPS [9], on which mbeddr is based, provides a projective
approach similar to MelanEE. Similarly to our approach, Jetbrains MPS uses a
single abstract syntax, but it does not entail “real” text editors, rather providing
text-like form-based editors, which hinders the use of traditional text-based tool
features (e.g. for regex search&replace, diff/merge for versioning).

To summarise, current solutions for mixed textual and graphical modelling
present at least one of the following limitations:

– one of the notations is read-only, intended as a mere visualisation means;
– one of the two notations is enforced for a specific, self-contained portion of a

DSML only;
– concrete syntaxes are predefined and not customisable;
– synchronisation among different concrete syntaxes is not automated and on-

the-fly but rather manual or on-demand.

3 A Hybrid Modelling Framework Based on Xtext
and Papyrus

The goal of our work was to provide a hybrid modelling framework for UML
and profiles based on de-facto standard open-source tools, i.e. Eclipse Modeling
Framework [5] (EMF) as platform, Papyrus [16] for UML (graphical) modelling,
and Xtext [24] for textual modelling. In Fig. 1, we depict the differences between
existing solutions for hybrid modelling and our framework.

Existing approaches, notably the one by Maro et al. [12], tackle the provi-
sion of hybridness by keeping graphical and textual modelling fully detached.
Graphical and textual modelling are performed on two separate models, which
are separately persistent in two physical resources. Given a UML profile, a corre-
sponding Ecore-based DSML representing the profile is automatically generated

Fig. 1. Current approaches compared to our approach

Hybrid Graphical–Textual UML 25

or manually provided. EMF provides automation for this task, but the resulting
Ecore model needs often manual tuning in order to be made usable. Graphical
modelling is performed using the UML editors and the model persists as UML
model resource. On the other hand, textual modelling is performed using gener-
ated Xtext editors and the textual representation persists as an Xtext resource.
Moreover, Xtext works internally with an Ecore model resource, which is kept
in sync with the textual resource by Xtext itself.

In order to keep graphical and textual models in sync, semi-automated mech-
anisms in the form of synchronisation model transformations are provided. These
model transformations are in fact also generated, thanks to higher-order model
transformations (HOTs); this provides a certain degree of flexibility in terms of
evolution of the UML profile and automatic co-evolution of the synchronisation
mechanisms. Nevertheless, HOTs would not work in case the generated Xtext
grammar is customised. This practice is very often needed in order to make the
grammar (and related editors) fit the developer’s needs.

As a concrete example of the need to customize a DSML grammar, consider
the UML-RT language [20]. UML-RT has two core concepts: capsules and pro-
tocols. Capsules are active classes and have a well-defined interface consisting
of ports typed by protocols. Capsules may have an internal structure consisting
of parts that hold capsule instances linked by connectors bound to the corre-
sponding capsule ports. All interaction between capsule instances takes place by
message-passing through connected ports.

UML-RT has a UML profile. If we start from the UML-RT profile, we obtain
an Xtext grammar that contains rules like these:
1 Capsule returns Capsule:
2 ’Capsule’
3 ’{’
4 ’base_Class’ base_Class=[uml::Class|EString]
5 ’}’;
6

7 Class returns uml::Class:
8 Class_Impl | Activity | Stereotype | ProtocolStateMachine | StateMachine_Impl
9 | FunctionBehavior | OpaqueBehavior_Impl | Device | Node_Impl

10 | ExecutionEnvironment | Interaction | AssociationClass | Component;
11

12 Class_Impl returns uml::Class:
13 ’Class’
14 ’{’
15 (’name’ name=String0)?
16 (’visibility’ visibility=VisibilityKind)?
17 ’isLeaf’ isLeaf=Boolean
18 ...
19 (’useCase’ ’(’ useCase+=[uml::UseCase|EString]
20 ("," useCase+=[uml::UseCase|EString])* ’)’)?
21 ...
22 (’ownedAttribute’ ’{’ ownedAttribute+=Property
23 ("," ownedAttribute+=Property)* ’}’)?
24 (’ownedConnector’ ’{’ ownedConnector+=Connector
25 ("," ownedConnector+=Connector)* ’}’)?
26 ...
27 ’}’;

This clearly entails a great amount of information related to UML but not rel-
evant to UML-RT. In fact, the rule for Class_Impl includes clauses for each
and every feature of the UML Class metaclass, many of which we removed for

