Chapter 2
Differential Equations

Aims and Objectives
e To review basic methods for solving some differential equations.
e To apply the theory to simple mathematical models.
e To introduce an existence and uniqueness theorem.

On completion of this chapter, the reader should be able to

e solve certain first- and second-order differential equations;
e apply the theory to chemical kinetics and electric circuits;
e interpret the solutions in physical terms;

e understand the existence and uniqueness theorem and its implications.

The basic theory of ordinary differential equations (ODEs) and analytical meth-
ods for solving some types of ODEs are reviewed. This chapter is not intended
to be a comprehensive study on differential equations, but more an introduc-
tion to the theory that will be used in later chapters. Most of the material
will be covered in first- and second-year undergraduate mathematics courses.
The differential equations are applied to all kinds of models, but this chapter
concentrates on chemical kinetics and electric circuits in particular.

This chapter ends with the existence and uniqueness theorem and some
analysis.
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2.1 Simple Differential Equations and Applications

Definition 1. A differential equation that involves only one independent vari-
able is called an ordinary differential equation (ODE). Those involving two or
more independent variables are called partial differential equations (PDEs). This
chapter will be concerned with ODEs only.

The subject of ODEs encompasses analytical, computational, and applicable
fields of interest. There are many textbooks written from the elementary to the
most advanced, with some focusing on applications and others concentrating on
existence theorems and rigorous methods of solution. This chapter is intended to
introduce the reader to all three branches of the subject. For more information,
the reader should consult the ODE textbooks in the bibliography [2, 7, 10, 15].
To solve ODEs using Mathematica, the reader is directed to [1, 6].

Separable Differential Equations
Consider the differential equation

dx

— = f(t 2.1

e (21)
and suppose that the function f(¢,x) can be factored into a product f(¢,z) =
g(t)h(x), where g(t) is a function of ¢ and h(x) is a function of z. If f can
be factored in this way, then equation (2.1) can be solved by the method of

separation of variables.
To solve the equation, divide both sides by h(x) to obtain

1 dx
% a g(t);

and integration with respect to t gives

/h(lx)cgdt:/g(t)dt.

Changing the variables in the integral gives

/ h‘i”;) ~ [otoyar

An analytic solution to (2.1) can be found only if both integrals can be evaluated.
The method can be illustrated with some simple examples.

Example 1. Solve the differential equation 97 = ——.

Solution. The differential equation is separable. Separate the variables and
integrate both sides with respect to ¢t. Therefore,
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dzx

—dt =— [ tdt
/xdt / ’
/xdx:—/tdt.

Integration of both sides yields

and so

2+ 22 = 7‘2,
where 72 is a constant. There are an infinite number of solutions. The solution
curves are concentric circles of radius r centered at the origin. There are an
infinite number of solution curves that would fill the plane if they were all
plotted. Three such solution curves are plotted in Fig. 2.1.

Figure 2.1: Three of an infinite number of solution curves for Example 1.

Example 2. Solve the differential equation 7 = —.

Solution. The differential equation is separable. Separate the variables and
integrate both sides with respect to t to give

/xde:/tdt.

Integration of both sides yields
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where C' is a constant. Six of an infinite number of solution curves are plotted
in Fig. 2.2.

Figure 2.2: Five solution curves for Example 2.

Example 3. The population of a certain species of fish living in a large lake
at time ¢ can be modeled using Verhulst’s equation, otherwise known as the
logistic equation,

dP

— =P(B—-0P),

L = p(3—p)
where P(t) is the population of fish measured in tens of thousands, and § and
§ are constants representing the birth and death rates of the fish living in the
lake, respectively. Suppose that 3 = 0.1, § = 1072, and the initial population is
50 x 10%. Solve this 4nitial value problem and interpret the results in physical
terms.

Solution. Using the methods of separation of variables gives

/ dP B / dt

p—op) ]

The solution to the integral on the left may be determined using partial frac-
tions. The general solution is

In

P
ﬂ—(SP‘ —Bt‘}’Ol,
or

p

PO = 5 Gpe
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computed using Mathematica, where C; and C5 are constants. Substituting the
initial conditions, the solution is

100

P(t) = {7 o1

Thus as time increases, the population of fish tends to a value of 100 x 10%. The
solution curve is plotted in Fig. 2.3.
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Figure 2.3: Solution curve for the initial value problem in Example 3. Note
that the axes would be scaled by 10* in applications.

Note the following;:

e The quantity % is the ratio of births to deaths and is called the carrying
capacity of the environment.

e Take care when interpreting the solutions. This and similar continuous
models only work for large species populations. The solutions give approx-
imate numbers. Even though time is continuous, the population size is not.
For example, you cannot have a fractional living fish, so population sizes
have to be rounded out to whole numbers in applications.

e Discrete models can also be applied to population dynamics (see Chap. 13).