26 L. Addazi et al.

the sake of space. Of these clauses, many, such as useCase, are irrelevant to
the DSML, and only a few, such as ownedAttribute and ownedConnector, are
relevant, but they do not reflect the concepts of UML-RT, and even the concrete
syntax may not be desirable. For UML-RT, we would like to obtain a grammar
with rules that reflect the DSML’s concepts directly and hides away any addi-
tional UML structure that may be used to represent the concept. For example,
instead of having a single clause ownedAttribute, we would like to have clauses
for ports and parts, in a rule like this:

1 Capsule returns Capsule:
2 ’capsule’ name=EString
3 ’{’
4 (ports+=RTPort)*
5 (parts+=CapsulePart)*
6 (connectors+=Connector)*
7 StructuredTypeCommonCoreFragment
8 BehaviourFragment
9 ’}’;

Xtext is designed for being used with EMF-based modeling languages. The
UML implementation in Eclipse is EMF-based and thus Xtext can be used to
implement textual concrete syntaxes for UML. However, Xtext is not designed
to work with UML profiles. This raises the need for explicit complex synchroni-
sation between the two, both at abstract and concrete syntax level. We provide
a different approach to make Xtext work with UML profiles (right-hand side of
Fig. 1), by exploiting a single underlying abstract syntax (UML-based DSML),
two concrete syntaxes (graphical given by UML and textual given by Xtext),
one single persistent resource (UML resource), and thereby reducing the need for
ad-hoc heavyweight synchronisation mechanisms. Synchronisation is instead per-
formed by Xtext in terms of serialisation and de-serialisation operations between
the UML model and the Xtext model, in the same way as Xtext naturally does
between the Ecore model and the Xtext model. Our solution provides the fol-
lowing improvements to the current state of the practice:

– Grammar customisability. The Xtext grammar can be customised and
refactored to fit the developer’s needs. This does not jeopardise the (de-)se-
rialisation mechanisms as long as it does not break the conformance of models
to the UML profile specification (i.e., metamodel).

– Cross-profile hybridness. Virtually, any UML profile can be leveraged
without the provision of ad-hoc complex synchronisation transformations. In
practice, for complex profiles, (de-)serialisation might need additional input
from the hybrid DSML developer (e.g., stereotypes application transformation
described in Sect. 4.2).

– On-the-fly changes propagation. Model changes done in one view (e.g.,
UML graphical) are seamlessly reflected and visible on-the-fly in the other view
(e.g., Xtext textual); existing synchronisation mechanisms propagate changes
on-demand following a specific request from the developer.

– Cross-notation multi-view modelling. Different Xtext grammars and edi-
tors representing different sub-sets (even partially overlapping) of the UML
profile (or several profiles) can seamlessly work on the same UML resource,

Hybrid Graphical–Textual UML 27

along with UML editors. Also in this case, the precondition is that the Xtext
grammars enforce model conformance to the entailed profiles.

Other indirect benefits stem from the aforementioned ones. An example is the
fact that code generators can reuse a single, shared abstract syntax for both
graphical and textual representations of a model, without relying on additional
transformations which result in added maintenance costs. Another example is
that different stakeholders can view and edit model parts of their collaborators
in their preferred syntax (or in a syntax that is optimised for them). In this way,
potential inconsistencies can be identified very early already during the modeling
process and communication among different stakeholders is greatly improved.

In the next section we describe our hybrid modelling solution from a technical
perspective, providing concrete exemplifications of the aforementioned benefits.

4 Technical Solution

Our hybrid graphical–textual UML modelling framework is achieved by com-
bining Papyrus for UML and Xtext. Existing approaches combining UML mod-
elling and Xtext, mentioned in Sect. 2, rely on two completely separated sets of
abstract syntax, concrete syntax, and persistent resources. This results in sep-
arate graphical and textual modelling, where partial hybridness is achieved by
explicit synchronisation between the two concrete syntaxes. Synchronisation is
complicated by the fact that graphical and textual abstract syntaxes are sep-
arated. Complex exogenous DSML-specific model transformations are needed
to realise it. In our solution we provide a more flexible hybrid solution, based
on one single abstract syntax (UML-based DSML only, instead of UML-based
DSML for graphical and Ecore-based DSML for textual, in Fig. 1), two separated
concrete syntaxes (UML model and Xtext model in Fig. 1, needed to overcome
limitations of projective approaches), and one single persistent resource.