Exact Differential Equations
A differential equation of the form

M(t,z) + N(t,x)% =0 (2.2)


http://dx.doi.org/10.1007/978-3-319-61485-4_13
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is said to be ezxact if there exists a function, say, F (¢, x), with continuous second
partial derivatives such that

OF OF
EfM(t,x), and %fN(t,:r).

Such a function exists as long as

oM _on
Ox ot’
and then the solution to (2.2) satisfies the equation
F(t,z) =C,
where C' is a constant. Differentiate this equation with respect to ¢ to obtain
(2.2).

Example 4. Solve the differential equation

der 9—12t — b5x

dt — 5t+22 -4
Solution In this case, M (t,z) = —9+ 12t + 5z and N(¢,z) = 5t 4+ 2z — 4. Now
oM ON
oxr Ot
and integration gives the solution F'(¢,r) = 2%+ 6t> + 5tz — 9t — 4z = C. There
are an infinite number of solution curves, some of which are shown in Fig. 2.4.

Homogeneous Differential Equations
Consider differential equations of the form

CC% =1(3)- (2.3)
Substitute v = ¥ into (2.3) to obtain
L wt) = 7).
Therefore,
v+ t% = f(v),
and so @ ) -

a -t
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Figure 2.4: Some solution curves for Example 4.

—6{

which is separable. A complete solution can be found as long as the equations
are integrable, and then, v may be replaced with 7.

Example 5. Solve the differential equation

dfx_t—az
dt  t+az

Solution. The equation may be rewritten as

der 1-—
— . 2.4
dt 1+ (24)

|8

|8

Let v = %. Then, (2.4) becomes

@_1—21}—1}2
dt — t(1+v)

This is a separable differential equation. The general solution is given by
2?4 2tr — 1> =C,

where C is a constant. Some solution curves are plotted in Fig. 2.5.
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Figure 2.5: Some solution curves for Example 5.

Linear Differential Equations
Consider differential equations of the form

dx
— + P(t
a1

~—

x = Q(t).

N
—

Chapter 2

Multiplying through by an integrating factor, say, J(t), (2.5) becomes

dx

J=— + JPz = JQ.

dt

Find J such that (2.6) can be written as

d dx dJ
In order to achieve this, set
I ip
dt

and integrate to get

J(t) = exp

N

JQ.

/ P() dt) .



Differential Equations 25

Thus, the solution to system (2.5) may be found by solving the differential
equation

d

as long as the right-hand side is integrable.

Example 6. A chemical company pumps v liters of solution containing mass
m grams of solute into a large lake of volume V per day. The inflow and outflow
of the water is constant. The concentration of solute in the lake, say, o, satisfies

the differential equation

do v m
L 9.
i VISV 27)

Determine the concentration of solute in the lake at time ¢ assuming that ¢ = 0
when t = 0. What happens to the concentration in the long term?

Solution. This is a linear differential equation, and the integrating factor is

given by
J:exp</5dt> =eV.

Multiply (2.7) by the integrating factor to obtain

— eVo) =eV —.
dt V
Integration gives
m vt
o(t)=— —ke v,
(="

where k is a constant. Substituting the initial conditions, the final solution is

o(t) = n (1 — e_%) .

v

m

- gl=t.

As t — oo, the concentration settles to
Series Solutions

Another very useful method for determining the solutions to some ODEs is the
series solution method. The basic idea is to seek a series solution (assuming that
the series converge) of the form
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about the point ty. The method holds for infinitely differentiable functions (that
is, functions that can be differentiated as often as desired), and is outlined using
two simple examples.

Example 7. Determine a series solution to the initial value problem

d
d—f ttz =12, (2.8)

given that x(0) = 1.
Solution. Given that ¢ty = 0, set z(t) = > -, a,t™. Substituting into (2.8)
gives
o0 oo
Z nanpt™ '+t (Z ant”> =3,
n=1 n=0
Combining the terms into a single series
oo
a + Z (n+Dang1 + an_1)t" =t
n=1
Equating coefficients gives
a1 =0,2a9 + a9 =0,3a3 +a1 =0,4a4 + a2 = 1,5a5 + a3 =0,...
and solving these equations gives ag,+1 =0, for n =0,1,2,...,

ag 717&2
a4 = 4 )

and

where n = 3,4,5,.... Based on the assumption that z(t) = > .7 a,t", sub-
stituting «(0) = 1 gives a9 = 1. Hence, the series solution to the ODE (2.8)

1S
1 3 N 1 1 13
—1- 24 24 22 )
z(®) 2 gt +ng3( ) ((Qn) (2n — 2) 68>t

Note that the analytic solution can be found in this case and is equal to

+2

z(t)=-2+1t>+3e 7z,

which is equivalent to the series solution above.
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Example 8. Consider the van der Pol equation given by

d’z dx
2(x2—-1) = = 2.
Tz T (z )dt—l—x 0, (2.9)

where z(0) = 5 and #(0) = 0. Use Mathematica to plot a numerical solution
against a series solution up to order 6 near to the point z(0) = 5.