One major challenge of providing such a solution is that the resource man-
agement in Xtext entails the creation and maintenance of a separated Xtext-
specific resource. We provide a solution for making Xtext work on the same
UML resource as Papyrus, by acting on how the content of the Xtext textual
editor is retrieved from and pushed to its underlying resource. Since we are inter-
ested in UML profiles, another major challenge is represented by expressing UML
stereotypes and their applications in Xtext grammars since there is no concept
in Xtext that corresponds to profiling. We solved this challenge by providing a
way to define alternative rules, following a superclass/subclass relationship pat-
tern, which enables editing of both stereotype-specific and base UML element
properties.

In the next sections we describe in detail how we tackled the two challenges.

4.1 Extending Xtext Resource Management

Xtext does not provide out of the box support for the direct manipulation,
including persistence, of UML resources. Xtext models are in fact stored as Xtext

28 L. Addazi et al.

resources as plain textual artefacts and managed by the so called XtextResource,
which is an Xtext-specific implementation of the EMF resource. Serialisation
and de-serialisation of textual models to and from in-memory Ecore models are
managed by dedicated serialiser and parser, which are automatically generated
from the related Xtext grammar. Defining an Xtext-based textual language for
UML (or any UML profile) causes Xtext to change the default resource associated
to the “.uml” file extension from UMLResource to XtextResource. Intuitively,
this change affects all editors in the modelling environment working on UML
resources, such as those provided by Papyrus. As soon as an Xtext textual editor
is created for files with extension “.uml”, UML models would be stored as plain
text, hence not manageable by Papyrus model editors.

In order to solve this issue, we reversed the dependency relationship imposed
on other editors by Xtext. More specifically, we enhanced the Xtext textual
editor content management so to enable its interaction with UML resources
too. In practice, the Xtext textual editor relies on a dedicated provider class to
access the resource underlying a model, i.e. DocumentProvider. When a UML
model is opened using an Xtext textual editor, the enhanced DocumentProvider
retrieves the content of the associated UML resource, serialises it, and populates
the textual editor with it. Analogously, each time a textual model is saved in the
Xtext textual editor, the enhanced DocumentProvider propagates the applied
changes to the underlying UML resource by first parsing the editor’s content and
then building or modifying the UML model to be stored.

4.2 Modelling UML Stereotypes Application in Xtext

Xtext does not provide out of the box support for UML profiles. In order to
enable Xtext-based textual languages and related editors to feature UML profiles
and stereotypes application, we operated on the way Xtext creates and maintains
grammars and parsed models.

Given a grammar specification, Xtext creates a corresponding metamodel
defined in Ecore, which we call “grammar metamodel”, describing the structure
of the grammar’s abstract syntax tree. This metamodel can be imported in
case the grammar relates to an existing grammar metamodel. Parsing of textual
models conforming to an Xtext grammar is stored in-memory in terms of the so
called grammar model, which conforms to the grammar metamodel.

Let us walk through the steps to provide support for UML profiles and stereo-
types application in Xtext-based textual languages. Below, we depict an excerpt
of the Xtext grammar providing a textual language, MarText, for the UML pro-
file for MARTE [13].

Hybrid Graphical–Textual UML 29

1 import "http://www.eclipse.org/uml2/5.0.0/UML" as uml
2 generate marText "http://www.eclipse.org/papyrus/uml/marte/MarText"
3

4 Model returns uml::Model :
5 ’model’ {uml::Model} name=ID (’{’
6 packagedElement+=Component*
7 ’}’)? ’;’
8

9 Component returns uml::Component :
10 HwProcessor | HwCache |
11 ’component’ {uml::Component} name=ID (’{’
12 packagedElement+=Component*
13 ’}’)? ’;’
14

15 HwProcessor returns HwProcessor :
16 ’processor’ {HwProcessor} name=ID (’{’
17 (’cores:’ nbCores=INT ’;’)? &
18 (’caches:’ ’{’
19 packagedElement+=HwCache*
20 ’};’)?
21 ’}’)? ’;’
22

23 HwCache returns HwCache :
24 ’cache’ {HwCache} name=ID (’{’
25 ’level:’ level=INT ’;’
26 ’}’)? ’;’

First, we import the UML metamodel as baseline for the Xtext grammar to
access UML metaclasses during the definition of the grammar rules (line 1 of
the MarText grammar). For each stereotype in the profile, we define a dedicated
grammar rule for enabling the textual editing of stereotype properties (e.g.,
HwProcessor stereotype rule at line 15 of the MarText grammar).