Solution. Using Mathematica, the series solution is computed to be

11515 , 9183
——tt+ —* + O(t%).

5
t)=5— =2 +40t3 —
z(t) g T 24 2

Figure 2.6 shows the truncated series and numerical solutions for the ODE (2.9)
near to z(0) = 5. The upper curve is the truncated series approximation that
diverges quite quickly away from the numerical solution. Of course, one must
also take care that the numerical solution is correct.

Numerical and Series Solutions
5.0004
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« 4.997+
4.9961
4.995
49944 N

0.00 0.02 0.04 0.06 0.08

t

Figure 2.6: [Mathematica] Numerical and truncated series solutions for the van
der Pol equation (2.9) near z:(0) = 5.

2.2 Applications to Chemical Kinetics

Even the simplest chemical reactions can be highly complex and difficult to
model. Physical parameters such as temperature, pressure, and mixing are
ignored in this text, and differential equations are constructed that are depen-
dent only on the concentrations of the chemicals involved in the reaction. This
is potentially a very difficult subject, and some assumptions have to be made
to make progress.
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The Chemical Law of Mass Action. The rates at which the concentra-
tions of the various chemical species change with time are proportional to their
concentrations.

Consider the simple chemical reaction

A+ BB =~C,

where 3 and 7 are the stoichiometric coefficients, A and B are the reactants, C
is the product, and k; is the rate constant of the equation. The rate of reaction,
say, r, is given by

change in concentration

change in time
For this simple example,

dA]  1dB] 1d[C]
T:kl[AHB]:_W:_BW:§W’

where [4], [B], and [C] represents the concentrations of A, B, and C, respec-
tively. By adding a second chemical equation, a slightly more complex system
is produced,

aA=46D,

where ko is the rate constant of the second equation and « and § are the

stoichiometric coefficients. Two of the possible reaction rate equations for this

system now become
d[A
LA~ kaBLAIBY — ko), DD ppap

Consider the following example, where one molecule of hydrogen reacts with
one molecule of oxygen to produce two molecules of hydroxyl (OH):

Hs + Oy — 20H.

Suppose that the concentration of hydrogen is [Ha| and the concentration of
oxygen is [Oz]. Then from the chemical law of mass action, the rate equation is
given by

Rate = k[Hg][OQ],

where k is called the rate constant, and the reaction rate equation is

d[OH]
dt

= 2k[H>][O2].
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Table 2.1: One of the possible reaction rate equations for each chemical reaction.

Chemical reaction The reaction rate equation for one species may
be expressed as follows:

A+B - C de — kyab = ky(ap — c)(bo — ¢)

2A =B 4 = ky(ap — 2b)% — kb

A =2B 4 =k (ag — §) — kyb?

A = B+C de = ky(ao — c) — kp(bo + ¢)(co +¢)

A+B=C de — ky(ao — c)(bo — ¢) — kyc

A4+B = C+D de = ky(ao — ¢)(bo — ¢) — ky(co + ¢)(do + ¢)

Unfortunately, it is not possible to write down the reaction rate equations based
on the stoichiometric (balanced) chemical equations alone. There may be many
mechanisms involved in producing OH from hydrogen and oxygen in the above
example. Even simple chemical equations can involve a large number of steps
and different rate constants. Suppose in this text that the chemical equations
give the rate-determining steps.

Suppose that species A, B, C, and D have concentrations a(t), b(t), ¢(t), and
d(t) at time t and initial concentrations ag, bg, cg, and dy, respectively. Table 2.1
lists some reversible chemical reactions and one of the corresponding reaction
rate equations, where k; and k, are the forward and reverse rate constants,
respectively.

Example 9. A reaction equation for sulfate and hydrogen ions to form bisulfite
ions is given by
SO3™ +H™ = HSO;,

where ky and k, are the forward and reverse rate constants, respectively. Denote
the concentrations by a = [SO3~], b = [H], and ¢ = [HSOj3 ], and let the initial
concentrations be ag, by, and ¢g. Assume that there is much more of species
H* than the other two species, so that its concentration b can be regarded as
constant. The reaction rate equation for ¢(t) is given by

d
d—j = ky(ao — )b — kr(co + ¢).