While enabling the editing of stereotype properties, we still need to offer the
possibility to edit the properties of the base UML element to which the stereotype
can be applied. To do so, we first looked at how multiple alternatives for a given
grammar rule are represented in the grammar metamodel1. Given a rule A, with
rules B and C as alternatives, Xtext defines three corresponding metaclasses
such that A is a superclass of B and C. We leverage this superclass/subclass
relationship pattern by defining a stereotype-specific rule as alternative to the
rule for the base UML element to which the stereotype can be applied (e.g., Com-
ponent is superclass of HwProcessor and HwCache, in lines 9–10 of the MarText
grammar). The developer can thereby access both stereotype-specific and base
UML element properties as with Papyrus UML model editors.

In order to propagate stereotypes application among the two notations, we
acted on how DocumentProvider retrieves and stores contents of the UML
resource. We defined an endogenous in-place model transformation, which maps
the application of stereotypes to UML base elements by following the super-
class/subclass relationship pattern mentioned above and based on the MARTE
profile metamodel definition. Going from textual to graphical, the transforma-
tion navigates the Xtext model and sets stereotypes to base UML elements in
the UML resource accordingly. An example depicted in Fig. 2 is represented by
processor processorA in the textual model, which leads to the application of the

1
The interested reader can refer to the Xtext specification [24] for further details about the overall
inference process.

30 L. Addazi et al.

Fig. 2. MarText (top-left), Papyrus tree-based (bottom-left), and Papyrus graphical
(right) editors in Eclipse.

stereotypes «Component»«HwProcessor» to processorA in the graphical model.
Going from graphical to textual, the transformation navigates the UML resource
and reproduces the stereotyped element, without explicitly reporting base UML
element info, in the textual format. An example depicted in Fig. 2 is represented
by «Component»«HwProcessor» processorA in the graphical model, which leads
to the definition of processorA as processor in the textual model.

5 Evaluation and Discussion

In Sect. 3, we listed a set of four improvements to current practices brought by
our framework. We provided them as follows.

Grammar customisability and cross-profile hybridness. The framework
works on a manually edited and customised Xtext grammar for MARTE. More-
over, the solution does not entail complex profile-specific synchronisation trans-
formations between textual and graphical notations. The only transformation
needed, for propagating stereotypes application across the notations, is general-
isable since based on the superclass/subclass relationship pattern between base
UML elements and applicable stereotypes. That is to say, the mechanism itself
is cross-profile, while a profile-specific instance of it, as the one we used for Mar-
Text, can be generated by a specific profile metamodel definition, in some cases
with the help of the hybrid DSML developer.

On-the-fly changes propagation. Model changes done in one view are seam-
lessly reflected and visible in the other views (graphical, textual and tree-

Hybrid Graphical–Textual UML 31

based views in Fig. 2). To appreciate how changes are propagated on-the-fly, the
reader can refer to the movie at http://www.mrtc.mdh.se/HybridModelling/demo

movie.zip.

Cross-notation multi-view modelling. We showed how an Xtext-based tex-
tual language (MarText), with related grammar and editor, representing only a
sub-set of the HwLogical package of MARTE can seamlessly work on a UML
resource containing other UML and MARTE concepts (e.g., UML elements in
SW_system package and MARTE «allocated» relations in Fig. 2). For instance,
MarText would be suitable for a platform modeller, who might not need or want
to view functional details. This is possible thanks to our enhanced Xtext resource
management, which, instead of overwriting the in-memory model with plain text,
propagates changes directly to the UML resource.

Additionally, we made an experiment to compare modelling times using the
different notations in four scenarios: Create 1, Modify 1, Create 2, and Modify
2. Create 1 and Modify 1 are run on the platform package depicted in Fig. 2. In
Create 1 we model the platform package, and in Modify 1 we add an additional
HwCache cacheB element to the model and assigned to processorA. Create 2 and
Modify 2 are represented by modelling and modifying (renaming all states from
‘state x’ to ‘x’) a UML state-machine composed of 6 states (1 initial, 1 final, 1
join, 3 normal states) and 5 transitions among the states. The modelling tasks
were performed individually by a set of developers, with similar experience in
UML modelling with Papyrus and Xtext-based textual languages. All developers
got a 2-hours preparation time to study the Xtext languages for MarText and
UML state-machines2. Table 1 shows the experiment results. We provide the
arithmetic mean of the individual sets of values.