Find a general solution for ¢(t).
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Solution. The differential equation is separable and

/kf(ao - c)bdi ky(co + €) = / dt.

Integration yields

k‘fa,ob — k’T»CO kTCO —k —k
£ = _ Ae(—Frao—kr)t
c(t) kib+ k, kfb+kr+ ‘ ’

where A is a constant.

Example 10. The chemical equation for the reaction between nitrous oxide
and oxygen to form nitrogen dioxide at 25°C),

2NO + Oz — 2NOgq

obeys the law of mass action. The rate equation is given by

e oo (- 5).

where ¢ = [NOg] is the concentration of nitrogen dioxide, k is the rate constant,
ap is the initial concentration of NO, and by is the initial concentration of
O,. Find the concentration of nitrogen dioxide after time t given that k =
0.0071312M ~2571, ag = 4MI~Y, by = 1MI~1, and ¢(0) = 0MI~*.

Solution. The differential equation is separable and

/ - c)zcécl —2) / bt

Integrating using partial fractions gives

1
c—4

1 1 1 1
kt = —|—§ln|c—4|—§1n|c—2|+1—§ln2.

It is not possible to obtain ¢(t) explicitly, so numerical methods are employed
using Mathematica. The concentration of nitrogen dioxide levels off at two moles
per liter as time increases, as depicted in Fig. 2.7.

Chemical reactions displaying periodic behavior will be dealt with in
Chapter 8. There may be a wide range of timescales involved in chemical reac-
tions, and this can lead to stiff systems. Loosely speaking, a stiff system of
differential equations is one in which the velocity or magnitude of the vector
field changes rapidly in phase space.


http://dx.doi.org/10.1007/978-3-319-61485-4_8
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Figure 2.7: [Mathematica] The Concentration of NOs in moles per liter against
time in seconds.

2.3 Applications to Electric Circuits

For many years, differential equations have been applied to model simple elec-
trical and electronic circuits. If an oscilloscope is connected to the circuit, then
the results from the analysis can be seen to match very well with what hap-
pens physically. As a simple introduction to electric circuits, linear systems
will be considered and the basic definitions and theory will be introduced. The
section ends with an introduction to the nonlinear circuit element known as the
memristor.

Current and Voltage
The current I flowing through a conductor is proportional to the number of
positive charge carriers that pass a given point per second. The unit of current
is the ampere A. A coulomb is defined to be the amount of charge that flows
through a cross section of wire in 1 second when a current of 14 is flowing, so 1
amp is 1 coulomb per second. As the current passes through a circuit element,
the charge carriers exchange energy with the circuit elements, and there is a
voltage drop or potential difference measured in joules per coulomb, or volts V.
Consider simple electric circuits consisting of voltage sources, resistors, induc-
tors, and capacitors, or RLC circuits. A series RLC' circuit is shown schemat-
ically in Fig. 2.8. The voltage drop across a resistor and the current flowing
through it are related by Ohm’s Law.

Ohm’s Law. The voltage drop V across a resistor is proportional to the current

I flowing through it:
V =1R,
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Figure 2.8: Schematic of a simple RLC series circuit.

where R is the resistance of the resistor measured in ohms (2).

A changing electric current can create a changing magnetic field that induces
a voltage drop across a circuit element, such as a coil.

Faraday’s Law. The voltage drop across an inductor is proportional to the
rate of change of the current:
dl
V=L—,
dt
where L is the inductance of the inductor measured in henries (H).
A capacitor consists of two plates insulated by some medium. When con-
nected to a voltage source, charges of opposite sign build up on the two plates,
and the total charge on the capacitor is given by

4(t) = qo + / I(s) ds,

to
where g is the initial charge.

Coulomb’s Law. The voltage drop across a capacitor is proportional to the
charge on the capacitor:

Vi = gatt) = & (w+ [ 16)85).

to

where C' is the capacitance of the capacitor measured in farads (F').
The physical laws governing electric circuits were derived by G.R. Kirchhoff
in 1859.

Kirchhoff’s Current Law. The algebraic sum of the currents flowing into any
junction of an electric circuit must be zero.

Kirchhoff’s Voltage Law. The algebraic sum of the voltage drops around any
closed loop in an electric circuit must be zero.
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Applying Kirchhoft’s voltage law to the RLC circuit gives
Vi + Vi + Vo = E(t),

where Vg, Vy, and Vi are the voltage drops across R, L, and C, respectively, and
E(t) is the voltage source, or applied electromotive force (EMF). Substituting
for the voltages across the circuit components gives

dl 1
L— I+ —qg=FEt).
o TR Fa (t)

Since the current is the instantaneous rate of change in charge, I = 49 this

dto
equation becomes
d?*q dqg 1
L—+R—+ —=q= E(t). 2.10
2 Ty T ae=EQ) (2.10)
This differential equation is called a linear second-order differential equation.
It is linear because there are no powers of the derivatives, and second order
since the order of the highest occurring derivative is two. This equation can
be solved by the method of Laplace transforms [12]; there are other methods
available, and readers should use whichever method they feel most comfortable
with. The method of Laplace transforms can be broken down into four distinct
steps when finding the solution of a differential equation:

e rewrite equation (2.10) in terms of Laplace transforms;
e insert any given initial conditions;
e rearrange the equation to give the transform of the solution;
e find the inverse transform.
The method is illustrated in the following examples.

Example 11. Consider a series resistor-inductor electrical circuit. Kirchhoff’s

voltage law gives

dI
L— +RI=FE.
dt *

Given that L = 10H; R = 2Q, and E = 50sin(¢)V, find an expression for the
current in the circuit if 7(0) = 0.

Solution. Take Laplace transforms of both sides. Then,

50
s24+1°

10(sI — 1(0)) 4 21 =

Inserting the initial condition and rearranging,
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- 25
I(bs+1)= o]

)

and splitting into partial fractions,

25 1 125 s 125 1

== _ > N
26s2+1 26 s2+1 126 (s —1/5)

Take inverse Laplace transforms to give

25 125 125 .
t) = = sin(t) — — cos(t) — —=e5
(1) = 5 sinlt) = 3¢ cost) = 55
The periodic expression 22 sin(t) — 422 cos(t) is called the steady state, and the
term %e‘é is called the transient. Note that the transient decays to zero as
t — oo.

Example 12. Differentiate equation (2.10) with respect to time and substitute
for % to obtain
P dl 1. dE

S L RT 4 oT="
@ Tttt e T w

The second-order differential equation for a certain RLC circuit is given by

d*I  _dI .
Pl + 5% + 6] = 10sin(?).

Solve this differential equation given that I(0) = I(0) = 0 (a passive circuit).

Solution. Take Laplace transforms of both sides:

10

(52T — sI(0) — 1(0)) + 5(s — I(0)) + 61 = T

Substitute the initial conditions to obtain

_ 10
I(s®> +5s+6) = :
(s +55+6) o
Splitting into partial fractions gives
2 1 1 s

j:

— + — .
s+2 s+3 241 s2+1
Take inverse transforms to get

I(t) = 2e7 2" — 73" 4 sin(t) — cos(t).
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The Memristor. The examples discussed thus far have concerned electric cir-
cuits with linear elements; however, nonlinear electric circuits are now coming
to the fore. It is now widely acknowledged that Professor Leon Chua is the
father of nonlinear circuit theory. Chua’s famous nonlinear electric circuit is
discussed in Chapter 8, and the circuit is easy to construct even in school physics
laboratories. It has long been believed that there are only three fundamental
passive circuit elements such as the capacitor, the inductor, and the resistor. In
1971, Chua [3] used mathematics to prove the existence of a fourth fundamental
nonlinear element which acts like a resistor with memory, and he called the new
device the memristor. The three well-known circuit elements are described by

the equations
1 dv _d¢ _dv

C dg " T @ T A

where % is the inverse capacitance, L is inductance, R is incremental resistance,
v is voltage, ¢ is current, ¢ is charge, and ¢ is flux. In addition, the current and
voltage are described by the following physical laws

j_da _do
Tode’ T dt

This gives five relationships on three elements and leaves a gap in the har-
monic symmetry of Chua’s aesthetics. Chua discovered the missing functional
relationship between charge and flux which is given by

)
dgq

where M is the memristance. Fig. 2.9 displays the relationships between the

four fundamental elements.

In 1976, Chua and Kang [4] discovered that a memristor displays a pinched
hysteresis and suggested that this effect could be used as a test to determine
if a device could be truly categorized as a memristor. A pinched hysteresis loop
is demonstrated in Chapter 21, and the Mathematica program for plotting the
loop is listed within the Mathematica commands section of that chapter.

In 2008, a team at HP Laboratories [13] announced that they had evidence
that many nanoscale electronic devices which involve the motion of charged
atomic or molecular species act as memristors. Their analysis was based on
results from a thin film of titanium dioxide, and they are currently building
devices for computer logic, nanoelectronic memories, and neuromorphic com-
puter architectures. A long-term project of HP Labs Research has been the
development of The Machine, which was supposed to reinvent the fundamental
architecture of computing. Among the principal components to be used were the
memristor and silicon photonics using optical communications; unfortunately, in
June 2015, HP Labs announced that memristors were to be removed from The


http://dx.doi.org/10.1007/978-3-319-61485-4_8
http://dx.doi.org/10.1007/978-3-319-61485-4_21

36 Chapter 2

Figure 2.9: The memristor: the missing link discovered.