Table 1. Mean times for performing the tasks in minutes

Notation Modelling task

Create 1 Modify 1 Create 2 Modify 2 Total

Graphical 1.06 0.27 0.52 0.18 2.03

Tree-based 0.46 0.23 2.15 0.22 3.06

Textual 0.24 0.08 1.42 0.09 1.83

Hybrid (0.24) (0.08) (0.52) (0.09) 0.93

Textual editing results faster when creating stereotyped elements and setting
their properties (Create 1). This is due to the possibility to customise Xtext
grammars to only require a minimum amount of information to be entered by the
modeller (while the underlying base UML elements are created by our stereotypes
application transformation). The same goes for the modification of an existing
model by inserting a new model element (Modify 1).
2

The Xtext language for state-machines is not in the scope of this paper and was created for
experimental purposes only.

http://www.mrtc.mdh.se/HybridModelling/demo_movie.zip
http://www.mrtc.mdh.se/HybridModelling/demo_movie.zip

32 L. Addazi et al.

The creation of state-machines resulted to be faster with the graphical nota-
tion (Create 2). This is mainly due to a swifter creation of transitions between
states using the graphical view. Transition modelling is also the reason why the
tree-based notation resulted way worse than the other two in this scenario (a
much higher amount of “clicks” is needed for creating transitions). The textual
notation resulted to be faster than the others when renaming model elements, as
expected. This is due to textual regex search&replace; while for a bigger model
the times for renaming elements would linearly increase if done through tree-
based or graphical notations, for the textual notation this is not the case, since
regex search&replace would not be affected in the same way by a higher number
of hits. Looking at the total modelling times, we can see how combining graphi-
cal and textual notations (column ‘Total’ row ‘Hybrid’ in Table 1) allows to get
the most out of them, resulting faster than all the others.

6 Outlook

In this paper we outlined the initial steps towards a hybrid seamless graphical–
textual modelling framework for UML profiles based on Papyrus and Xtext. The
uniqueness of our framework is that both graphical and textual modelling act
on a single common persistent model resource, thus requiring lower synchroni-
sation effort than current approaches. By seamlessly combining graphical and
textual modelling, the framework can mitigate the drawbacks of both as well as
emphasise and combine their benefits. We showed several of them, such as flex-
ible separation of concerns, multi-view modelling based on multiple notations,
convenient text-based editing operations, and faster modelling activities.

We are currently working on a façade-based approach for improving the
encapsulation and reusability of the support for profiles. The idea is to provide
means for defining profile-specific custom implementations of complex stereotype
elements (as in the case shown in the paper regarding UML-RT), which create
and maintain the UML “boilerplate elements” behind them. In the presented
solution we only provide limited support for this. Moreover, we are working on
a parametric automated generation of Xtext grammars from UML profiles in
order to support the creation of hybrid DSMLs.

Acknowledgements. We would like to thank Simon Redding, Francis Bordeleau,
and Matthias Tichy for the fruitful discussions and support. This work is partially sup-
ported by the Papyrus Industry Consortium(https://wiki.polarsys.org/Papyrus IC),
the EUREKA network Hybrid Modeling project(http://www.eurekanetwork.org/
project/id/10700), and the KK-foundation MOMENTUM project(http://www.es.
mdh.se/projects/458-MOMENTUM).

References

1. Pérez Andrés, F., De Lara, J., Guerra, E.: Domain specific languages with graph-
ical and textual views. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE
2007. LNCS, vol. 5088, pp. 82–97. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89020-1 7

https://wiki.polarsys.org/Papyrus_IC
http://www.eurekanetwork.org/project/id/10700
http://www.eurekanetwork.org/project/id/10700
http://www.es.mdh.se/projects/458-MOMENTUM
http://www.es.mdh.se/projects/458-MOMENTUM
http://dx.doi.org/10.1007/978-3-540-89020-1_7
http://dx.doi.org/10.1007/978-3-540-89020-1_7