Machine’s road map. Some researchers believe that Strukov’s memristor mod-
eling equations [13] do not simulate the devices physics very well but believe
that Chang’s and Yakopcic’s models [8] provide a good compromise.

It is now understood that man-made memristive devices have been around
for over two hundred years. In 2012, Prodromakis et al. [9] published a paper
entitled “Two centuries of memristors”. Indeed, it is now known that the first
demonstration of a memristor device took place at the Royal Institution in
1808. Sir Humphrey Davy produced a 1000 V carbon arc discharge, and modern
technology has demonstrated a pinched hysteresis effect in this system.

Incredibly, natural memristors have been around for hundreds of millions of
years, and there are memristors in plants and early life forms. Chua [5] shows
that sodium and potassium ion channel memristors are the key to generat-
ing action potentials in the Hodgkin-Huxley equations (see Chapter 21), and he
explains some unresolved anomalies with the original equations. In terms of neu-
robiology, the tutorial shows that synapses are locally passive memristors and
that neurons act as locally active memristors. Chua also shows that the circuits
used to model the Josephson junction effect should include memristor elements
to explain the workings of these devices accurately. The author and Borresen
believe it is possible to make superfast low-power computers using Josephson
junctions acting as neurons connected together with memristors acting as axons
and synapses. More detail is provided in Chapter 21.


http://dx.doi.org/10.1007/978-3-319-61485-4_21
http://dx.doi.org/10.1007/978-3-319-61485-4_21
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2.4 Existence and Uniqueness Theorem

Definition 2. A function f(x) with f : R — R" is said to satisfy a Lipschitz
condition in a domain D C R™ if there exists a constant, say, L, such that

| f(x1) —f(x2) < L | x1 —x2 [,

where x1,x9 € D.

If the function f satisfies the Lipschitz condition, then it is said to be Lipschitz
continuous. Note that Lipschitz continuity in x implies continuity in x, but the
converse is not always true.

Existence and Uniqueness Theorem. Suppose that f is continuously Lip-
schitz; then for an initial point xo € D, the autonomous differential equation

d

di; =% = f(x) (2.11)
has a unique solution, say, ¢i(xo), that is defined on the maximal interval of
existence.

Note that (2.11) is called autonomous as long as f is independent of ¢. The
proof of this theorem can be found in most textbooks that specialize in the
theory of ODEs. As far as the reader is concerned, this theorem implies that
as long as f is continuously differentiable, i.e., f € C'(D), then two distinct
solutions cannot intersect in finite time.

The following simple examples involving first-order ODEs illustrate the the-
orem quite well.

Example 13. Solve the following linear differential equations, and state the
maximal interval of existence for each solution:

(a) ==, x(0)=1;
(b) =22 z(0)=1;
(c) & =33, z(0) = 0.

Solutions.

(a) The solution to this elementary differential equation is z(t) = e, which
is unique and defined for all t. The maximal interval of existence in this
case is —o0o < t < 0o. Note that f(z) = x is continuously differentiable.

(b) The solution is given by

which is not defined for ¢ = 1. Therefore, there is a unique solution on the
maximal interval of existence given by —oo <t < 1.
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(¢) The function f(z) = 3z3 is not continuously differentiable and does not
satisfy the Lipschitz condition at = = 0; 9 — 24=3 is not continuous at

ox
x = 0. Integration gives

1
/gx_% dx:/dt,

with general solution z(t) = t3 + C. The solution to the initial value
problem is therefore z(t) = t3. The point z = 0 is zero when @ = 0. This
means that a solution starting at this point should stay there for all t.
Thus, there are two solutions starting at xp = 0, namely ¢;(t) = t3 and
@2(t) = 0. In fact, there are infinitely many solutions starting at xg = 0.
In this case, there exist solutions but they are not unique.

Note that the solution would be unique on the maximal interval of existence
0 < t < oo if the initial condition were z(1) = 1.

Consider autonomous differential equations of the form
x = f(x), (2.12)

where x € R™.

Definition 3. A critical point (equilibrium point, fized point, stationary point)
is a point that satisfies the equation X = f(x) = 0. If a solution starts at this
point, it remains there forever.

Definition 4. A critical point, say, xg, of the differential equation (2.12) is
called stable if given € > 0, there is a § > 0, such that for all ¢ > to, || x(¢) —
xo(t) ||< €, whenever || x(to) — xo(to) ||< J, where x(t) is a solution of (2.12).

A critical point that is not stable is called an unstable critical point.

Example 14. Find and classify the critical points for the following one-
dimensional differential equations.

(a) &=
(b) &

(c) @=a%-1.

Solutions.

(a) There is one critical point at g = 0. If z < 0, then & < 0, and if z > 0,
then @ > 0. Therefore, xy is an unstable critical point. Solutions starting
either side of zy are repelled away from it.

(b) There is one critical point at g = 0. If < 0, then & > 0, and if > 0,
then & < 0. Solutions starting either side of x( are attracted toward it.
The critical point is stable.
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(¢) There are two critical points, one at 1 = —1 and the other at x5 = 1. If
x> 1, then £ > 0; if —1 < x < 1, then © < 0; and if z < —1, then © > 0.
Therefore, solutions starting near to x; but not on it are attracted toward
this point, and z; is a stable critical point. Solutions starting near x5 but
not on it move away from this point, and x5 is an unstable critical point.

By linearizing near a critical point, one can obtain a quantitative measure of
stability as demonstrated below. Consider one-dimensional systems here; higher-
dimensional systems will be investigated in other chapters.

Linear Stability Analysis

Let x* be a critical point of & = f(x), z € R. Consider a small perturbation,
say, £(t), away from the critical point at z* to give z(t) = z* + £(¢). A simple
analysis is now applied to determine whether the perturbation grows or decays
as time evolves. Now

E=i=fx) = fa" +¢)

and after a Taylor series expansion,

. 2
E=f@) +&f @)+ S @)+

In order to apply a linear stability analysis, the nonlinear terms are ignored.
Hence,

£=¢f(a"),

since f(z*) = 0. Therefore, the perturbation &£(¢) grows exponentially if
f'(z*) > 0 and decays exponentially if f/(z*) < 0. If f/(«*) = 0, then higher-
order derivatives must be considered to determine the stability of the critical
point.

A linear stability analysis is used extensively throughout the realms of non-
linear dynamics and will appear in other chapters of this book.

Example 15. Use a linear stability analysis to determine the stability of the
critical points for the following differential equations:

(a) & = sin(x);

(b) @ =z

(¢) z=e*—1.
Solutions.

(a) There are critical points at x,, = nm, where n is an integer. When n is
even, f/'(x,) = 1 > 0, and these critical points are unstable. When n is
odd, f'(z,) = —1 < 0, and these critical points are stable.

(b) There is one critical point at g = 0 and f'(x) = 2z in this case. Now
f/(0) =0 and f”(0) = 2 > 0. Therefore, ¢ is attracting when z < 0 and
repelling when > 0. The critical point is called semistable.
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(¢) There is one critical point at g = 0. Now f/(0) = —1 < 0, and therefore,
the critical point at the origin is stable.

The theory of autonomous systems of ODEs in two dimensions will be dis-
cussed in the next chapter.

2.5 Mathematica Commands in Text Format

For more information on solving differential equations using Mathematica, the
reader should look for DSolve and NDSolve under the Help tab.

(* See Example 1: Solving simple ODEs. *)
In[1]:=DSolvel[x’ [t]1==-t/x[t],x[t],t]

(* See Example 8 and Fig. 2.6: Series solutions for van der Pol. *)
In[2] :=DEqn=x’’ [t]+2*(x[t]"2-1)*x’ [t]+x[t];

In[3] :=Ser=Series[DEqn,{t,0,6}];

In[4] :=Serone=Ser/.{x[0]->5,x’ [0]->0};

In[5] :=Eqns=LogicalExpand [Serone==0] ;

In[6] :=Coeffs=Solve[Eqns];

In[7] :=Serx=Series[x[t],{t,0,5}];

In[8] :=ApproxSol=Normal [Serx]/.{x[0]->5,x’ [0]->0}/.Coeffs[[1]]
In[9] :=Plot [ApproxSol,{t,0,0.08}]

(* See Example 10 and Fig. 2.7: Chemical kinetics. *)

In[10] :=k=.00713;a0=4;b0=1;s01=NDSolve[{c’ [t]==k (aO-c[t]~2) (bO-c[t]l/2),
c[0]==0},c,{t,0,700}]

In[11]:=Plot[Evaluate[c[t]/.s0l],{t,0,700}]

(* See Example 12: A second-order ODE. *)
In[12] :=DSolve[{i’’ [t]+5i’ [t]+6i[t]==10Sin[t],i[0]==0,i’[0]==0},i[t],t]