Hybrid Graphical–Textual UML 33

2. Atkinson, C., Gerbig, R.: Harmonizing textual and graphical visualizations of
domain specific models. In: Proceedings of the Second Workshop on Graphical
Modeling Language Development, pp. 32–41. ACM (2013)

3. Charfi, A., Schmidt, A., Spriestersbach, A.: A hybrid graphical and textual notation
and editor for UML actions. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 237–252. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02674-4 17

4. SparxSystems Enterprise Architect. http://www.sparxsystems.eu/enterprise
architect/. Accessed 17 Feb 2017

5. Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/. Accessed
17 Feb 2017

6. Engelen, L., van den Brand, M.: Integrating textual and graphical modelling lan-
guages. Electron. Notes Theor. Comput. Sci. 253(7), 105–120 (2010)

7. FXDiagram. http://jankoehnlein.github.io/FXDiagram/. Accessed 17 Feb 2017
8. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-

ment of MDE in industry. In: 2011 33rd International Conference on Software
Engineering (ICSE), pp. 471–480. IEEE (2011)

9. Jetbrains MPS. https://www.jetbrains.com/mps/. Accessed 17 Feb 2017
10. LightUML. http://lightuml.sourceforge.net/. Accessed 17 Feb 2017
11. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs

from architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869–891
(2013)

12. Maro, S., Steghöfer, J.P., Anjorin, A., Tichy, M., Gelin, L.: On integrating graphical
and textual editors for a UML profile based domain specific language: an industrial
experience. In: Proceedings of the 2015 ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2015, pp. 1–12. ACM, New York (2015).
http://doi.acm.org/10.1145/2814251.2814253

13. UML profile for MARTE. http://www.omg.org/spec/MARTE/. Accessed 17 Feb
2017

14. mbeddr. http://mbeddr.com/. Accessed 17 Feb 2017
15. MetaUML. https://github.com/ogheorghies/MetaUML. Accessed 17 Feb 2017
16. Papyrus. https://eclipse.org/papyrus/. Accessed 17 Feb 2017
17. PlantUML. http://plantuml.com/. Accessed 17 Feb 2017
18. IBM Rational Software Architect. http://www-03.ibm.com/software/products/

en/ratsadesigner/. Accessed 17 Feb 2017
19. Scheidgen, M.: Textual modelling embedded into graphical modelling. In: Schiefer-

decker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 153–168.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-69100-6 11

20. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object Oriented Modeling. Wiley
& Sons, Chichester (1994)

21. TextUML. http://abstratt.github.io/textuml/. Accessed 17 Feb 2017
22. Umple. http://cruise.eecs.uottawa.ca/umple/. Accessed 17 Feb 2017
23. Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In: Bruel, J.-M.

(ed.) MODELS 2005. LNCS, vol. 3844, pp. 159–168. Springer, Heidelberg (2006).
doi:10.1007/11663430 17

24. Xtext. http://www.eclipse.org/Xtext/. Accessed 17 Feb 2017

http://dx.doi.org/10.1007/978-3-642-02674-4_17
http://www.sparxsystems.eu/enterprisearchitect/
http://www.sparxsystems.eu/enterprisearchitect/
https://www.eclipse.org/modeling/emf/
http://jankoehnlein.github.io/FXDiagram/
https://www.jetbrains.com/mps/
http://lightuml.sourceforge.net/
http://doi.acm.org/10.1145/2814251.2814253
http://www.omg.org/spec/MARTE/
http://mbeddr.com/
https://github.com/ogheorghies/MetaUML
https://eclipse.org/papyrus/
http://plantuml.com/
http://www-03.ibm.com/software/products/en/ratsadesigner/
http://www-03.ibm.com/software/products/en/ratsadesigner/
http://dx.doi.org/10.1007/978-3-540-69100-6_11
http://abstratt.github.io/textuml/
http://cruise.eecs.uottawa.ca/umple/
http://dx.doi.org/10.1007/11663430_17
http://www.eclipse.org/Xtext/

http://www.springer.com/978-3-319-61481-6

	Towards Seamless Hybrid Graphical--Textual Modelling for UML and Profiles
	1 Introduction
	2 States of the Art and Practice
	3 A Hybrid Modelling Framework Based on Xtext and Papyrus
	4 Technical Solution
	4.1 Extending Xtext Resource Management
	4.2 Modelling UML Stereotypes Application in Xtext

	5 Evaluation and Discussion
	6 Outlook
	References