(*x Solving an IVP. x)
In[13]:=DSolve[{x’ [t]==2 Sqrt[x[t]],x[t0]==x0},x[t],t]
In[14] :=Simplify[%]

(* See Exercise 7: Solving a system of 3 ODEs *)

In[15] :=DSolve[{x’ [t]==-a x[t],y’ [t]l==a x[t]-b y[t],z’[t]==b y[t],x[0]==M,
y[0]==0,z[0]==03},{x[t],y[t],z[t]},t];

In[16] :=Simplify[%]
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2.6 Exercises

1. Sketch some solution curves for the following differential equations

dy _ _y

dz T )
dy _
dx
dy
dx
dy _
dz

dy _
dx

dy _

dx z2°

5% Bl slg

2. Fossils are often dated using the differential equation

dA
LA
ar

where A is the amount of radioactive substance remaining, « is a constant,
and t is measured in years. Assuming that o = 1.5x 10~7, determine the age
of a fossil containing radioactive substance A if only 30% of the substance
remains.

3. Write down the chemical reaction rate equations for the reversible reaction
equations

(a)
(b)

A+ B+ C =D,
A+A+A\:\A37

given that the forward rate constant is k¢ and the reverse rate constant is k.,
in each case. Assume that the chemical equations are the rate-determining

steps.
4. (a)

Consider a series resistor-inductor circuit with L = 2 H, R = 10Q
and an applied EMF of E = 100sin(¢). Use an integrating factor
to solve the differential equation, and find the current in the circuit
after 0.2 seconds given that 1(0) = 0.

The differential equation used to model a series resistor-capacitor
circuit is given by
d
RE + 9 — E’
dt C
where () is the charge across the capacitor. If a variable resistance
R=1/(5+1)Q and a capacitance C' = 0.5 F' are connected in series
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with an applied EMF, £ = 100V, find the charge on the capacitor
given that Q(0) = 0.

A forensic scientist is called to the scene of a murder. The tem-
perature of the corpse is found to be 75°F, and one hour later,
the temperature has dropped to 70°F. If the temperature of the
room in which the body was discovered is a constant 68°F, how
long before the first temperature reading was taken did the murder
occur? Assume that the body obeys Newton’s Law of Cooling,

dT
E = ﬁ(T_TR)7

where T is the temperature of the corpse, 3 is a constant, and T'g is
room temperature.

The differential equation used to model the concentration of glucose
in the blood, say, g(t), when it is being fed intravenously into the
body, is given by

dg G

2 kg = —

a9 Toov
where k is a constant, G is the rate at which glucose is admitted, and
V' is the volume of blood in the body. Solve the differential equation
and discuss the results.

Single fiber muscle can be modeled using simple differential equa-
tions [11]. Download our preprint paper on “Hysteresis in muscle”
from ResearchGate, and use Mathematica to reproduce the results
of the Hill model given in that paper.

6. Show that the series solution of the Airy equation

d*z
E —txr = 0,

where x(0) = ap and #(0) = aq, used in physics to model the diffraction of
light, is given by

- 43k
z(t) = ag (1 + ; ((2.3)(5.6) - ((3k — 1)(3k))>>

. 3k
+aq (t + 21: ((3.4)(6.7) - ((3k)(3k + 1)))) .
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7. A chemical substance A changes into substance B at a rate a times the
amount of A present. Substance B changes into C' at a rate § times the
amount of B present. If initially only substance A is present and its amount
is M, show that the amount of C' present at time ¢ is

Be=t — qe= Pt
)

8. Two tanks A and B, each of volume V, are filled with water at time ¢t = 0.
For ¢t > 0, volume v of solution containing mass m of solute flows into tank
A per second; mixture flows from tank A to tank B at the same rate; and
mixture flows away from tank B at the same rate. The differential equations
used to model this system are given by

M+M<

doa o _m dog v _ v
a VATV Ta T vIET YO

where 0 4 p are the concentrations of solute in tanks A and B, respectively.
Show that the mass of solute in tank B is given by

miv (1 - efvt/V> - mtef'ut/V.
v

9. In an epidemic the rate at which healthy people become infected is a times
their number, the rates of recovery and death are, respectively, b and ¢ times
the number of infected people. If initially there are N healthy people and
no sick people, find the number of deaths up to time ¢. Is this a realistic
model? What other factors should be taken into account?

10.  (a) Determine the maximal interval of existence for each of the following
initial value problems:

(i) @ =a2%2(0)=1;
(i) &= 252, 2(0) =2
(iii) ¢ = x(x —2),z(0) = 3.
(b)

For what values of tg and zg does the initial value problem

& =2z, x(to) = o,

have a unique solution?
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